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What is a dynamical model?

A dynamical model is a mathematical or computer model where the variables,
or quantities of interest, vary in time. They usually do so according to a causal
mechanism, i.e. the values of the variables at a given time depend on their values
in the past.

Perhaps the simplest dynamical models are difference equations

dynamical variable︷︸︸︷
xt+1 =

update rule︷ ︸︸ ︷
f(xt) .

Time is discrete, and the causal mechanism is clear: xt+1 is a function of xt. For
example, the famous logistic map is

xt+1 =
growth rate︷︸︸︷

r xt

limiting factor︷ ︸︸ ︷
(1 − xt) .

The variable x is the size of the population of a certain species, expressed as
a fraction of a maximal size. The logistic equation was used to show how the
size of a population can follow a complex dynamics in absence of environmental
fluctuations (May, 1976). A small populations grows with a multiplication factor
r (factor rx). When it gets larger, the growth is impeded by the factor 1 − x,
which could represent competition for resources. We will see later how such a
simple equation can lead to complex dynamics.

The most important class of dynamical models are ordinary differential
equations (ODEs). The time t varies continuously, and the causal mechanism
f(x(t)) describes how variables x(t) should vary (this is the derivative on the
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left-hand side) as a function of their current state:
rate of change︷︸︸︷

dx

dt
=

rule of change︷︸︸︷
f(x) .

The state variable x is a function of time, x(t), but it is usual to drop the
explicit dependence on time to highlight the fact that changes in the system
depend on the state variable rather than time. Many physical laws can be
formulated is such a way, and big parts of biology also have their laws, which we
express as motifs. The Lotka-Volterra model was developed to study predator-
prey interaction. The mechanism is reminiscent of the logistic equation. The
prey density y grows at a constant rate by, and is harvested by the predator
at a rate proportional to the predator density xy, while the predator density
grows at the harvest rate and dies at a constant rate ax. The equation can be
expressed as

dx

dt
=

harvest term︷︸︸︷
yx −

death rate︷︸︸︷
a x, predator,

dy

dt
=

growth rate︷︸︸︷
b y −

harvest term︷︸︸︷
xy , prey.

The term dx/dt denotes the derivative of x with respect to time. The derivative
is the rate or the speed at which the variable changes. Difference equations and
ODEs may have analytic, or closed form solutions, but these are the exception,
not the rule. These solutions, when we can find them, are not as useful as one
might think; they are often opaque and do not provide additional insight into
the behavior of the model.

In general, dynamical models include constant model parameters, that do not
vary with time. Parameters are important because they can affect the behavior
of the solution, and they often have biological significance. Estimating parameter
values given a model and experimental data is the subject of the session Inferring
model parameters.

Rather than looking for analytical solutions, we will use a combination of
computer simulations and stability analysis to characterize the behavior of the
dynamical models. R codes necessary to simulate the logistic equation and the
Lotka-Volterra model are available on the [Systems Biology Class webpage].

Other dynamical modeling formalisms include stochastic processes, partial dif-
ferential equations, individual-based models. These are out of scope of this
introduction to dynamical models.

Why is it important in systems biology? Dynamic models provide mechanisms,
and mechanisms provide understanding, which provide ground for validating
results.
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How to use dynamical models?

Here is a modelling-centric workflow for using dynamical models. Each step may,
and will, fail; this is normal. Then go back to previous step and start over.

• What biological question do I want to model?

Two favorite questions of mine are: Can we reproduce these strange looking
data with a very simple model (sufficient mechanism), and what are the
conditions for my treatment to work (necessary mechanisms). These
questions are best studied with dynamical models because they relate
to mechanisms. When the mechanism is well understood, we can try to
estimate model parameters.

• What would be the appropriate model for it?

Choose the variables

The choice mostly depend on the availability of experimental data and the
question asked.

