Statistical physics

Exercises - Series 1

Exercice 1. — Connectivity constants

- 1. Show that the connectivity constant of \mathbb{Z}^2 satisfies $\mu \in (2,3)$.
- 2. Show that for the "ladder graph" $\mathbb{Z} \times \{0,1\}$, $\mu = \frac{1+\sqrt{5}}{2}$. You might consider B_n the number of paths of length *n* directed to the right.

Exercice 2. — Site percolation

On a graph G = (V, E), consider $\omega \in \{0, 1\}^V$ with law $Ber(p)^{\otimes V}$. We say that x is open if $\omega_x = 1$ and that $x \leftrightarrow y$ if there exists a sequence $x_0 = x, x_1, ..., x_n = y$ of open sites such that $(x_i, x_{i+1}) \in E$ for all i = 0, ..., n-1.

- 1. Show that $p_c < 1$ for site percolation in \mathbb{Z}^d .
- Show that any bond percolation is equivalent to a site percolation on a modified lattice. Is the converse property true? Draw the modified lattice for Z². What do you notice?

Exercice 3. — Percolation on a tree

Consider bond percolation on the *d*-regular tree \mathbb{T}^d (in which all vertices have degree *d*; *e.g.* $\mathbb{T}^2 = \mathbb{Z}$). Analyse $p \mapsto \theta_{\mathbb{T}^d}(p)$: show the existence of and compute $p_c(\mathbb{T}^d)$. How many infinite clusters are there in the supercritical regime? Find α such that $\frac{\theta_{\mathbb{T}^d}(p)}{(p-p_c)^{\alpha}}$ converges as $p \to p_c$.

Exercice 4. — Measurability

Consider bond percolation on \mathbb{Z}^d .

1. Show that, for $k \in \mathbb{N} \cup \{\infty\}$, the event

 $C_{\infty}^{k} = \{$ there exist exactly *k* infinite clusters $\}$

is measurable.

2. Show the fact admitted in class: for all measurable event *A*, there exists a sequence A_n of events depending on a finite number of bonds such that $\mathbb{P}_p(A \triangle A_n) \xrightarrow[n \to \infty]{} 0.$

Exercice 5. — More Harris

- 1. What happens to the Harris inequality for A non-decreasing, B non-increasing?
- 2. Let μ a probability measure on \mathbb{R} and $f, g : \mathbb{R} \to \mathbb{R}$ two non-decreasing functions in $L^2(\mu)$. Show that $\mu(fg) \ge \mu(f)\mu(g)$. What is the fundamental difference between \mathbb{R} and Ω that makes the inequality so simple here?
- 3. Let Λ a countable set, \mathbb{P} a product probability measure on $\{0,1\}^{\Lambda}$ and A a non-decreasing event. Does $\mathbb{P}(\cdot|A)$ satisfy the Harris inequality?

Exercice 6. — Witnesses

Consider bond percolation on \mathbb{Z}^d . Fix *A* an event (not necessarily non-decreasing) and $\omega \in A$. For $I \subset \mathbb{E}^d$ we say that *I* is a witness of *A* in ω if $\forall \omega' \in \Omega$, $\omega'_I = \omega_I \Rightarrow \omega' \in A$.

- 1. Give examples of witnesses when $A = \{|\mathcal{C}(0)| \ge 5\}, A = \{|\mathcal{C}(0)| = 3\}, A = \{|\mathcal{C}(0)| \le 4\}.$
- 2. If *A* is non-decreasing (resp. non-increasing) and $\omega \in A$, show that there exists *I* a witness of *A* in ω s.t. $\omega_I \equiv 1$ (resp. $\omega_I \equiv 0$).

Exercice 7. — A bound on the one-arm exponent

Consider bond percolation on \mathbb{Z}^2 with parameter 1/2 and the rectangle $R_n = [-n,n] \times [0,2n-1]$.

- 1. Let A_n be the event that there exists an open path connecting the left and right boundaries of R_n remaining inside R_n . Show that $\mathbb{P}(A_n) = 1/2$.
- 2. Deduce that, if $B_n = \{0 \leftrightarrow \partial \Lambda_n\}$, we have

$$\mathbb{P}(B_n \circ B_n) \geq \frac{1}{4n}$$

What can you say about $\mathbb{P}(0 \leftrightarrow \partial \Lambda_n)$?