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1  |  INTRODUC TION

Population growth is at the heart of fundamental processes in cell biol-
ogy, evolution, and ecology, from the expansion of bacteria colonies and 
large-scale animal populations to the propagation of an advantageous 

mutation. Predicting population growth dynamics is thus paramount in 
multiple fields. The outspoken goal of population modeling is to accu-
rately describe the variation in the number of individuals in a population.

Historically, deterministic models are most commonly used 
to describe population dynamics (Anderson,  2014; Brauer & 
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Abstract
Population growth is a fundamental process in ecology and evolution. The population 
size dynamics during growth are often described by deterministic equations derived 
from kinetic models. Here, we simulate several population growth models and com-
pare the size averaged over many stochastic realizations with the deterministic pre-
dictions. We show that these deterministic equations are generically bad predictors 
of the average stochastic population dynamics. Specifically, deterministic predictions 
overestimate the simulated population sizes, especially those of populations starting 
with a small number of individuals. Describing population growth as a stochastic birth 
process, we prove that the discrepancy between deterministic predictions and simu-
lated data is due to unclosed-moment dynamics. In other words, the deterministic 
approach does not consider the variability of birth times, which is particularly impor-
tant with small population sizes. We show that some moment-closure approximations 
describe the growth dynamics better than the deterministic prediction. However, 
they do not reduce the error satisfactorily and only apply to some population growth 
models. We explicitly solve the stochastic growth dynamics, and our solution applies 
to any population growth model. We show that our solution exactly quantifies the 
dynamics of a community composed of different strains and correctly predicts the 
fixation probability of a strain in a serial dilution experiment. Our work sets the foun-
dations for a more faithful modeling of community and population dynamics. It will 
allow the development of new tools for a more accurate analysis of experimental and 
empirical results, including the inference of important growth parameters.
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Castillo-Chavez,  2013; Hannon et al.,  1997). In these models, the 
population size is generically described by a continuous variable 
whose temporal dynamics are governed by an ordinary differen-
tial equation. Whereas most of these models are nonlinear—which 
means that analytical progress is not impossible but limited in some 
cases (Tsoularis & Wallace, 2002)—it is often relatively simple and 
computationally fast to obtain accurate numerical solutions, pos-
sibly explaining their widespread use. A paradigmatic model of 
population growth in theoretical ecology is the well-known logis-
tic equation whose study traces back to as early as the middle of 
the nineteenth century (Verhulst,  1838). The logistic differential 
equation was initially derived from introducing a self-limiting prop-
erty in the growth of a biological population to the unconstrained 
Malthusian exponential growth model (Malthus,  1798). It was re-
discovered independently later on (Lotka,  1925; McKendrick & 
Pai, 1912; Pearl & Reed, 1920). Verhulst's logistic growth model der-
ivation stemmed from the observation that unhindered exponential 
population growth is unrealistic. Even in the absence of predation 
relations, intraspecies competition for environmental resources 
such as food or habitat will lead to a characteristic saturation level, 
an upper bound on the population size known as the carrying capac-
ity. Owing to its ease of use, the simplest logistic growth was used to 
model biological systems at all scales, from the population growth of 
micro-organisms (Carlson, 1913; Pearl, 1927) to that of large mam-
mal herds (Morgan, 1976) and fish schools (Krebs, 1985).

Further refinements to the logistic growth function led to the 
development of a generalized logistic growth model (Tsoularis & 
Wallace,  2002), which captures several commonly used popula-
tion growth models including Blumberg (Blumberg, 1968), Richards 
(Richards,  1959) and Gompertz (Gompertz,  1825) growth models. 
Whereas amenable to easy progress and qualitative predictions, 
these deterministic models are not entirely faithful to the growth of 
a natural population, which is inherently stochastic (Bartlett, 1960; 
McKendrick,  1925). This stochasticity results from both intrinsic 
(e.g., demography) and extrinsic (e.g., environmental change) noise 
(Haefner, 2012; Lande et al., 2003). More recent studies have shown 
that deterministic and stochastic approaches yield critically differ-
ent results (Allen & Burgin, 2000; Baker & Simpson, 2010; Wakano 
& Iwasa, 2013; Wilson, 1998).

Although it is often assumed that a deterministic equation can 
describe the dynamics of a large-volume stochastic system, it is clear 
that this criterion alone is not sufficient (Gustafsson & Sternad, 2013; 
Kurtz, 1972). The range of validity of deterministic models is put in 
question. Even if new conditions for a deterministic equation to 
describe well the stochastic dynamics of a population have been 
outlined (Gustafsson & Sternad,  2013), they are not exhaustive 
and quantitative methods to overcome this discrepancy are miss-
ing. Recognizing these limitations, stochastic models have proved 
helpful in ecology for the past decades (Black & McKane,  2012; 
Bolker & Pacala, 1997; Keeling, 2000b; Marion et al., 1998; Matis 
& Kiffe, 1999).

Many studies use deterministic equations to fit experimental 
and empirical data, allowing the estimation of essential biological 

parameters. For example, logistic growth models have been used in 
microbiology to estimate microbial division rates (Kahm et al., 2010; 
Sprouffske & Wagner, 2016). A prediction based on deterministic 
models carries the risk of poorly estimating parameters of interest, 
such as the division rate of antimicrobial-resistant bacteria, crucial 
to implementing political measures to slow the spread of antimi-
crobial resistance. Deterministic models were also used recently 
to estimate the basic reproductive number during viral outbreaks; 
those used logistic-like equations (Aviv-Sharon & Aharoni,  2020; 
Pelinovsky et al.,  2020; Shen,  2020; Wu et al.,  2020), as well as 
compartmental models such as SEIR (Shen et al.,  2020; Sunhwa 
& Moran, 2020; Wan et al., 2020). Identifying when a determinis-
tic equation does not correctly describe the average dynamics of 
stochastic population growth, understanding the reasons for this 
disagreement, and proposing solutions to remedy it, is thus of par-
amount importance.

In this work, we leap forward by solving the stochastic dynam-
ics of population growth in the absence of deaths analytically. This 
resolution allows us to identify the extent to which a deterministic 
approach is a good approximation of the growth dynamics and to 
lay the foundation for future inference methods of growth parame-
ters based, for example, on the likelihood function calculation. We 
consider several classical population growth models. First, we model 
the population growth as a stochastic birth process and simulate sto-
chastic realizations of these kinetics. We compare their ensemble 
average to the predictions of the respective deterministic models. 
We show that the deterministic approach generically overestimates 
the average population size. This prediction error is larger when the 
initial number of individuals is very low. To explain the reason be-
hind this discrepancy, we derive a master equation formalism de-
scribing the stochastic population growth dynamics and the moment 
equations. We find that the difference between the population size 
estimated by the deterministic equation and the mean of the simu-
lated data is due to unclosed moment dynamics. We show that some 
moment-closure approximations reduce the difference, although it 
remains globally substantial. Instead, we derive an exact solution to 
the stochastic population growth. Finally, we apply our results and 
show that our solution leads to a better prediction of the dynamics 
of two competing strains and the probability of fixation of a mutant 
in a serial passage experiment.

2  |  BIA S OF DETERMINISTIC 
APPROACHES

2.1  |  Pure-birth models

Given the inherent stochasticity of population growth processes, we 
first establish whether a deterministic equation correctly describes 
the mean trajectory of stochastic growth. We consider four distinct 
growth models belonging to the generalized logistic growth models: 
Blumberg, Gompertz, Logistic, and Richards models (Tsoularis & 
Wallace, 2002). Our choice was motivated by their widespread use 
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to fit experimental or empirical data to estimate growth parameters 
in microbiology and ecological communities (Ghenu et al.,  2022; 
López et al., 2004; Sprouffske & Wagner, 2016). These kinetic mod-
els differ by their per capita growth rates, bN.

Under Malthusian growth, the per capita growth rate is con-
stant and independent of the population size N; we denote as b this 
intrinsic birth rate—also called exponential birth rate or Malthusian 
parameter. Note that simple unbounded exponential growth would 
occur if no restrictions were imposed on the population size (e.g., 
nutrients, available space). In the growth models considered here, 
the per capita growth rate is explicitly dependent on the popula-
tion size. To model environmental constraints such as availability of 
space or food, one then generically introduces a carrying capacity K 
that limits the population size N to the range N0 ≤ N ≤ K assuming 
no deaths, where N0 is the initial population size. Specifically, the per 
capita birth rate bN decreases as the population size increases and 
vanishes when N = K.