Select the mechanisms

Here the devil is in the details. Which of the known mechanism should
we include? Here there is no fixed method, but everybody would agree
that given two models with similar solution, the simplest model should be
favored. This is the Occam’s razor, or parsimony principle. By simple, we
mean few parameters, dynamical variables and nonlinear terms (in that
order).

• What type of data do I need?

Are data available, or should I collect new data?

• Find an existing model, or develop a new one

Translating the mechanisms into equations has many pitfalls. Ambiguous
language or imprecise wording makes it difficult to define equations uniquely.
Once interpreted, the mechanism must satisfy physical and biological
constraints, which may be easily overlooked.

• Get an intuition of the behavior of the model

Very important step. How should the solution look like? This step is useful
to detect any error in the equations or in the numerical implementation of
the model (they are not the same! See below).

• Implement the model and run simulations to confirm intuition

The numerical implementation of the model is not the same as the equations.
Furthermore the equations might not represent well the mechanisms.
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• Compare to experimental data

Before any attempt to fit the model to experimental data, it is important
to look whether the model reproduces the important features of the data.
Only then fitting the model makes sense.

• Perform analysis of the model

Models can reproduce experimental data very well for some sets of pa-
rameters, but may be fragile in the sense that small change of parameters
can lead to vastly different dynamical behavior. This can be a weakness
when the system is expected to be robust, but may also provide testable
predictions: can the different behaviors be observed experimentally?

• Answer the question Once the model is validated and the parameters are
known, do not forget to answer the initial question!

• Find a new question

Modeling with motifs

Unlike chemical and physical systems, biological systems are not easy to reduce
to simple parts. Whether we look at the gene expression, protein interaction,
cell fate, metabolism, tissue or organ physiology, in vivo systems are complex
and interrelated. This does not mean that it is impossible to isolate single
mechanisms, but that there is no fundamental rules on how to express them.
For example, how gene expression is affected by a transcription factor depends
on the availability of the binding site, which depends on the DNA conformation,
which depends on histone acetylation, and so on. Motifs are small blocks of
regulation that can be used to distill all the complexity of biology into simple
parametric term.

In the following list, the variable x denote the species of interest. This can
be gene expression level, mRNA or protein concentration, cell density, drug
concentration.

• Loss/death/degradation rate

– Linear. The species dies or is removed at a rate proportional to its
level, with a constant k: kx.

Example: a protein with initial concentration x0 is degraded at a rate
k = 0.1 per hour, and is not synthesized. The equation for the concentration
of x is dx/dt = −kx, x(0) = x0. This ODE has an explicit solution
x(t) = x0e

−kt, the concentration decreases exponentially.

– Saturated. The loss rate is linear with constant k0/K when x is small,
but saturate to a fixed value k0 when x is large. The simplest model
for saturated kinetics is the Michaelis-Menten model: k0x/(K + x).
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• Constant production rate. Production refers to a supply of the species
that does not depend directly on its concentration: b.

• Proliferation/reproduction/synthesis rate

– Linear: rx,
– Logistic (competition) rx(1 − x/K).
– Negative feedback: r0/(Kh + xh).
– Positive feedback: r0x

h/(Kh + xh).

The parameter h is a cooperativity coefficient, called Hill coefficient. It defines
the strength of the feedback. High Hill coefficient will make the feedback quite
sensitive to small variations of x. This can lead to complex dynamics such as
oscillations and bistability.

Examples

Examples are implemented in R, with the package deSolve. All major program-
ming languages offer some numerical solvers: matlab, python. Here we use R
because it offers many functionalities to deal with complex datasets as found
in systems biology. Python and matlab also offer similar functionalities but
user-friendliness may vary.

Example 1 Birth/death model

Here is the simplest ODE model we can think of, the linear birth-death ODE
model,

dx

dt
=

immigration︷︸︸︷
b +

proliferation︷︸︸︷
rx −

loss︷︸︸︷
kx .

