Statistical physics

Exercises - Series 4

Exercice 1. — Free energy

Give an example of $\Lambda_n \uparrow \mathbb{Z}^d$ and $(\omega_n)_{n \in \mathbb{N}}$ a sequence of boundary conditions such that $f_{\Lambda_n}^{\omega_n}(\beta, h)$ does not converge to $f(\beta, h)$.

Exercice 2. — Continuity of the magnetization

Show that there is uniqueness of the infinite volume Ising measure at (β, h) iff $h \mapsto \langle \sigma_0 \rangle_{\beta,h}^+$ is continuous.

Exercice 3. — Low-temperature representation

Show that for β large enough, there exist K, K' > 0 such that

$$\mu_{\Lambda_n,\beta,0}^+(\max\{|\gamma|,\gamma \text{ contour in } \Lambda_n\} \in [K\log n, K'\log n]) \underset{n \to \infty}{\longrightarrow} 1,$$

where $\Lambda_n = [-n, n]^2$.

Exercice 4. — High-temperature representation

- 1. Let $A \subset \Lambda \Subset \mathbb{Z}^d$, $\beta \ge 0$. Find a high-temperature representation for $\langle \sigma_A \rangle_{\Lambda;\beta,0}^{\varnothing}$ and $\langle \sigma_A \rangle_{\Lambda;\beta,0}^+$.
- 2. If d = 1, compute $\langle \sigma_{-1} \sigma_1 \rangle^+_{[-n,n];\beta,0}$.
- 3. Show that, if β small enough (in the uniqueness regime), $\langle \sigma_0 \sigma_x \rangle_{\beta,0}$ decreases exponentially fast in ||x||.

Exercice 5. — Ising with periodic boundary condition

Fix the dimension *d*. Let $\mathbb{T}_N = \mathbb{Z}^d / (NZ^d)$. Recall that the set of vertices of \mathbb{T}_N can be identified with $\Lambda_N = \{0, \ldots, N-1\}^d$ and the set of edges defined by : $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d)$ are connected by an edge if there exists $i \in \{1, \ldots, d\}$ such that $y_i = x_i \pm 1 \mod N$ and $y_j = x_j$ for $j \neq i$. Let us denote $\mathcal{E}(\mathbb{T}_N)$ the set of these edges.

The Ising model on \mathbb{T}_N is defined by the Hamiltonian

$$H^{\mathrm{per}}_{\Lambda_N;\beta,h}(\sigma) = -\beta \sum_{\{x,y\} \in \mathscr{E}(\mathbb{T}_N)} \sigma_x \sigma_y - h \sum_{x \in \Lambda_N} \sigma_x.$$

We denote by $\langle \cdot \rangle_{\Lambda_N;\beta,h}^{\text{per}}$ and $Z_{\Lambda_N;\beta,h}^{\text{per}}$ respectively the associated Gibbs measure and partition function.

1. Show that if $h \ge 0$, for all $A \subset \Lambda_N$, $\langle \sigma_A \rangle_{\Lambda_N;\beta,h}^{\text{per}} \ge 0$.

2. Show that if f is a local non-decreasing function with support in Λ_{N-1} ,

$$\langle f \rangle_{\Lambda_{N-1};\beta,h}^{-} \leq \langle f \rangle_{\Lambda_N;\beta,h}^{\text{per}} \leq \langle f \rangle_{\Lambda_{N-1};\beta,h}^{+}.$$

3. Let us define

$$f_{\Lambda_N}^{\mathrm{per}}(\beta,h) := \frac{1}{|\Lambda_N|} \log Z_{\Lambda_N;\beta,h}^{\mathrm{per}}.$$

- (a) Show that f^{per} is convex.
- (b) Show that $f^{\text{per}}(\beta, \cdot)$ is even for all $\beta \ge 0$.
- (c) Show that $f_{\Lambda_N}^{\text{per}}(\beta,h) \xrightarrow[N \to \infty]{} f(\beta,h)$ for all $\beta \ge 0, h \in \mathbb{R}$.

Exercice 6. — Percus's transformation

Fix $\Lambda \Subset \mathbb{Z}^d$, $\beta \ge 0$, $h \in \mathbb{R}$. For any $\sigma, \eta \in \Omega_\Lambda$, we define $q_x = \frac{1}{2}(\sigma_x - \eta_x)$ and $t_x = \frac{1}{2}(\sigma_x + \eta_x)$ for $x \in \Lambda$. Let $q = (q_x)_{x \in \Lambda}$, $t = (t_x)_{x \in \Lambda}$.

- 1. Show that $\{(q,t) : (\sigma,\eta) \in \Omega_{\Lambda} \times \Omega_{\Lambda}\} = \{(q,t) \in \{-1,0,1\}^{\Lambda} \times \{-1,0,1\}^{\Lambda} : \forall x \in \Lambda, q_x = 0 \text{ iff } t_x \neq 0\}.$
- 2. Let σ, η be two independent copies of Ising configurations (i.e. random variables with law $\mu_{\Lambda;\beta,h}^{\varnothing}$. Denote their joint distribution by $\langle \cdot \rangle$. Show that for all $x, y \in \Lambda$, $\langle \sigma_x \rangle_{\Lambda;\beta,h}^{\varnothing} = \langle t_x \rangle$, $\langle \sigma_x \sigma_y \rangle_{\Lambda;\beta,h}^{\varnothing} \langle \sigma_x \rangle_{\Lambda;\beta,h}^{\varnothing} \langle \sigma_y \rangle_{\Lambda;\beta,h}^{\varnothing} = 2 \langle q_x q_y \rangle$.
- 3. Show that for all $(\sigma, \eta) \in \Omega_{\Lambda} \times \Omega_{\Lambda}$,

$$H^{\varnothing}_{\Lambda;\beta,h}(\sigma) + H^{\varnothing}_{\Lambda;\beta,h}(\eta) = H^{\varnothing}_{\Lambda;2\beta,0}(q) + H^{\varnothing}_{\Lambda;2\beta,2h}(t).$$

Are q and t independent under $\langle \cdot \rangle$?

4. Show that for any functions $f, g : \{-1, 0, 1\}^{\Lambda} \to \mathbb{R}$,

$$\langle f(q)g(t)\rangle = \sum_{S\subset\Lambda} \frac{Z^{\varnothing}_{S;2\beta,0} Z^{\varnothing}_{S^c;2\beta,2h}}{(Z^{\varnothing}_{\Lambda;\beta,h})^2} \langle f^{(S)}\rangle^{\varnothing}_{S;2\beta} \langle g^{(S^c)}\rangle^{\varnothing}_{S^c;2\beta,2h},$$

where for $S \subset \Lambda f^{(S)} : \Omega_S \to \mathbb{R}$ is defined by $f^{(S)}(\sigma) = f(\tilde{\sigma})$, where $\tilde{\sigma}_x = \sigma_x$ if $x \in S$, $\tilde{\sigma}_x = 0$ else.

5. For $A \subset \Lambda$, let $q_A = \prod_{x \in A} q_x$. Show that for any $A \subset \Lambda$, $\langle q_A \rangle \ge 0$.