For a general Logistic growth model, the deterministic equation 
describing the dynamics of N reads

where BN denotes the population growth rate. The population growth 
rates for each of the four nonlinear models considered here are pro-
vided in Table 1 along with those of the exponential growth model.

As seen in Figure  1, the four population growth models chosen 
here display very different birth rate curves. Birth rates in all models 
are non-monotonic and vanish when N → 0 and N → K by construc-
tion. In other words, these models impose that a population of size zero 
cannot grow, and no population can grow beyond the carrying capac-
ity. We note that the Logistic model displays a symmetry around the 
population size N = K ∕2, whereas in both the Blumberg and Richards 
models, the exponents � and �, respectively, offer an extra degree of 
freedom to tune the shape of the growth rate curve and in particular, 
its asymmetry. We note that the population size at inflection, that is, 
when the population growth rate is maximum, is given by

and is thus dependent on exponents � and � for the Blumberg and 
Richards models, respectively. The Gompertz model shows the fastest 
growth of all at small population sizes. As shown in Figure 2a, the pop-
ulation size in all deterministic models follows a sigmoid curve—also 
called an S-shape curve—with its characteristic initial phase with slow 
growth, exponential growth phase, finally followed by a stabilization of 
the population size at a finite steady-state population size

For the Logistic, Richards, and Gompertz models, full analytical 
solutions are available (Tsoularis & Wallace, 2002). These are given 
by

Those are represented in Figure 2a. Note that no analytical (i.e., 
closed-form) solution exists for the Blumberg model; in this last case, 
we proceeded with a direct numerical solution of Equation (1).

However, as pointed out earlier, population growth is inherently 
stochastic. We, therefore, evaluated the validity range of the above 
deterministic descriptions by simulating individual stochastic trajec-
tories for the four growth models introduced above using a Gillespie 
algorithm (Gillespie, 1976, 1977) (see Appendix A). To this end, we 
recast our problem into a pure-birth process for which population 
growth results from an individual A reproducing at a size-dependent 
rate bN following the elementary reaction

with BN = bN × N. Naturally, multiple stochastic models may lead to the 
same deterministic model under a mean-field approximation. Here, we 
focus on one particular microscopic scenario. Still, as we will argue in 
the next section, other formulations, including those where birth and 
death processes are taken into account explicitly, lead to even more 
drastic disagreement. We average all our results over 105 independent 
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TA B L E  1 Population growth models

Exponential Logistic Blumberg Richards Gompertza

� = 1 � = 1 � � = 1 � = 1

� = 0 � = 1 � = 1 � � → 0

� = 0 � = 1 � � = 1 � = 1

BN = bN BN = bN(1−N∕K) BN = bN�(1−N∕K)� BN = bN
(

1− (N∕K)�
)

BN = bNlog(K∕N)

Note: List of specific population growth models used with their associated exponents and population birth rates BN. These are derived from the 
generalized logistic growth model introduced in Equation (1). The exponents �, �, and � allow tuning the symmetry, maximum, and inflection of the 
population growth rate BN (see Figure 1). Birth rate, population size, and carrying capacity are denoted by b, N, and K, respectively.
aThe generalized logistic growth model converges to the Gompertz model when the per capita growth rate is divided by � and the limit � → 0 is taken 
(Tsoularis & Wallace, 2002).
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stochastic trajectories to obtain the time-dependent average popula-
tion size. Note that we only consider the case of � = 1 to ensure that 
we can faithfully match the stochastic models to their deterministic 
limits. Indeed, these are the only cases for which we obtain a well-
defined deterministic limit (see Appendix B for details).

As shown in Figure  2a, we observe a substantial difference 
between the deterministic predictions and the stochastic mean 
population size starting from a single individual. To quantify this dis-
agreement, we calculated the relative error � defined as

where Nd(t) and Ns(t) are, respectively, the time-dependent population 
sizes predicted by the deterministic model and measured in our sto-
chastic simulations. We observed relative errors as large as 30% inde-
pendent of the carrying capacity (see Appendix D, Figure A2). Figure 2b 
shows that the largest error for the parameters chosen is obtained for 
the Richards model, whereas the smallest is for the Gompertz model 
(still at a substantial max(�) ≈ 12%). We note that the quantitative 
value of the relative errors measured for the Blumberg and Richards 
models depend on the choice of exponents � and �, respectively. 
Nevertheless, the measured errors remain substantial over a wide 
range of exponents (see Appendix C, Figure A1). For all the growth 
models studied here, the deterministic dynamics given by Equation (1) 
overestimate the population size at all times. It is interesting to note 
that the maximum error is located around the inflection point (i.e., at 
t such that d2N∕dt2 = 0) predicted by the deterministic equation. The 
inflection point corresponds to the population size where the popula-
tion birth rate reaches its maximum and starts decreasing.

Furthermore, we observe that the error uniformly decreases as 
N0, the initial number of individuals in the population, increases (see 
Figure 2c). This discrepancy limits the range of validity of the deter-
ministic models as the initial number of individuals in the population 
is assumed to be small in many applications, for example, patient 
zero in a disease spreading scenario, single cell mutation in a muta-
tion fixation experiment, small number of cells in a bacterial colony 
expansion, etc. To summarize, the deterministic equation fails to de-
scribe the average stochastic trajectory. Although the relative error 
depends on the specific growth model, and thus on the per capita 
birth rate, it remains substantial in all cases tested and increases 
with decreasing initial population size. Importantly, the relative error 
between deterministic predictions and measured mean stochastic 
population size is independent of the carrying capacity. Thus the dis-
crepancy does not vanish in the limit of large but finite population 
sizes (see Appendix D, Figures A2 and A3).

(6)�(t) =
Nd(t) − Ns(t)

Ns(t)
,

F I G U R E  1 Different growth models display different population 
birth rates. Population birth rate BN versus population size N for 
different population growth models. Vertical dashed lines show the 
location of the optimal birth rate for each model. Parameter values: 
carrying capacity K = 100, birth rate b = 1, exponents � = 1 , � = 2, 
and � = 1.5.
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Stochastic population growth is a Markovian jump process. 
Therefore, the times between jumps from size N to N + 1 are ex-
ponentially distributed with parameter BN. For small initial popula-
tion sizes N0, the rates at which the population initially grows are 
low (see Figure  1), e.g., the rate of the first reproduction is given 
by bN0

[

1−
(

N0∕K
)�
]�

 for the generalized logistic model. In turn, this 
implies that early in the process, the distributions of reproduction 
times lead to a large variance in the population size. We postulate 
that this large variance accumulated over the growth process is 
responsible for the disagreement between the deterministic and 
the mean stochastic trajectories. This postulate is consistent with 
our observations that: (1) the relative error increases when the ini-
tial population size decreases, and (2) the relative error is maximal 
around the inflection point where the exponential distribution of 
reproduction times is the tightest. Interestingly, when K → ∞ (large 
volume limit), the rate of first reproduction converges to bN0 and so 
is entirely controlled by the initial population size confirming that the 
observed disagreement remains valid in this limit. Finally, we note 
that the above deterministic models are mean-field models which in-
trinsically assume an underlying population size distribution peaked 
around its mean in contrast to the wide population size distributions 
observed in the stochastic models.

2.2  |  Birth-death processes

In the previous section, we focused on populations that can only 
increase in size over time. This assumption, which entails neglect-
ing the death of individuals, is predominant in microbiology, where 
the models used to fit population growth data do not explicitly in-
clude death rates (Kahm et al., 2010; Ram et al., 2019; Sprouffske 
& Wagner, 2016). Similarly, pharmacodynamic models, which aim at 
quantifying how antibiotics inhibit growth or kill cells, commonly re-
place the birth rate with a net birth rate (i.e., birth rate minus death 
rate) in Equation  (1) (Czock & Keller,  2007; Regoes et al.,  2004). 
In this way, the population grows if the net birth rate is positive, 

decreases if it is negative, and remains constant for zero net growth 
rates. However, stochastic population growth can also be modeled 
as a Markovian jump process where births and deaths are distinct 
events leading to distinct changes in population size: N → N + 1 and 
N → N − 1, respectively.

We do not expect deterministic models to fare better in the 
presence of explicit death events with small initial population sizes. 
For the sake of simplicity and without loss of generality, we add to 
Equation  (1) a linear death term leading to the modified differen-
tial equation dN∕dt = bN�

[

1−(N∕K)�
]�

− dN. We further simulate a 
stochastic birth-death process known to lead to this deterministic 
equation in the mean-field limit using once again a Gillespie algo-
rithm (Gillespie, 1976, 1977). We show that a deterministic approach 
fails to describe the dynamics of the average population growth over 
many stochastic realizations, as in the death-free case. Strikingly, we 
demonstrate that it also fails to predict the correct steady-state pop-
ulation size.