The species has a constant production rate b (immigration), a linear growth rate
r (proliferation) and a linear death or loss rate k.

birthDeath <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

# ------------------------------------------------
# Define the equations here
# ------------------------------------------------
deathRate <- k * x
productionRate <- b
proliferationRate <- r * x
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dxdt <- productionRate + proliferationRate - deathRate

return(list(c(dxdt)))
# ------------------------------------------------

})
}

pars <- c(k = 0.5, # per day, death rate
b = 0.2, # individuals per day, production from outside source
r = 0.1 ) # per day proliferation (or reproduction) rate

y0 <- c(x = 1.0)
timespan <- seq(0, 20, by = 0.1)
birthDeath.sol <- ode(y0, timespan, birthDeath, pars)
summary(birthDeath.sol)

To plot the result

plot(birthDeath.sol)

Exercises on the birth/death model

(a) With the parameters given above, the solution x(t) converges to a constant
value, which one?

(b) The solution does not always converge to a constant. Find conditions on
the parameters so that the solution always converge to a positive value
given a positive initial condition.

(c) How can the equation be modified to ensure that the solution will always
remain bounded given positive initial conditions? Write down the modi-
fied birth/death model and try to guess to which value the solution will
converge.

(d) Implement the modified birth/death model in R and run simulations to
verify your intuition.

Example 2 Lotka-Volterra

We have seen above the equations for the Lotka-Volterra model

dx

dt
=

harvest term︷︸︸︷
yx −

death rate︷︸︸︷
a x, predator,

dy

dt
=

growth rate︷︸︸︷
b y −

harvest term︷︸︸︷
xy , prey.

The R code for the Lotka-Volterra equations
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LotkaVolterra <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

# ------------------------------------------------
# Define the equations here
# ------------------------------------------------
killingRate <- Prey * Predator
preyGrowthRate <- rGrowth * Prey
predatorDeathRate <- rDeath * Predator

dPreydt <- preyGrowthRate - killingRate
dPredatordt <- killingRate - predatorDeathRate

return(list(c(dPreydt, dPredatordt)))
# ------------------------------------------------

})
}

pars <- c(rGrowth = 0.5, # per day, growth rate of prey
rDeath = 0.2 ) # per day, death rate of predator

y0 <- c(Prey = 10, Predator = 2)
timespan <- seq(0, 200, by = 1)
LotkaVolterra.sol <- ode(y0, timespan, LotkaVolterra, pars)
summary(LotkaVolterra.sol)

The solution can be plotted with

plot(LotkaVolterra.sol)

Exercises on the Lotka-Volterra model

(a) Run the simulations with different initials conditions. What do you observe?

(b) Modify the code above so that the growth rate of the prey also include
competition between the preys for resources.

Example 3 A negative feedback loop (Goodwin model)

Negative feedback loops occur everywhere were the product inhibits its own
production. This can be through limited food or space, or through homeostatic
regulation, to control body temperature or blood pressure for instance. In most
cases negative feedback loops have a the effect of making steady state more stable,
i.e. after external perturbation the system quickly returns to its natural state.
This useful for instance for rapid red blood cell mobilisation after blood loss.
However too much of a good thing can have unintended effects, and negative loop
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Figure 1: Lotka-Volterra dynamics

can destabilize an otherwise stable steady state. This occurs in the Goodwin
model below.

The Goodwin model is the prototype of the negative feedback loop that occurs in
many gene regulation networks. To work properly, we need three species. Here we
take mRNA concentration X, a protein product concentration Y and a modified
protein complex concentration Z. All species have linear degradation rates. The
protein is produced at a rate proportional to the mRNA concentration, and the
protein complex is produced at a rate proportional to the protein concentration.
For simplicity, we set the degradation and production rates of the protein and
the complex to the value β, and the mRNA degradation rate to α. To construct
the negative feedback loop, we will assume that the protein complex binds to the
gene promoter to repress mRNA synthesis is a concentration-dependent manner.
Moreover we will assume that in absence of the repressor, mRNA is transcribed
(produced) at a constant rate.

