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Planar Last Passage Percolation

e IID space-time noise.

@ The weight of a directed path, moving forward in time, is obtained
by integrating the noise along the path.

o Maximizing the weight over all paths between two points gives the
last passage time, optimizing path is called a geodesic.

e Canonical models are believed to share universal features, but
rigorous progress mostly for a few special integrable/exactly
solvable models.
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Planar Last Passage Percolation

e IID space-time noise.

@ The weight of a directed path, moving forward in time, is obtained
by integrating the noise along the path.

o Maximizing the weight over all paths between two points gives the
last passage time, optimizing path is called a geodesic.

e Canonical models are believed to share universal features, but
rigorous progress mostly for a few special integrable/exactly
solvable models.

A special example we will focus on

e Exponential LPP: The underlying noise space made of i.i.d.
Exponential Random Variables on Z2.
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Exponential LPP on Z?

e Put i.i.d. weights X, ~ Exp(1) .
on each vertex of Z2. :

e The last passage time from u

to v. I
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X;; ~ ii.d. Exponential Variables.

Almost surely, for each u, v, there exists a unique geodesic I',, , between
u and v.
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Semi-infinite and bi-infinite geodesics

e An up-right path 7 indexed by N (resp. Z) is called a semi-infinite
(resp. bi-infinite) geodesic if its restriction between any two points
u,v € 7 is the geodesic between u and v.

e Example: vertical and horizontal lines, a sub-sequential limit of
FO,n etc..
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Questions we shall consider in this talk

How do geodesics look like?

e How does is the transversal fluctuation of a finite geodesic scale,
i.e., how far away is the the geodesic I, , from the straight line
joining v and v?

@ Do semi-infinite geodesics have direction?

e Do bi-infinte geodesics exist (except the vertical and horizontal
lines)?
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Questions we shall consider in this talk

Do geodesics coalesce?

e Consider geodesics from two fixed points to a far away point, do
they typically coalesce before reaching the endpoint?

o If so, what is the typical scale at which they coalesce?

e Same question for semi-infinite geodesics going off in the same
direction started at different points.

Riddhipratim Basu (ICTS) Geodesics in LPP

6/32



Questions we shall consider in this talk

Geometry of disjoint geodesics
e Can there be two disjoint geodesics close to each other?

e What is the typical separation for disjoint geodesics going between
two parallel lines?
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Scaling of time and space

e The answers to all the above questions depend on the proper
scaling of time (the diagonal direction) and space (the
anti-diagonal direction).

e The correct scaling can be deduced by considering the transversal
fluctuation problem.

e We shall come back to the scaling question after we give a
heuristic for the transversal fluctuation problem.
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Transversal Fluctuation of Geodesics )

Geodes



The “x = 2¢ — 1 argument”

e Consider the geodesic I';; between 0
and n.

e The transversal fluctuation of I';, Ton
denoted, TF,,, is the smallest number
such that I',, is contained in the strip
{‘3’} - y‘ S TFn}'
e It is natural to predict that TF,, ~ n¢
for some ¢ € (0,1). 0

If nX is the order of the fluctuation of the passage time between two
points at distance n, and né is the transversal fluctuation of the
geodesic joining the two points, then

x =26 — 1.

Riddhipratim Basu (ICTS) Geodesics in LPP 10 /32



The “x = 2¢ — 1 argument”

e Sub-additivity implies that |
lim,, 00 %TO’(nLny) =g(z,y) as..

e The limit shape, {g(z,y) : z +y = 2}
is expected to be curved with a
maxima at (1,1).

e This implies that if a path deviates
too far from the straight line joining O
and n it is penalized in expectation.