Indeed, Figure 3a shows that deterministic models do not predict 
quantitatively either time-dependent population sizes or steady-
state population sizes averaged over many stochastic realizations. 
We argue that this difference is due to rapid extinctions, which 
are frequent occurrences when considering low initial population 
sizes and large ratios of death rate to birth rate (see Figures 3b,c). 
Specifically, demographic stochasticity leads to extinction with 
probability p0 = (d∕b)N0 (or p0 = (d∕(blog(K)))N0 for the Gompertz 
model), which is non-zero as long as the death rate is strictly positive. 
Note that the probability of extinction is obtained from the linear 
birth-death process (Kendall, 1948), assuming density independence 
at the beginning of the growth when the population size is very small 
compared to the carrying capacity. For nonlinear models, these 
early extinction events are not taken into account in deterministic 
approaches.

One may wonder whether a fairer approach to matching the 
stochastic models with the deterministic limits should be to first 
condition the master equation on survival. One can show that this 
does not lead to a substantial reduction in the error in predicting 

F I G U R E  3 Deterministic approach performs worse with non-zero death rates. (a) Population size N versus time t for different population 
growth models. (b) Rapid extinction probability p0 versus initial population size N0 for different population growth models. (c) Rapid 
extinction probability p0 versus ratio of death to birth rate d/b for different population growth models. In every panel, the solid lines the 
deterministic predictions, and each point results from simulated data averaged over 105 stochastic realizations. Parameter values: carrying 
capacity K = 100, birth rate b = 1, death rate d = 0.1 (in (a)) and 0.5 (in (b)), and initial population size N0 = 1 (in (a) and (c)).
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the transient population size but allows one to correctly predict 
the quasi-steady-state population size (see Appendix D for details). 
Furthermore, the linear birth-death process, whose analytical solu-
tion is known (Kendall,  1948), has a deterministic limit giving the 
population size averaged over the survival and early extinction tra-
jectories (see Appendix D for details).

In summary, we conclude that deterministic formalism is not a 
good predictor of the average population growth dynamics, even for 
large carrying capacities in the presence or the absence of explicit 
death events. We also note that the discrepancy between determin-
istic and average stochastic population sizes worsens as the initial 
population size decreases. We further conclude that deterministic 
approaches fail at predicting the steady-state population size when 
death events are explicitly introduced. In the following, we focus on 
the pure-birth process, which is already of great interest in micro-
biology, as we pointed out earlier. In the next section, we adopt a 
stochastic approach to describe the population growth and obtain 
an exact analytical solution for the population size distribution at 
all times.

3  |  ERROR REDUC TION BY 
MOMENT- CLOSURE APPROXIMATIONS

To identify the reasons behind the poor performance of the deter-
ministic equation, we return to a stochastic formalism. Generically, 
any population growth in the absence of death may be described 
by a stochastic birth process whose rates are defined by the model 
(Kendall, 1949) (see Table 1 for examples). Let us consider a popula-
tion whose number of individuals at time t is denoted by N, whereas 
its initial population size is N0. As in Equation (5), we consider that 
each individual in the population replicates with the same per capita 
rate bN. Here, the population size increases from N to N + 1 individu-
als at a total rate BN, where BN was defined in Table  1 for several 
population growth models.

We focus on finite-sized populations that grow in a constant 
environment with a carrying capacity K. To fully account for the 
stochasticity inherent to demographic noise, we use a microscopic 
and probabilistic description in continuous time of the birth events 
within the population. More specifically, we write a system of differ-
ential equations describing the probabilities PN0,N

(t) that a population 
has a given size N at a given time t knowing that it started with N0 
individuals. Because the growth rates vanish when N → K, the size of 
our population is at most K, with the state N = K being an absorbing 
state, that is, the population indefinitely remains in this state once 
reaching it for the first time. Put simply, our stochastic process, while 
continuous in time, has a finite discrete number of possible states. 
Here, we assume that the population jumps between successive 
sizes with a rate dependent on its current size leading to a fully cou-
pled system of equations.

This system of differential equations, formally called the mas-
ter equation, governs the time evolution of the probabilities PN0,N

(t). 
Writing the master equation for a stochastic jump process requires 

one to think about gain and loss terms to the probabilities PN0,N
(t); for 

our system, it reads (Gardiner, 2009; Van Kampen, 2011)

when N0 ≤ N ≤ K − 1 and the probability normalization condition im-
poses PN0,N

(t) = 1 −
∑K−1

N=N0
PN0,N

(t), when N = K. The first term on the 
right-hand side of Equation (7) is a gain term corresponding to an in-
crease in the population size from N−1 to N individuals via a birth event, 
whereas the second term is a loss term corresponding to the popu-
lation size transitioning from N to N + 1 individuals. Although writing 
down the master equation for a stochastic jump process is often easy, 
computing the formal solution of master equations is arduous and has 
been an active field of investigation for decades (Gardiner, 2009; Van 
Kampen, 2011; Weber & Frey, 2017).

Importantly, the master Equation  (7) contains all information 
about the growth dynamics; in particular, as it governs the proba-
bility distribution PN0,N

(t), it contains all information to compute the 
averaged population size trajectory over time. Rather than solving 
directly Equation (7), we derive an equation governing the moments 
of PN0,N

(t), where the mth moment of the population size is defined as

with m a positive integer. For instance, the equation governing the 
time-evolution of the first moment (i.e., m = 1), which corresponds to 
the mean population size, reads

where as the equation for the second moment (i.e., m = 2) satisfies

where again averages are defined as ⟨ ⋅ ⟩ =
∑K

N=N0
( ⋅ )PN0,N

(t).
The moment equations are closed for linear population birth 

rates as in the Malthusian (or exponential) growth model. Taking for 
the sake of simplicity and without loss of generality b = 1, the popu-
lation birth rate of the exponential model is given by BN = N. Writing 
out the moment equations, we obtain, for instance,

First, the average population size given by Equation (11a) shows 
that the deterministic model accurately describes the average 

(7)
dPN0,N

(t)

dt
= BN−1PN0,N−1

(t) − BNPN0,N
(t),

(8)
⟨Nm

⟩ =

K
�

N=N0

Nm PN0,N
(t),

(9)
d⟨N⟩

dt
= ⟨BN⟩,

(10)
d
�

N2
�

dt
= ⟨(2N + 1)BN⟩,

(11a)
d⟨N⟩

dt
= ⟨N⟩,

(11b)
d
�

N2
�

dt
= ⟨N⟩ + 2

�

N2
�

,

(11c)
d
�

N3
�

dt
= ⟨N⟩ + 3

�

N2
�

+ 3
�

N3
�

.
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stochastic population size dynamics. Secondly, the equation for the 
second moment (11b) is closed as it only depends on the second mo-
ment itself and the first moment, which can be obtained analytically 
by solving Equation (11a). Similarly, the third moment (11c) is closed 
as well; the equation for the mth moment only depends on the m first 
moments, and so by solving the moment equations sequentially, we 
obtain a closed equation for any moment of the distribution. This 
way, important distribution properties such as its variance or skew-
ness can be studied analytically. Note that the master equation (7) 
is analytically solvable for linear population birth rates, also called 
Malthusian growth (Taylor et al., 1998), which allows one to obtain 
distribution properties without solving the ordinary differential 
equations satisfied by the moments.

Meanwhile, the moment dynamics are unclosed for nonlinear 
population birth rates, which is often the case for finite populations. 
In other words, the equation for mth moment may involve higher-
order moments, leading to an infinite hierarchy of moment equa-
tions that is not solvable. Approximation techniques to get around 
this problem exist, and here, we discuss the accuracy of the most 
commonly used.

The most basic way to get around this problem is to apply a 
so-called mean-field approximation. The mean-field approximation 
relies on the crucial assumption that the distribution of popula-
tions sizes is well-peaked so that PN0,N

≈ �(N − ⟨N⟩), where � is the 
Kronecker-delta function (i.e., �(N − ⟨N⟩) = 1 if N = ⟨N⟩ and 0 oth-
erwise). This approximation naturally leads to the approximations 
⟨N⟩ ≈ N, and ⟨BN⟩ ≈ BN, which enable us to recover the determin-
istic limit given by Equation  (1). More formally, a Kramers-Moyal 
expansion in combination with a diffusion approximation of the 
master equation  (7) and a mean-field approximation leads to 
the same resulting deterministic equation (Gardiner,  2009) (see 
Appendix  B for details). As we argued earlier, this deterministic 
model has been very popular, for instance, in population genetics 
theory focusing on the evolutionary effects of natural selection 
and mutation, as it simplifies calculations and circumvents the 
need for the master equation framework (Crow & Kimura, 1970; 
Ewens,  2004; Kingman,  1979; Nagylaki,  2013; Nei,  1987; 
Rice, 2004). Importantly, we argued in Section 2 that the distri-
butions of population sizes were wide (see also Figure 5). So un-
surprisingly, the mean-field approximation fails to satisfactorily 
describe the population size averaged over stochastic realizations.

