Statistical physics

Exercises - Series 3

Exercice 1. — Box-crossing property

Let $\lambda > 1$, $n \in \mathbb{N}$, $R_n^{\lambda} = [0, \lceil \lambda n \rceil] \times [0, n]$. Consider critical bond percolation on \mathbb{Z}^2 and let C_n^{λ} be the event that there is a left-right open path in R_n^{λ} . Show that there are positive constants c_1, c_2, c_3, c_4 such that $c_1 e^{-c_2 \lambda} \leq \mathbb{P}_{1/2}(C_n^{\lambda}) \leq c_3 e^{-c_4 \lambda}$.

Exercice 2. — Close to criticality

Consider bond percolation on \mathbb{Z}^2 .

- Show that if A is an event depending on a finite number k of sites, for p ≤ q we have P_q(A) ≤ (q/p)^kP_p(A).
- 2. Show that there exists a finite constant *C* such that $\theta(1/2 + \varepsilon) \leq C\varepsilon^{\alpha/2}$.

Exercice 3. — A proof of the FKG inequalities

We aim to give a proof of the FKG inequality through coupling arguments. Let $\Lambda \subseteq \mathbb{Z}^d$ and μ a measure on $\Omega_{\Lambda} = \{-1, 1\}^{\Lambda}$ such that $\mu(\omega) > 0$ for all $\omega \in \Omega_{\Lambda}$.

Let us define a Markov chain on Ω_{Λ} as follows. Assume the system is in state $\omega(n) \in \Omega_{\Lambda}$ after step *n*. To choose its next state, pick $x \in \Lambda$ uniformly at random and sample independently $U \sim \mathcal{U}([0,1])$. Then define $\omega(n+1)$ as $\omega(n+1)_y = \omega(n)_y$ if $x \neq y$, and $\omega(n+1)_x = 1$ if $U \leq \mu(\sigma_x = 1 | \sigma_{|\Lambda \setminus \{x\}} = \omega(n)_{|\Lambda \setminus \{x\}})$, $\omega(n+1)_x = -1$ else.

- 1. Show that this Markov chain is irreducible, aperiodic and reversible w.r.t. μ .
- Let μ' another probability measures satisfying the same condition as μ. Assume that additionally we have for all ω, ω' ∈ Ω_Λ such that ω ≤ ω', for all x ∈ Λ,

$$\mu(\sigma_x = 1 | \sigma_y = \omega_y \ \forall y \neq x) \le \mu'(\sigma_x = 1 | \sigma_y = \omega'_y \ \forall y \neq x).$$

Show that there exists a monotone coupling between the dynamics associated with μ and μ' , *i.e.* a Markov chain $(\sigma(n), \sigma'(n))_n$ such that $(\sigma(n))_n$ (resp. $(\sigma'(n))_n)$ follows the dynamics associated with μ (resp. μ') and $\sigma(n) \leq \sigma'(n)$ a.s. as soon as $\sigma(0) \leq \sigma'(0)$.

N.B. : The dynamics is said to be *attractive*.

3. Deduce that for *f* non-decreasing on Ω_{Λ} ,

$$\mu(f) \le \mu'(f)$$

N.B. : μ' is said to stochastically dominate μ , and we write $\mu \preccurlyeq \mu'$.

4. Let $\# \in \{-1,1\}^{\mathbb{Z}^d} \cup \{\emptyset\}$ a boundary condition. Using the previous result, show the FKG inequality for the Ising measure on Λ with boundary condition # and parameters $\beta \ge 0, h \in \mathbb{R}$.

Exercice 4. — GKS inequalities

Show the following properties.

1. For $\Lambda \in \mathbb{Z}^d$, $A \subset \Lambda$ and $J = (J_S)_{S \subset \Lambda}$, $J' = (J'_S)_{S \subset \Lambda}$ two collections of nonnegative real numbers such that $J \leq J'$ coordinate-wise,

$$\langle \sigma_A \rangle_{\Lambda;J} \leq \langle \sigma_A \rangle_{\Lambda;J'},$$

where we recall that $\langle \cdot \rangle_{\Lambda;J}$ is the probability measure which gives a weight proportional to $e^{-\sum_{S \subset \Lambda} J_S \sigma_S}$ to $\sigma \in \Omega_{\Lambda}$.

2. For $n \in \mathbb{N}$, $\Lambda_n(d) = [-n, n]^d \cap \mathbb{Z}^d$, $\langle \sigma_0 \rangle^+_{\Lambda_n(d);\beta,0}$ is non-decreasing in the dimension *d*.