Using the negative feedback motif, we can write down the mRNA synthesis rate
as

f(Z) = k0
Kh

Kh + Zh
.

When there is no repressor (Z=0), the synthesis rate is k0, and when the repressor
expression is Z = K, the synthesis rate is reduced by half k0K

h/(Kh +Kh) =

8



Figure 2: Diagram of the Goodwin network. Arrow heads denote positive effect
and “tee” heads denote negative effects.

k0/2. We obtain a set of three ODEs

dX

dt
= f(Z) − αX,

dY

dt
= β(X − Y ),

dZ

dt
= β(Y − Z).

The R code to implement the Goodwin model

Goodwin <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

# ------------------------------------------------
# Define the equations here
# ------------------------------------------------
mRNAproductionRate <- k0*K^h/(K^h + Z^h)
mRNAdegradationRate <- alpha * X

dXdt <- mRNAproductionRate - mRNAdegradationRate
dYdt <- beta * ( X - Y )
dZdt <- beta * ( Y - Z )

return(list(c(dXdt, dYdt, dZdt)))
# ------------------------------------------------

})
}

pars <- c(k0 = 2, # transcripts per hour, max mRNA synthesis rate
alpha = 1.0, # per hour, mRNA degradation rate
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beta = 1.0, # per hour, kinetic rate
K = 1, # mmol, half-repression concentration
h = 20 ) # no unit, Hill coefficient

y0 <- c(X = 1, Y = 0, Z = 0)
timespan <- seq(0, 20, by = 0.1)
Goodwin.sol <- ode(y0, timespan, Goodwin, pars)
summary(Goodwin.sol)

Figure 3: Solution of the Goodwin model. Solutions are oscillatory.

Note There is a Goodwin model in the field of economics as well, and to make
thing confusing, the economic Goodwin model is mathematically equivalent to
the Lotka-Volterra model. Thus although both economic and biological Goodwin
model can display oscillations, they are completely unrelated to each other.

Exercises on the Goodwin model

(a) There is a unique positive steady state. Using the parameters values in
the R code, find it (set all derivative to zero in the ODE system and solve
the three equations for X,Y and Z).
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(b) Vary the Hill coefficient h until the steady state becomes stable. What is
the value of h? At this value, we say that the Goodwin model undergoes a
bifurcation, i.e. a change in the qualitative behavior of the system. Many
diseases are associated to qualitative changes in physiology, and dynamical
models are used to devise therapeutic strategies to reverse bifurcations.
The most successful ones are for heart arrhythmia, such as calcium channel
blockers or pacemakers.

Example 4 A positive feedback loop

Positive feedback loop are inherently unstable. They do occur in irreversible
events such as mitosis, birth giving, differentiation and lineage choice, etc.

The positive feedback loop rests on the positive loop motif for the production of
the species with concentration X.

g(X) = k0
Xh

Kh +Xh
,

where the Hill coefficient h > 1. The production depends strongly on X. For
low concentrations, the production is low. However for high concentrations, the
production is much higher. This nonlinear production curve leads to possible
low and high concentrations stable steady states. The ODE reads

dX

dt
= g(X) − aX.

When they exist, the two stable steady states are always separated by a third
steady state, which is unstable. They can be found by setting dX/dt = 0. This
leads to an fixed point equation on X: aX = g(X).

The R code to obtain bistability is

Bistability <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

# ------------------------------------------------
# Define the equations here
# ------------------------------------------------
mRNAproductionRate <- k0*X^h/(K^h + X^h)
mRNAdegradationRate <- a * X

dXdt <- mRNAproductionRate - mRNAdegradationRate

return(list(c(dXdt)))
# ------------------------------------------------

})
}
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pars <- c(k0 = 2, # transcripts per hour, max mRNA synthesis rate
a = 1.0, # per hour, mRNA degradation rate
K = 1, # mmol, half-repression concentration
h = 20 ) # no unit, Hill coefficient

y0 <- c(X = 1.1)
timespan <- seq(0, 20, by = 0.1)
Bistability.sol1 <- ode( c(X = 0.9), timespan, Bistability, pars)
Bistability.sol2 <- ode( c(X = 1.1), timespan, Bistability, pars)
Bistability.sol3 <- ode( c(X = 1.0), timespan, Bistability, pars)

To plot all three solutions on one graph

plot(Bistability.sol1, Bistability.sol2, Bistability.sol3)

Exercises for the bistable model

(a) With the parameters given in the code above, find (approximately) all
three steady states. Which ones are stable, unstable?