Going beyond the mean-field approximation requires us to 
close the hierarchy of moment equations; these methods are called 
moment-closure approximations. They have been extensively used to 
provide analytic approximations to nonlinear stochastic population 
growth models (Krishnarajah et al.,  2005; Nåsell,  2003b; Singh & 
Hespanha, 2007). In the following, we focus on the Logistic growth 
model and proceed to several common moment-closure approx-
imations. Writing the first few moment equations for the Logistic 
growth model, we obtain

Notably, the equation for the first moment ⟨N⟩ depends on the 
second moment 

⟨

N2
⟩

, whereas the equation for the second moment 
⟨

N2
⟩

 depends on the third moment 
⟨

N3
⟩

, and so on. To close this 
hierarchy of moment equations, two routes are often employed: (i) 
closure methods can rely on a cumulant truncation procedure, in 
which the k first cumulant equations are approximated by setting all 
cumulants of order higher than k to 0 (Matis & Kiffe, 1996, 1999), (ii) 
closure methods can also be based on assumptions on the form of 
the underlying distribution of population sizes PN0,N

(t) (Isham, 1991; 
Krishnarajah et al.,  2005; Marion et al.,  1998; Nåsell,  2003b; 
Whittle,  1957). Most recently, the latter method has been exten-
sively used; in these latter approximations, one often focuses only 
on the first two moments.

Here, we test several common moment-closure approximations 
that express 

⟨

N3
⟩

 as a function of the first two moments ⟨N⟩ and 
⟨

N2
⟩

, allowing us to close the first two moment equations  (12a) 
and (12b). We report all moment-closure approximations tested 
here in Table  2. As shown in Figure  4, all moment-closure ap-
proximations tested here show a substantial disagreement with 
the simulated stochastic mean population. Whereas the Binomial, 
separable derivative-matching (SDM), and mean-field approxima-
tions overestimate the mean population size, the New-Poisson, 
Nåsell-Poisson, and Normal moment-closure approximations un-
derestimate it. We report absolute relative errors ranging from 
∼ 6% for the Binomial approximation to ∼ 26% for the normal ap-
proximation. Indeed, classical moment-closure approximations fail 
in problems with very skewed underlying probability distributions, 
for which accurate knowledge of the higher order moments is 
needed (Krishnarajah et al., 2005). For instance, the third moment 
of the distribution (the one being approximated in the methods 
presented here) is directly related with the lopsidedness of the 
distribution. Figure 5 shows that our population growth dynamics 
are plagued by large skewness. In other words, Figure 5 shows that 
the population size can have many different values at a given time 
during stochastic growth.

Notably, some moment-closure approximations perform better 
than the mean-field approximation, although the latter is the most 
widely used. While these moment-closure approximations gen-
erally reduce the error in predicting the dynamics of population 
growth, we note that they cannot generically be applied to the 
other growth models considered in this paper. Indeed, the right-
hand side of Equation  (9) depends on the terms 

⟨

(1−N∕K)�N
⟩

, 
⟨log(N)N⟩ and 

⟨

N�+1
⟩

 for the Blumberg, Gompertz, and Richards 
models, respectively. These are not easily expressed in terms 
of combinations of moments of the distribution. Since these 

(12a)
d⟨N⟩

dt
= ⟨N⟩ −

�

N2
�

K
,

(12b)
d
�

N2
�

dt
= ⟨N⟩ +

�

2 −
1

K

�

�

N2
�

−
2

K

�

N3
�

,

(12c)

d
�

N3
�

dt
= ⟨N⟩−

�

3−
1

K

�

�

N2
�

+

�

3−
3

K

�

�

N3
�

−
3

K

�

N4
�

.
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nonlinear population growth models are widely used, we must de-
vise a generically applicable method, which we do in what follows. 
However, we recognize that moment-closure approximations 
allow growth dynamics to be described from one or two ordinary 
differential equations, which may be easier than a fully probabilis-
tic description.

4  |  TOWARD AN E X AC T SOLUTION TO 
STOCHA STIC POPUL ATION GROW TH

4.1  |  First approach: Transition rate matrix

A first approach to try and solve the master equation directly is 
to recast it in the language of Markov chains. Namely, stochastic 
population growth can be interpreted as a continuous-time, K-state 
Markov jump process with transition rate matrix R =

(

Rij
)

1≤i≤K,1≤j≤K
, 

where the matrix element Rij with i ≠ j is understood to be the rate 
at which the population switches from value N = j to N = i (note that 

other conventions exist). The diagonal elements of the transition 
rate matrix are generically fixed by enforcing conservation of total 
probability, which implies that the columns of R sum up to zero, that 
is, 

∑K

i=1
Rij = 0, so that Rjj = −

∑K

i=1,i≠j
Rij.

As the population sizes potentially vary from 1 to K, we first de-
fine P(t) as the column vector of dimension K

with the ith-component corresponding to the time-dependent proba-
bility of having a population of size i . We then rewrite Equation (7) in 
matrix form as

where the K × K transition rate matrix R is defined as

(13)P(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

PN0,1
(t)

PN0,2
(t)

⋮

PN0,K
(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(14)
dP(t)

dt
= R ⋅ P(t),

TA B L E  2 Moment-closure approximations

Moment-closure approximation Third moment 
⟨

N3
⟩

Binomial (Nåsell, 2003a)
2
�

�

N2
�

−⟨N⟩2
�2

∕ ⟨N⟩ −
�

N2
�

+ ⟨N⟩2 + 3
�

N2
�

⟨N⟩ − 2⟨N⟩3

Lognormal (Keeling, 2000a, 2000b) �

N2
�3

∕ ⟨N⟩3

Nåsell-Poisson (Nåsell, 2003a)
⟨N⟩ + 3

�

N2
�

⟨N⟩ − 2⟨N⟩3

New-Poisson (Nåsell, 2003a) �

N2
�

− ⟨N⟩2 + 3
�

N2
�

⟨N⟩ − 2⟨N⟩3

Normal (Matis & Kiffe, 1996; Nåsell, 2003b; Whittle, 1957) 3
�

N2
�

⟨N⟩ − 2⟨N⟩3

Separable Derivative-Matching (Singh & Hespanha, 2007) �

N2
�3

∕ ⟨N⟩3

Note: Common moment-closure approximations where the third moment 
⟨

N3
⟩

 is expressed as a function of the first moment ⟨N⟩ and the second 
moment 

⟨

N2
⟩

.

F I G U R E  4 Moment-closure approximations do not satisfactorily reduce the error. (a) Population size N versus time t for moment-
closure approximations with the Logistic model. The data points show simulated data averaged over 105 stochastic realizations. The solid 
lines correspond to the moment-closure approximations (see Table 2). (b) Relative error � versus time t for different moment-closure 
approximations. � is calculated using data from Panel (a). Parameter values: carrying capacity K = 100, initial population size N0 = 1 and birth 
rate b = 1 .

0 5 10 15 20
Time t

-30

-20

-10

0

10

20

30

R
el

at
iv

e 
er

ro
r

(%
)

Binomial
Mean-field / Deterministic
Nåsell-Poisson
New-Poisson
Normal
SDM / Lognormal

0 5 10 15 20
Time t

0

20

40

60

80

100

N ezis noitalupo
P

Binomial
Mean-field / Deterministic
Nåsell-Poisson
New-Poisson
Normal
SDM / Lognormal

(a) (b)



    |  9 of 20MARREC et al.

leading to

In the case where the transition rate matrix does not have re-
peated entries, the solution to Equation  (14) can be written as a 
weighted superposition of the K eigenvectors vk of the transition 
rate matrix multiplied by an exponential function whose rate is given 
by the associated eigenvalue �k. Namely, we write

a vector whose components give us the time-dependent probability 
that the population size is N given that it was N0 at t = 0,

Note that the coefficients ck are obtained by the imposition of the 
initial conditions and here must satisfy PN0,N

(0) =
∑K

k=1
vk,Nck = �N,N0

 , 
where � is the Kronecker delta (i.e., �N,N0

= 1 if N = N0 and 0 oth-
erwise). Furthermore, ck = 0 for 1 ≤ N < N0 since a population size 

lower than N0 cannot be reached. Indeed, death events are not con-
sidered here, so the population size can only increase over time.