The deviation of the path should be at the scale where the penalty in
the mean is of the same order as the fluctuations. J
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The “x = 2¢ — 1 argument”

v= (a5 +a)

e Suppose the geodesic passes through
v=(5+a5—a).

e The geodesic weight is 1o, + Ty n-

To,»
e This has expected weight
0
2
n a a n a a a
—g(l——,1+ — —g(l——,14+ ) = 1,1 "(1,1) — ©(—).
Do =214+ D)+ 291 - 214 L) mng(1,1) + ag'(1,1) - ©(5)

e Applying the previous heuristic with a ~ n¢ we get
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Making it rigorous for exponential LPP

Curvature of Limit Shape and Fluctuations of T,,
o To,u;f,ny) = (VT + )2 Rost (1981)
e Fluctuation exponent y = 1/3: % = FouE. Johansson (1999)
e Similar result available uniform in directions bounded away from
axial directions.
e Moderate deviation bounds for Tp y. Ledoux-Rider(2010)
e Uniformly in directions.
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£ =2/3

e Based on similar inputs it was shown f = % Johansson (2000).
e Showed TF,, = n?/3+°(1) w. h.p.: not quantitatively optimal.

e It was done for Poissonian and Geometric LPP (two other exactly
solvable models), but essentially same proof works for Exponential

LPP.
e Exponent for exponential LPP obtained also via a queuing
Correspondence. Baldsz, Cator, Seppéldinen (2006)

e Similar results are obtained in different and more general settings
before and after. Newman (1996), Wiithrich (1998), Chatterjee(2011)

e Optimal quantitative results for exponential LPP later in the talk.
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An interlude on KPZ universality and Universal Scaling limits J
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Planar growth models in the KPZ class

The KPZ equation is a stochastic PDE predicted to model random
interface growth in a universal way with slope dependent growth speed,
subject to two forces: a surface tension whose effect is smoothening,
and a local random force whose effect is to roughen the surface.

N
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@ The theory of KPZ universality predicts that these models share a
triple (1,1/3,2/3) of exponents.

@ Planar LPP is a canonical model believed to exhibit KPZ
universal behaviour.
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Exactly Solvable Models

e While planar first and last passage percolation models are believed
to exhibit KPZ scaling for general class of weights, it has rigorously
been verified only for a handful of exactly solvable models.

e There are some remarkable bijections which allow exact
computation for the distribution function of last passage times in
exactly solvable LPP.

e For exponential LPP, last passage time has the same distribution
as the largest eigenvalue of a random matrix ensemble with an
explicit eigenvalue density.

e Other examples: Poissonian LPP on R?, Geometric LPP on Z?2,
semi-discrete Brownian LPP.

e In all these models, it is predicted that scaling time direction by n
and space direction by n

2/3 gives rise to universal scaling limits.
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Conjectural Limit for the Geodesic

e For ¢t € [0,2n], let ', (t) = z(t) — y(t) where (z(t),y(t)) is the
unique point at which I'), intersects the line z + y = t.

e Set m,(s) =n"%/°T,(2ns) for s € [0,1].

e It is believed that 7, weakly converges to a C'[0, 1] valued
stochastic process .

02T, (1)
1

£
v
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Space time scaling and the conjectural limit

@ Scale the time direction by n and the
spatial direction by n?/3, i.e., for
s,z € R the point
(sn + x(2n)%/3, sn — 2(2n)?/3) is
mapped to (z,s).

e For (,s),(y,t) € R? with s < t,
define the four parameter random
field W, (x, s;y,t) by considering the
last passage time from (z,s) to (y,t)
(in the scaled co-ordinates) centered
by 4(t — s)n and scaled by 24/3n1/3
(well defined for n sufficiently large).
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Space time scaling and the conjectural limit

o It is expected that as n — oo
Wh(z, s;y,t) = Wz, s1y,t),

where W is a universal random
object.

o Both these limits are recently shown
to exist starting with the exactly
solvable model of Brownian LPP.