Example 5 The logistic map

The logistic map is the difference equation

xt+1 = rxt(1 − xt),

for t = 0, 1, ..., with the initial condition x0 given. The R codes to solve the
logistic map follow the same lines as ODE models, except that the we use the
iteration method.

LogisticMap <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

# ------------------------------------------------
# Define the equations here
# ------------------------------------------------
xiter <- r * x * ( 1 - x )

return(list(c(xiter)))
# ------------------------------------------------

})
}

pars <- c(r = 3.76 ) # basal growth parameter

y0 <- c(x = 0.2)
timespan <- seq(0, 50, by = 1)
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LogisticMap.sol <- ode(y0, timespan, LogisticMap, pars, method = "iteration")
summary(LogisticMap.sol)

The logistic map is one of the simplest dynamical model displaying chaos,
oscillatory solutions but very irregular and sensitive to initial conditions. Chaos
arises as the parameter r increases from 1.0 to 4.0. For small values of r, the
logistic map has one stable steady state. As the parameter is increased, the
steady state becomes unstable and is replaced by a periodic solution with period
2. This is followed by a series of period doubling bifurcations, ultimately ending
up in chaos.

Figure 4: Period doubling bifurcation road to chaos in the logistic map

Exercises for the logistic map

(a) Explore the solutions of the logistic map. Try to find solutions with periods
2, 4, 8. . . Can you find a solution with period 3? With period 5?

Glossary (English/French)

Dynamical Model/modèle dynamique A dynamical model is a system in
which equations describe the time dependence of a set of variables in a
geometrical space. Difference equations and ODEs are dynamical models
when the independent variable is time.

Dynamical variables/variables dynamiques Dynamical variables are vari-
ables that change over time, by opposition to constant parameters. Also
called state variables.
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Difference equation/équation aux différences A difference equation is an
equation that sets a relationship between the values of state variable at
finite differences an independent variable (here the indepedent variable is
time). It is usual to denote the value of the variable x at time t by xt for
t = 1, ..., to indicate that the time t takes discrete values.

Ordinary differential equations/équations différentielles ordinaires
An ordinary differential equation is an equation that sets a relationship
between a set of variables and their derivatives with respect to continuous
independent variable (here the independent variable is time).

Model parameter/paramètre du modèle Model parameters are constant
value contained in dynamical models.

Initial conditions/conditions initiales Initial conditions are the values of
the state variables at the beginning of the simulation (usually at t=0, but
not necessarily). Initial conditions are needed because dynamical models
only provide relations between states, not absolute values.

Steady state/état d’équilibre A steady state is a special solution of a dy-
namical system such that, if the initial conditions are on the steady state,
the solution remains on the steady. For an ODE x̄ is a steady state if
dx̄/dt = 0. For a difference equation xt+1 = f(xt), x̄ is a steady state if
x̄ = f(x̄). A steady state is stable if solutions with initial conditions close
to the steady state will stay close to the steady state.

Oscillations/oscillations Oscillations is a type of non-constant solution where
at least one of the variables comes back through a certain value regularly,
for any amount of time.

Bistability/bistabilité Bistability is a property of a system where there exists
two stable states. Which stable state will attract solution depends on
the initial condition. Switch between stable states can be obtained by
perturbing the system.

Motifs/motifs Motifs are small blocks of regulation that can be used to distill
all the complexity of biology into simple parametric term.
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