As the transition rate matrix R is lower triangular, the eigenval-
ues are equal to the diagonal entries of the matrix, and we obtain 
�k = − Bk, 1 ≤ k ≤ K. Finally, we compute the eigenvectors as

Notably, the eigenvectors vk are ill-defined when the birth rates 
degenerate (i.e., when Bk = Bk� for k ≠ k′). Indeed, Equation  (19) 
shows that some of the components of the eigenvectors diverge 
when birth rates degenerate. The degeneracy typically happens 
when the population birth rate curve displays particular symmetries 
(see Figure 1). For instance, the Logistic growth model presents a 
mirror symmetry with respect to K∕2; for all 1 ≤ k ≤ K, we obtain 
Bk = BK−k. Diagonalization of the transition rate matrix would thus 
not apply to the Logistic growth model.

In the case where every birth rate is distinct (i.e., Bk ≠ Bk′ if k ≠ k′ ), 
we compute the constants ck, and we finally get

Note that the condition on the transition rate matrix not having 
repeated entries translates to imposing on the growth model not to 
lead to degenerate birth rates. The solution to the stochastic dy-
namics of population growth models with degenerate birth rates 

(15)Rij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Bj if i= j,

Bj if i= j+1,

0 otherwise.

(16)
R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−B1 0 0 … 0

B1 −B2 0 … 0

0 B2 −B3 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 −BK

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17)P(t) =

K
∑

k=1

vkcke
�k t ,

(18)PN0,N
(t) =

K
∑

k=1

vk,Ncke
�k t .

(19)vk,N =

⎧

⎪

⎨

⎪

⎩

0 if 1≤N≤k−1,

N−1
�

q=k

Bq

Bq+1−Bk
otherwise .

(20)PN0,N
(t) =

1

BN

N
�

k=N0

Bke
−Bkt

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N
�

q=N0

q≠k

Bq

Bq − Bk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

F I G U R E  5 Exact solution to the nonlinear population growth problem. (a) Population size N versus time t for different population growth 
models. The data points show simulated data averaged over 105 stochastic realizations. The solid lines correspond to our solution, whereas 
the dashed lines represent the deterministic equation. (b) Probability PN of having N individuals at t = 5. Parameter values: carrying capacity 
K = 100, initial population size N0 = 1, birth rate b = 1, exponents � = 1, � = 2 and � = 1.5.
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cannot be directly obtained via Equation  (17); indeed the degen-
eracy in the birth rates leads to degenerate eigenvalues 

{

�i

}

i∈[1,M]
, with M < K. This means that the solution would then be written as 
a linear combination of exponential terms with parameter �i, whose 
coefficients are polynomial factors. In general, identifying these 
polynomial factors can be a very tedious task. To circumvent this 
issue, and thus the lack of universality of Equation (17), we develop 
in the next section a new resolution method that applies to any pop-
ulation growth model.

4.2  |  Exact solution: distribution of waiting times 
between birth events

As we just saw, the method based on the transition rate matrix is 
unsatisfactory because it does not yield a closed-form solution for 
Equation (14) if birth rates are degenerate. Here, we suggest an ap-
proach based on waiting times between birth events. The underlying 
idea is that in the absence of deaths, population growth can be inter-
preted as a succession of events (births) happening in a well-defined 
order separated by waiting times, which are random variables. To 
reach size K from its initial size N0, the population has to grow one in-
dividual at a time and go from N0 to N0 + 1, then from N0 + 1 to N0 + 2

, etc. in this precise order. Therefore, all the information needed to 
derive the time-dependent probability PN0,N

(t) should be contained in 
the distribution of the time between two birth events. In other words, 
in the approach based on the master equation and the transition rate 
matrix, the reasoning is based on population sizes. In contrast, in this 
approach, our reasoning is based on waiting times between succes-
sive events.

We denote by �N the time elapsed between two births where 
the population size increases from N to N + 1 individuals. Owing to 
the Markovian nature of the process, �N is a stochastic variable ex-
ponentially distributed with mean B−1

N
. Then, the probability of hav-

ing a given number N of individuals at time t must be equal to the 
probability that N − N0 births occurred by t and not N − N0 + 1 yet. 
Quantitatively speaking,

The sum of n exponentially distributed random variables with rates 
{

�i
}

1≤i≤n
 follows a hypoexponential distribution (Amari & Misra, 1997; 

Ross, 2007), which we denote H
(

t;
{

�i
}

1≤i≤n

)

 . Hypoexponential dis-
tributions were previously studied in the context of population genet-
ics (Strimmer & Pybus, 2001) but also cell and systems biology (Chao 
et al., 2019; Gavagnin et al., 2019; Golubev, 2016; Yates et al., 2017).

Using the expression for the probability density function for the 
hypoexponential distribution (see Table 3 for the three cases to con-
sider), we write the exact solution to Equation (7) in the form

Notably, in the case where all population growth rates are dis-
tinct, the hypoexponential distribution takes the form (22), and we 
recover exactly the solution introduced in the previous section (see 
Equation  (20)). In Figure 5, we compare our exact solution (25) to 
the mean population size measured in simulations of the stochas-
tic process for our four nonlinear growth models and show perfect 
agreement in all cases. We also confirm in Figure 5 that the full prob-
ability distributions measured from simulations agree with our exact 
solution.

5  |  APPLIC ATIONS

Finally, we cover two examples of applications in which we show 
that using a deterministic model instead of an exact solution to sto-
chastic population growth leads to quantitatively very different re-
sults and may misinterpret important experimental results.

5.1  |  Population growth dynamics within 
a community

First, we extend our results to the study of a community composed 
of multiple strains evolving in the same environment. Community dy-
namics are at the heart of theoretical ecology and have been recently 
applied to the growing field of microbiome studies, where predict-
ing the relative abundance of each microbial strain in the gut micro-
biota represents an opportunity for medical diagnosis and treatment 
(Gebrayel et al., 2022). For simplicity and without loss of generality, we 
focus on the case of two competing strains. Consider, for instance, the 

(24)PN0,N
(t) = Prob

(

N−1
∑

k=N0

𝜏k < t <

N
∑

k=N0

𝜏k

)

.

(25)PN0,N
(t) =

1

BN
H
(

t;
{

BN0
,BN0+1

, … ,BN
})

.

TA B L E  3 Definition of the probability density function for the 
hypoexponential distribution.

Case 1 if all n rates are identical, then �i = �, for 1 ≤ i ≤ n and the 
PDF reads

Case 2 if all rates 
{

�i
}

1≤i≤n
 are distinct, then the PDF reads

Case 3 if the rates present some amount of degeneracy, we denote 
the multiplicities of the uniques rates 

{

�i
}

1≤i≤m
 as 

{

ni
}

1≤i≤m
 with 

the constraint that 
∑m

i=1
ni = n, where m is the number of unique 

rates. In this last case, the PDF reads

with C(i, k) =
�

dk

dsk

∏m

j=1
j≠i

�

s+�j
�−nj

�

s=−�i

.

(21)H
(

t;
{

�i
}

1≤i≤n

)

=
�n

(n − 1) !
tn−1e−�t ≡ Erlang(t; �, n)

(22)
H
�

t;
�

�i
�

1≤i≤n

�

=

n
�

i=1

�ie
−�i t

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n
�

j=1

j≠ i

�j

�j − �i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(23)H
(

t;
{

�i
}

1≤i≤n

)

=

(

m
∏

i=1

�
ni
i

)

m
∑

i=1

ni−1
∑

k=0

C(i, k)

k !
(

ni − k − 1
)

!
tni−k−1e−�i t ,



    |  11 of 20MARREC et al.

population dynamics of a wild-type (W) strain and a mutant strain (M) 
competing in a batch culture environment; we denote their intrinsic 
birth rates bW and bM, respectively. As before, we define N as the size of 
the community, whereas n (resp. N − n ) denotes the number of M (resp. 
W) individuals. We assume that the size of the community is limited by 
a single carrying capacity K. Note that our approach is easily generaliz-
able to cases with multiple strains or with different carrying capacities 
and with explicit interaction parameters.

Furthermore, we introduce the relative fitness of the two strains, 
defined as r = bM ∕bW; this ratio indicates which strain is favored by 
natural selection. Specifically, if r > 1 (resp. r < 1), then strain M is 
beneficial (resp. deleterious), with r = 1 corresponding to the neutral 
case. Each time an individual reproduces, the probability that this 
individual is of strain M is then given by

Here, we start with an initial community size N0, composed of 
n0 individuals from strain M and N0 − n0 individuals from strain W. 
The probability PN0,N

(t) that the community has a total size N at time 
t, knowing that the initial size of the community was N0, is given di-
rectly by Equation (25) with population reproduction rates

where B(M)

N,n
 and B(W)

N,n
 are the rates at which each population increases. 