Dauvergne-Ortmann-Virag (2018)
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Robustness of our methods

e In this talk, we shall only talk about geodesics in exponential LPP,
but our methods are largely not specific to the exponential case.

e For the most part, we only use curvature of limit shape,
Tracy-Widom convergence and uniform moderate deviation
estimates.

e These are available for all known exactly solvable models of planar
LPP.

e Hence variants of many of our results are expected to hold for
other models and in the limit.
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Results )]




Quantitative Results for Transversal Fluctuations

Theorem (B., Sidoravicius, Sly (2014))

For oll x and n sufficiently large, we have for some ¢ > 0

P <TFn > xn2/3) < e’

e One point estimate is obtained by tightening Johansson’s
calculation presented before, and the rest is a chaining argument.

e Matching lower bound is available. Hammond-Sarkar (2020)
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Quantitative Results for Transversal Fluctuations

Theorem (B., Bhatia (2020+))

For § > 0 small, and n sufficiently large, we have for some c,c >0

e~ <P (TFn < (5n2/3) < e~

e The upper bound is a calculation of the probability of the large
deviation event that the probability of the best path constrained
in the small ball is competitive with the global best path.

e The lower bound is a geometric construction of a favourable event
on which there is a good path in the small ball and all paths
exiting the small ball are uncompetitive.
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Semi-infinite Geodesics

e We only describe the picture for semi-infinite geodesics in the
direction (1,1), similar results hold in all fixed non-axial directions.

Almost surely the following hold:
e Starting from any x € Z?, there exists a unique semi-infinite
geodesic I';, in the direction (1,1).
e Every sequence of finite geodesics from z to y, where y, has
asymptotic direction (1, 1) converges to I',.

e For x # 2/, T', and '/ coalesce.

Ferrari-Pimentel (2005), Coupier (20111)
v
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Coalescence of Semi-infinite Geodesics

(n,n)

e Consider the semi-infinite geodesics
from (k, —k) and (—k, k) in the
direction (1,1).

e C(k) be such that the first point of
intersection of these two geodesics lie

(k. k)
on the line z +y = C(k). ‘/(@(W)

Theorem (B., Sarkar, Sly (2019))
There exists C,Cy > 0 such that

C1R2?/3 <P(C(k) > RK*?) < CLR™?/5.

e Lower bound was independently proved before. Pimentel (2016)
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Coalescence of Finite Geodesics

Consider the same question as before but now for geodesics to

(n,n).

There exists ¢ > 0 such that for n > Rk, P(C(k) > Rk%?) < R™¢.
B., Sarkar, Sly (2019)

For n>> Rk, P(C(k) > Rk/?) < R2/3, Zhang (2020)

Parallel results using joint distribution of Busemann increments.

Baldsz, Busani, Seppéldinen(2020)
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Disjoint Geodesics across a parallelogram

e Consider the parallelogram o
{0<z+y<2n,|o—yl <n?3}

e Let NN, denote the maximum number
of disjoint geodesics between the two
sides of length n?/3.

e Since any attractive region is likely to
be used by every nearby geodesic, one
expects most geodesics to merge with
finitely many “highways”.
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Disjoint geodesics and nonexistence of bigeodesics

e One can use the one point estimates and the BK inequality to
make this rigorous.

e N, is uniformly tight with stretched exponential tails.
B., Hoffman, Sly (2018)
B., Ganguly, Hammond, Hegde (2020)
e This result goes into the proof of the optimal coalescence
estimates.

e Also used to settle the bigeodesic existence problem.

Theorem (B., Hoffman, Sly (2018))

Almost surely the only bigeodesics in exponential LPP are lines parallel
to the co-ordinate azes.
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Key technical inputs

Integrable Inputs
e Curvature of the limit shape.
e Tracy-Widom convergence for point-to-point passage times.

e Uniform moderate deviation estimates:
P(To,(m,m) — (V1 + /)% > 2n1/3) < Ceeo™”.
P(To (mmy — (V1 + v/)? < —znl/3) < Ce—ea",

Tools from Percolation
o Correlation inequalities.
o Chaining argument.

o Geometric construction of favourable events at various scales.

v
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Summary

e Exponential LPP is an exactly solvable model of last passage
percolation where the geometry of geodesics is well understood.

e The methods include limited and streamlined inputs from
integrable probability (curvature of limit shape together with one
point moderate deviation estimates) together with percolation
techniques.

e Expected to apply to all known models of exactly solvable planar
LPP and also in the limit in some cases.

e Finer results than what we discussed today are known including
the behaviour of geodesic trees, local geometry of the geodesics etc.

e Other techniques include stationary LPP, Busemann functions,
Brownian Gibbs property etc.
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Thank You

Questions? J