For the Logistic model, these rates are for instance given by

Furthermore, the probability P
(

N, n ∣ N0, n0
)

 of finding n individ-
uals of type M when the total number of individuals is N satisfies

subject to the initial conditions P
(

N0, n|N0, n0
)

= �n,n0. Note that 
Equation (29) has been extensively studied in (Houchmandzadeh, 2018). 
By definition, the probability to observe n individuals of type M at time 
t, knowing that we had initially n0 such individuals, is

which we exactly compute using Equations (25), and (29). Then, using 
Equations (25), (27), and (29), we compute the average stochastic com-
munity and population sizes

On the contrary, a deterministic description of the community 
dynamics leads to the system of differential equations

We once again compare the results of stochastic simulations 
quantitatively to the predictions of Equation (31) on the one hand 
and Equation (32) on the other hand. We show in Figure 6a,b that 
the deterministic model grossly overestimates the size of the 
community, whereas our stochastic solution perfectly matches 
the simulated data. Strikingly, the deterministic model is shown 
to overestimate the equilibrium population size of strain M. Our 
stochastic approach provides an exact prediction of the average 
community and population sizes and, more importantly, yields the 
full time-dependent probability distributions of community and 
population sizes, which is not possible with a deterministic ap-
proach (see Figure 6c,d).

5.2  |  Fixation probability in a serial 
passage experiment

Finally, we show that our exact stochastic solution yields the fixa-
tion probability of a strain in a serial passage experiment. For this, 
let us assume that we start an experiment with the same number 
of individuals M and W. As usual, the initial size of the community 
formed by strains M and W is given by N0; we introduce the dilution 
rate D defined as the ratio of the initial size of the community to the 
carrying capacity, D = N0 ∕K.

In a serial passage experiment, the community grows for a time � 
before one applies a bottleneck by taking a random sample of N0 in-
dividuals; mathematically, this corresponds to selecting N0 individu-
als from the community following a binomial law. One then proceeds 
with a new growth phase of length � before applying a new bottle-
neck. This process is repeated until only a single strain is left in the 
community. In these experiments, a quantity of interest is the prob-
ability pfix that the strain M fixes and that the strain W goes extinct. 
In particular, optimizing the fixation probability as a function of the 
dilution ratio D and the waiting time � has attracted much attention, 
especially in the context of directed evolution (LeClair & Wahl, 2017; 
Wahl et al., 2002; Wahl & Gerrish, 2001). To our knowledge, existing 
studies answered this question using only deterministic approaches 
for modeling population dynamics.

To calculate pfix, we model the system as a Markov chain on the 
number of individuals M after each bottleneck event. At the moment 
of applying a bottleneck, the population contains N(�) individuals, 
including n(�) individuals of strain M. If picking a single individual 

(26)ΓN,n =
rn

(r − 1)n + N
.

(27)BN =

N−N0+n0
∑

n=n0

P
(

N, n ∣ N0, n0
)

(

B
(M)

N,n
+ B

(W)

N,n

)

,

(28a)B
(M)

N,n
= bM(1 − N∕K)n,

(28b)B
(W)

N,n
= bW(1 − N∕K)(N − n).

(29)
P
(

N+1, n ∣N0, n0
)

=
(

1−ΓN,n
)

P
(

N, n ∣N0, n0
)

+ΓN,n−1P
(

N, n−1 ∣N0, n0
)

,

(30)Pn0,n(t) =

K
∑

N=N0

PN0,N
(t)P

(

N, n ∣ N0, n0
)

,

(31a)⟨N⟩(t) =

K
�

N=N0

NPN0,N
(t),

(31b)⟨n⟩(t) =

K
�

n=n0
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(
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,
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[

bMn + bW(N − n)
]

(

1 −
N
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.
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randomly from the community, the probability that this individual 
is of type M is thus given by n(�)∕N(�). The probability Πk→l that 
the number of individuals M goes from k to l  when a bottleneck is 
applied follows the binomial distribution

where n(�) depends on its starting value k. Note that here we follow 
the convention used in (Wahl et al., 2002; Wahl & Gerrish, 2001) and 
model bottlenecks as draws from a population with replacement lead-
ing to binomial distributions for Πk→l; one could also model bottlenecks 
as draws without replacement, naturally leading to hypergeometric 
distributions. Under a deterministic approach, n(�) and N(�) are ob-
tained by solving Equation (32) with the initial conditions n0 = k and 
N0 = DK. However, in a stochastic approach, we write the Πk→l as a 

sum over all possible pairs (N, n) at time � weighted by their respective 
probabilities,

where P
(

N, n ∣ N0, n0
)

 is governed by Equation  (29). Finally, we note 
that conservation of probabilities imposes that Πl→l = 1 −

∑

k≠lΠk→l.
We define P =

(

P0,P1, … ,PN0

)

 as the column vector of proba-
bilities Pi to have i  individuals of strain M in the random sample of 
N0 individuals from the community following a bottleneck event. As 
such, the serial passage experiment defines a discrete-time Markov 
process, in which time is measured in units of � with t thus corre-
sponding to the number of bottlenecks. Here we follow reference 

(33)Πk→l =

⎛

⎜
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⎝
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(34)
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�
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�
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�

N, n ∣N0, k
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×
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,

F I G U R E  6 Exact time-dependent population growth and steady-state population sizes in community dynamics. (a) Total population 
size N versus time t for different population growth models. (b) Population size n of strain M versus time t for different population growth 
models. (c) Probability PN of finding N individuals at time t = 4. (d) Probability Pn of finding n individuals at time t = 4. In every panel, the solid 
lines represent our stochastic solution. In (a) and (b), the dashed lines show the deterministic predictions whereas each point results from 
simulated data averaged over 105 stochastic realizations. Parameter values: carrying capacity K = 100, mutant birth rate bM = 1.1, wild-type 
birth rate bW = 1, initial community size N0 = 2, and initial wild-type population size n0 = 1.
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Marrec and Bitbol  (2018) and take the limit of continuous time to 
write the master equation governing P as

Here, the elements of the transition rate matrix R are given by

in which (36b) ensures conservation of probability.
The Markov process thus defined possesses two absorbing 

states, namely n = 0 and n = N0, which correspond to the extinc-
tion and fixation of strain M, respectively. By definition, once the 
system reaches one of these states, it remains there indefinitely. 
Mathematically, this implies that the first and last columns of the 
transition rate matrix are filled with zeros as these columns contain 
the transition rates out of the n = 0 and n = N0 states, respectively. 
As the matrix R is not invertible, we introduce the reduced transition 
rate matrix R̃ in which the rows and the columns corresponding to 
the absorbing states are removed. According to this definition, R̃ is 
invertible and we can write the fixation probability as

where n0 is the number of individuals M at the beginning of the ex-
periment. As shown in Figure  7, the deterministic approach grossly 
overestimates the fixation probability for all dilution rates D. Here, we 
confirm this result for all nonlinear growth models studied. In contrast, 
we show that our stochastic solution exactly matches the results of 
stochastic simulations. This result has substantial consequences as we 
show in particular that the dilution ratio predicted by a deterministic 
approach to optimize the fixation probability is far from being the ac-
tual optimal dilution ratio, although it is commonly used in the litera-
ture, as was already argued.

6  |  DISCUSSION

In conclusion, we showed that a deterministic approach to popu-
lation growth leads to biased predictions of the average behavior 
of this inherently stochastic process. More precisely, deterministic 
models overestimate the population size averaged over large num-
bers of stochastic realizations. This overestimation increases with 
decreasing initial population size. Qualitatively, the bias of the de-
terministic approach is due to the variability of the waiting times 
between reproduction events, which is particularly important at 
small population sizes. Quantitatively, the bias of the determinis-
tic approach is due to unclosed-moment dynamics. Importantly, 
we showed that moment-closure approximations are insufficient 
to substantially reduce the relative difference between analytical 

predictions and average population sizes and do not apply to all 
population growth models.

It should be noted that methods other than moment-closure ap-
proximations have been used to describe the average stochastic 
population dynamics by a simple ordinary differential equation. For 
example, the results of Kurtz  (1972) on the convergence of average 
stochastic trajectories to a deterministic model in the case of large 
carrying capacity and large initial numbers of individuals have been 
extended more recently in this context of the so-called fluid limit. This 
limit theorem shows that the dynamics of a population with a small 
initial size compared to the carrying capacity can be accurately de-
scribed by a deterministic equation with a random initial size (Baker 
et al., 2018; Barbour et al., 2016). However, it is important to note that 
while Barbour et al. (2016) explicitly show that the whole distribution 
of the population size is converging to that of the fluid limit with ran-
dom initial conditions, this often involves a non-explicit function. In 
practice, as obtaining the full time-dependent population size distribu-
tion is essential for the inference of growth parameters, the fluid limit 
has limited applicability. Nonetheless, for some growth models, it can 
provide explicit results for the average population size. Furthermore, 
by construction, the fluid limit provides an accurate description of 
the long-time population growth dynamics but fails at describing the 
short-time transient growth accurately. This is particularly limiting, for 
instance in the context of epidemics where the goal is to infer import-
ant parameters such as the reproduction rate as early as possible. On 
a more technical note, the random initial size distribution can be te-
dious to derive for some population growth models. In this context, 
we would be remiss not to mention a method based on a theorem by 
Cohn and Jagers (1994), which also allows one to describe the average 

(35)
dP(t)

dt
= R ⋅ P(t).

(36a)Rij = Πj→i ,

(36b)
Rjj = −

∑

i≠ j

Πj→i ,

(37)pfix = −

N0−1
∑

i=1

Πi→N0

(

R̃
−1
)

i,n0

,

F I G U R E  7 Fixation probability in a serial passage experiment. 
Fixation probability pfix versus dilution ratio D for different 
population growth models. The solid lines represent our stochastic 
solution, the dashed lines the deterministic predictions, and each 
point results from simulated data averaged over 105 stochastic 
realizations. Parameter values: carrying capacity K = 100, mutant 
birth rate bM = 1.1, wild-type birth rate bW = 1, time between each 
bottleneck � = 3, initial mutant population size n0 = 1, 2, … , 28, 
initial community size N0 = 2, 4, … , 56.

0.50.20.1 0.3 0.4
Dilution ratio D

0.5

0.6

0.7

0.8

0.9

1

p ytilibaborp noitaxi
F

fix

Blumberg
Gompertz
Logistic
Richards



14 of 20  |     MARREC et al.

stochastic population dynamics, but in this case, at any time (Uecker & 
Hermisson, 2011). However, as in the fluid limit, this method does not 
provide a way to obtain the population size distribution.

In contrast, we proposed two methods to derive exact solutions 
to the stochastic population growth dynamics: either by solving the 
master equation directly, which requires the diagonalization of the 
transition rate matrix or by tracking reproduction times instead of 
population sizes. The first method was shown to be valid only in situ-
ations where the reproduction rates are distinct, whereas the second 
is generic. Our solution has revealed that the temporal distribution 
of population sizes is proportional to a hypoexponential distribution.

Note that as argued earlier, stochasticity in population growth 
can generically stem from intrinsic and extrinsic noises. Here, we fo-
cused on the effect of intrinsic noise and more specifically on the case 
where the only source of stochasticity resides in the waiting times 
between births, in an otherwise homogeneous population. A natural 
extension of our work would be to consider heterogeneous popula-
tions in which individuals display growth variability, that is, different 
intrinsic birth rates b. In this context, it would be interesting to study 
the effect of this intrapopulation variability on the growth dynamics 
both computationally and analytically by extending the present work.

It is also interesting to note that the role of extrinsic noise on 
population growth dynamics has also attracted attention in the past. 
A case in point is the study of the effect of stochastic temporal envi-
ronmental fluctuations on growth (and other vital) rates and eventu-
ally population growth dynamics Steiner (2020). While early works 
focused on homogeneous populations (Lande et al.,  2003), the 
works of Tuljapurkar and Orzack in the early 1980s extended these 
results to structured populations, with a particular focus on age-
structured matrix population models (Tuljapurkar & Orzack, 1980). 
In a series of seminal papers, they provided analytical insights into 
population structure and long-run growth rates under stochastic en-
vironmental fluctuations showing that the distribution of population 
size is lognormal, and thus skewed (Tuljapurkar, 1982a). In particu-
lar, Tuljapurkar's small noise approximation, a perturbation formula 
used to calculate the population growth rate in stochastic environ-
ments, showed that population growth in constant and fluctuating 
environments differ, even when the mean growth rates are designed 
to be equal (Tuljapurkar, 1982b). Formally, it quantifies the decrease 
in the population growth rate in structured populations in response 
to the increased variance in vital rates due to randomly varying en-
vironments. In an interesting parallel with our own study, this result 
disproves the then commonly accepted assumption that averaging 
growth rates across realizations of the fluctuating environment 
would lead to an accurate estimate of the effective growth rates. 
Following on from Tuljapurkar's original work on sensitivity analyses 
to variance in vital rates, recent studies performed an age-specific 
sensitivity analysis of stable, stochastic, and transient growth in 
structured populations (Giaimo & Traulsen, 2022).

Finally, we showed that our solution provides a more accurate de-
scription (than a deterministic approach) of the time-dependent and 
steady-state population sizes in a community composed of competing 
strains and the fixation probability of a mutation in a serial passage 

experiment. Thus, our theory offers an opportunity to quantify the 
dynamics of microbial communities from colonization to coexistence 
and thus contributes to the growing field of microbial eco-evolutionary 
dynamics. For example, the gut of C. elegans worms colonized by two 
neutrally-competing strains was shown to transition from a single-
strain composition at a low colonization rate to coexistence at a high 
colonization rate (Vega & Gore, 2017). In previous work, a determinis-
tic approach was used to predict this transition (Vega & Gore, 2017). 
Our exact solution enables the expansion of this work by quantifying 
the abundance distribution of either strain within each worm's gut.

Our work opens new perspectives on population dynam-
ics, ecology, and evolution. Importantly, our theory yields the full 
time-dependent probability distribution of population sizes (see 
Equation  (25)). Based on this result, an interesting future research 
direction would be to improve inference methods for growth param-
eters, as current methods suffer from substantial limitations (Ghenu 
et al., 2022). We propose that the present work constitutes the first 
step toward an exact inference method since it allows for the exact 
calculation of the likelihood function (Cranmer et al., 2020).
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APPENDIX A

Detailed simulation method
In this work, the population growths are simulated using a Gillespie 
algorithm.

A.1. | Single-species population
Let us denote by N the population size. The single elementary event 
that can happen is the reproduction of an individual:

Simulations follow these elementary steps:

1.	 Initialization: The population starts from N = N0 individuals at 
time t = 0.

2.	 The time increment Δt is sampled randomly from an exponential 
distribution with mean 1∕BN.

3.	 The population size increases from N to N + 1 and the time from t 
to t + Δt.

4.	 We go back to Step 2 and iterate until the total number of indi-
viduals is K or the defined maximum time is reached.

A.2. | Community
Let us consider two types of individuals, namely M and W, whose 
numbers are denoted by NM and NW, respectively. The two elemen-
tary events that can happen are the reproduction of an individual 
M or W:

Simulations follow these elementary steps:

1.	 Initialization: The population starts from NM = NM,0 M individuals 
and NW = NW,0 W individuals at time t = 0.

2.	 The time increment Δt is sampled randomly from an exponential 
distribution with mean 1∕

(

B
(M)

NM,NW

+ B
(W)

NM,NW

)

. The next event that 
may occur is chosen randomly, proportionally to its probability. 
For instance, reproduction of a W individual is chosen with prob-
ability B(W)

NM,NW

∕
(

B
(M)

NM,NW

+ B
(W)

NM,NW

)

.
3.	 The time increases from t to t + Δt and the event chosen at Step 

2 is executed. For instance, if reproduction of a W individual is 
chosen, then NW increases by one.

4.	 We go back to Step 2 and iterate until the total number of indi-
viduals is K or the defined maximum time is reached.

A.3. | Serial passage experiment
Let us consider two types of individuals, namely M and W, whose 
numbers are denoted by NM and NW, respectively. The two elemen-
tary events that can happen are the reproduction of an individual 
M or W:

Simulations follow these elementary steps:

1.	 Initialization: The population starts from NM = NM,0 M individuals 
and NW = NW,0 W individuals at time t = 0. The next time when 
the dilution occurs is stored in the variable tdilution, which is 
initialized at tdilution = �, the first time when dilution occurs.

2.	 The time increment Δt is sampled randomly from an exponential 
distribution with mean 1∕

(

B
(M)

NM,NW

+ B
(W)

NM,NW

)

. The next event that 
may occur is chosen randomly, proportionally to its probability. 
For instance, reproduction of a W individual is chosen with prob-
ability B(W)

NM,NW

∕
(

B
(M)

NM,NW

+ B
(W)

NM,NW

)

.
3.	 If t + Δt < tdilution, time is increased to t + Δt and the event chosen 

at Step 2 is executed. For instance, if reproduction of a W indi-
vidual is chosen, then NW increases by one.

4.	 If t + Δt ≥ tdilution, the event chosen at Step 2 is not executed 
because a dilution has to occur before. The dilution is per-
formed: time is incremented to t = tdilution, NM,0 M individu-
als are selected from the community following a binomial law 
ℬ
(

D × K,NM ∕
(

NM + NW

))

, and NW,0 = D × K − NM,0. In addition, 
tdilution is incremented to tdilution + �, and thus stores the next time 
when the dilution occurs.

5.	 We go back to Step 2 and iterate until there is only one species 
left.

Note that we mostly deal with parameter values such that, at the 
end of each growth phase, the population size is equal to the car-
rying capacity almost certainly, that is, PN0,K

(�) ≈ 1. Otherwise, we 
would be required to consider NM + NW rather than K at step 4.

APPENDIX B

From the stochastic model to the deterministic limit
Here, we present a full derivation of the deterministic limit of the 
stochastic pure-birth model. Starting from the master equation sat-
isfied by the probabilities of having a given population size at a given 
time, we obtain a Fokker-Planck equation, corresponding to the dif-
fusion approximation, and then a deterministic differential equation, 
in the limits of increasingly large population sizes. Let us first recall 
the master equation corresponding to the pure-birth process, where 
N denotes the number of individuals.

Let us now introduce the reduced variable n = N∕K  , 
as well as �

(

n, t ∣ n0
)

= K × PN0,N
(t) and B̃(n) = BN ∕K (e.g., 

B̃(n) = b
(

1−n�
)�
n = b

(

1−(N∕K)�
)�
N∕K = BN ∕K for the generalized 

(A1)A
bN
→2A.

(A2)
M

b
(M)

NM,NW

→ 2M,

(A3)
W

b
(W)

NM,NW

→ 2W .

(A4)
M

b
(M)

NM,NW

→ 2M,

(A5)
W

b
(W)

NM,NW

→ 2W .

(B1)
dPN0,N

(t)

dt
= BN−1PN0,N−1

(t) − BNPN0,N
(t),
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logistic model with � = 1). Then, the master equation (4b) can be re-
written as

B.1. | Diffusion approximation
For K ≫ 1, considering that jumps are small at each step of the pure-
birth process, that is, 1∕K ≪ n, the probability density �

(

n, t ∣ n0
)

 and 
the transition probability B̃(n) can be expanded in a Taylor series 
around n. This expansion, known as a Kramers-Moyal expansion, 
yields, to first order in 1∕K

The previous equation is known as a diffusion equation, or a 
Fokker-Planck equation, or a Kolmogorov forward equation.

B.2. | Deterministic limit
In the limit K → ∞, retaining only the zeroth-order terms in 1∕K, 
Equation 5 reduces to

Let us focus on the average value of n, denoted by ⟨n⟩. Using 
Equation 6 yields

The first term of right-hand side of Equation 9 vanishes because 
B̃(0) = B̃(1) = 0. In the limit K → ∞, the distribution of n can be as-
sumed very peaked around its mean, so ⟨n⟩ ≈ n and 

⟨

B̃(n)
⟩

≈ B̃(n), 
yielding

Multiplying both sides of the previous equation by the carrying 
capacity K leads to

(B2)1

K

��
(

n, t ∣ n0
)

�t
= B̃(n − 1∕K)�(n − 1∕K) − B̃(n)�(n, t).

(B3)
��

(

n, t ∣ n0
)

�t
= −

�

�n

(

�
(

n, t ∣ n0
)

B̃(n)
)

+
1

2K

�2

�n2

(

�
(

n, t ∣ n0
)

B̃(n)
)

.

(B4)
��

(

n, t ∣ n0
)

�t
= −

�

�n

(

�
(

n, t ∣ n0
)

B̃(n)
)

.

(B5)
d⟨n⟩

dt
=
∫

1

0

n
��

�

n, t ∣ n0
�

�t
dn,

(B6)= −
∫

1

0

n
�

�n

(

�
(

n, t ∣ n0
)

B̃(n)
)

dn,

(B7)= −
[

n�
(

n, t ∣n0
)

B̃(n)
]1

0
+
∫

1

0

�
(

n, t ∣ n0
)

B̃(n)dn,

(B8)=
⟨

B̃(n)
⟩

.

(B9)dn

dt
= B̃(n).

(B10)
dN

dt
= BN .

F I G U R E  A 1 The maximum relative error remains high for all parameter values. Maximum relative error �max versus exponent � (a) and � 
(b) for the Blumberg and Richards models, respectively. Parameter values: K = 100, N0 = 1, b = 1 and � = 1.

APPENDIX C

Additional figures
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APPENDIX D

Birth-death process
Let us consider a population following a linear birth-death process. 
The population size, the birth rate, and the death rate are denoted by 
N, b, and d, respectively. The master equation giving the probability 
PN0,N

(t) that the population size has a given size N at a given time t 
starting from N0 individuals reads.

Note that the analytical solution of Equation  (11c) is known 
(Kendall, 1948). One can derive the mean population size from the 
master equation using ⟨N⟩ =

∑K

N=0
N × PN0,N

(t), which yields

The solution of the previous ordinary differential equation is 
given by

The solution is similar to the deterministic limit

As shown in Figure S3a, the deterministic limit contains both tra-
jectories: survival and extinction.

Now let us consider a master equation biased on the sto-
chastic trajectories that lead to fixation. To do so, let us define 
QN0,N

(t) = PN0,N
(t)∕

(

1 − PN0,0
(t)

)

. The biased master equation reads

The mean population size averaged over stochastic trajectories 
leading to fixation is given by ⟨N⟩�(t) =

∑K

N=0
N × QN0,N

(t), which 
yields

(D1)
dPN0,N

(t)

dt
= b(N − 1)PN0,N−1

(t) + d(N + 1)PN0,N+1
(t) − (b + d)NPN0,N

(t).

(D2)
d⟨N⟩

dt
= (b − d)⟨N⟩.

(D3)⟨N⟩(t) = N0e
(b−d)t .

(D4)N(t) = N0e
(b−d)t .

(D5)

dQN0,N
(t)

dt
=b(N−1)QN0,N−1

(t)

+d(N+1)QN0,N+1
(t)−(b+d)NQN0,N

(t)+
QN0,N

(t)

1−PN0,0
(t)

dPN0,0
(t)

dt
.

(D6)
d⟨N⟩�

dt
= (b − d)⟨N⟩� +

⟨N⟩�

1 − PN0,0
(t)

dPN0,0
(t)

dt
,

F I G U R E  A 2 The maximum relative error does not depend on 
the carrying capacity. Maximum relative error �max versus carrying 
capacity K for different population growth models. Parameter 
values: K = 100, N0 = 1, b = 1, � = 1, � = 2, and � = 1.5.

F I G U R E  A 3 The deterministic limit correctly describes the dynamics of a linear death-birth process but not of a nonlinear death-birth 
process. Population size as a function of time for a linear birth-death process (a) and a nonlinear birth-death process (b). The logistic model 
was used for the nonlinear birth-death process. The data points are averaged over 104 stochastic realizations. Filled data points are averaged 
over all stochastic trajectories, whether they lead to survival or extinction, whereas empty data points are averaged over stochastic 
trajectories leading to survival only. The solid lines correspond to the deterministic limit, whereas the dashed lines correspond to the 
“biased” deterministic limit (i.e., conditioned on non-extinction or survival). Parameters values: b = 1 , d = 0.5, N0 = 1, and K = 10

3.
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where

Note that the previous equation allows us to recover 
PN0,0

(t)t∞̃(d∕b)N0, which is the probability that an early extinction 
occurs. After solving Equation 14, one obtains

Applying the same reasoning to the logistic growth, which is a 
nonlinear birth-death process, leads to Figure S3b. The only differ-
ence between the linear and the nonlinear birth-death processes is 
that a mean-field approximation is required for the latter to derive 
the deterministic limit. Note that one can assume that PN0,0

(t) for 
the nonlinear birth-death process is the same as for the linear birth-
death process as early extinctions occur when the density depend-
ence can be neglected.

(D7)PN0,0
(t) =

(

1+
d−b

b−de
(d−b)t

)N0

.

(D8)⟨N⟩�(t) =
N0e

(b−d)t

1 − PN0,0
(t)

.
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