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Planar Last Passage Percolation

IID space-time noise.

The weight of a directed path, moving forward in time, is obtained
by integrating the noise along the path.

Maximizing the weight over all paths between two points gives the
last passage time, optimizing path is called a geodesic.

Canonical models are believed to share universal features, but
rigorous progress mostly for a few special integrable/exactly
solvable models.

A special example we will focus on

Exponential LPP: The underlying noise space made of i.i.d.
Exponential Random Variables on Z2.
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Exponential LPP on Z2

• Put i.i.d. weights Xv ∼ Exp(1)
on each vertex of Z2.

• The last passage time from u
to v.

Tu,v = max
π:u→v

∑
w∈π

Xw. X11 X12 X13 X14 · · · · · ·

X21

X31

X41

X22

...

...

X23 · · ·

· · ·

Xij

Xij ∼ i.i.d. Exponential Variables.

Almost surely, for each u, v, there exists a unique geodesic Γu,v between
u and v.

Riddhipratim Basu (ICTS) Geodesics in LPP 3 / 32



Semi-infinite and bi-infinite geodesics

• An up-right path γ indexed by N (resp. Z) is called a semi-infinite
(resp. bi-infinite) geodesic if its restriction between any two points
u, v ∈ γ is the geodesic between u and v.

• Example: vertical and horizontal lines, a sub-sequential limit of
Γ0,n etc..

u

v

Γu,v
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Questions we shall consider in this talk

How do geodesics look like?

How does is the transversal fluctuation of a finite geodesic scale,
i.e., how far away is the the geodesic Γu,v from the straight line
joining u and v?

Do semi-infinite geodesics have direction?

Do bi-infinte geodesics exist (except the vertical and horizontal
lines)?
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Questions we shall consider in this talk

Do geodesics coalesce?

Consider geodesics from two fixed points to a far away point, do
they typically coalesce before reaching the endpoint?

If so, what is the typical scale at which they coalesce?

Same question for semi-infinite geodesics going off in the same
direction started at different points.
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Questions we shall consider in this talk

Geometry of disjoint geodesics

Can there be two disjoint geodesics close to each other?

What is the typical separation for disjoint geodesics going between
two parallel lines?
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Scaling of time and space

• The answers to all the above questions depend on the proper
scaling of time (the diagonal direction) and space (the
anti-diagonal direction).

• The correct scaling can be deduced by considering the transversal
fluctuation problem.

• We shall come back to the scaling question after we give a
heuristic for the transversal fluctuation problem.
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Transversal Fluctuation of Geodesics
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The “χ = 2ξ − 1 argument”

• Consider the geodesic Γn between 0
and n.

• The transversal fluctuation of Γn,
denoted, TFn, is the smallest number
such that Γn is contained in the strip
{|x− y| ≤ TFn}.
• It is natural to predict that TFn ∼ nξ

for some ξ ∈ (0, 1). 0

n

TFn

Γ0,n

If nχ is the order of the fluctuation of the passage time between two
points at distance n, and nξ is the transversal fluctuation of the
geodesic joining the two points, then

χ = 2ξ − 1.
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The “χ = 2ξ − 1 argument”

• Sub-additivity implies that
limn→∞

1
nT0,(nx,ny) = g(x, y) a.s..

• The limit shape, {g(x, y) : x+ y = 2}
is expected to be curved with a
maxima at (1, 1).

• This implies that if a path deviates
too far from the straight line joining 0
and n it is penalized in expectation.

The deviation of the path should be at the scale where the penalty in
the mean is of the same order as the fluctuations.
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The “χ = 2ξ − 1 argument”

• Suppose the geodesic passes through
v = (n2 + a, n2 − a).

• The geodesic weight is T0,v + Tv,n.

• This has expected weight

0

n

v = (n2 − a, n
2 + a)

T0,v

Tv,n

n

2
g(1− a

n
, 1 +

a

n
) +

n

2
g(1− a

n
, 1 +

a

n
) ≈ ng(1, 1) + ag′(1, 1)−Θ(

a2

n
).

• Applying the previous heuristic with a ≈ nξ we get

(nξ)2

n
≈ nχ ⇒ χ = 2ξ − 1.
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Making it rigorous for exponential LPP

Curvature of Limit Shape and Fluctuations of Tn

• T0,(nx,ny)

n → (
√
x+
√
y)2. Rost (1981)

• Fluctuation exponent χ = 1/3:
T0,n−4n

24/3n1/3 ⇒ FGUE. Johansson (1999)

• Similar result available uniform in directions bounded away from
axial directions.

• Moderate deviation bounds for T0,n. Ledoux-Rider(2010)

• Uniformly in directions.
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ξ = 2/3

• Based on similar inputs it was shown ξ = 2
3 . Johansson (2000).

• Showed TFn = n2/3+o(1) w.h.p.: not quantitatively optimal.

• It was done for Poissonian and Geometric LPP (two other exactly
solvable models), but essentially same proof works for Exponential
LPP.

• Exponent for exponential LPP obtained also via a queuing
correspondence. Balász, Cator, Seppäläinen (2006)

• Similar results are obtained in different and more general settings
before and after. Newman (1996), Wüthrich (1998), Chatterjee(2011)

• Optimal quantitative results for exponential LPP later in the talk.
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An interlude on KPZ universality and Universal Scaling limits
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Planar growth models in the KPZ class

The KPZ equation is a stochastic PDE predicted to model random
interface growth in a universal way with slope dependent growth speed,
subject to two forces: a surface tension whose effect is smoothening,
and a local random force whose effect is to roughen the surface.

The theory of KPZ universality predicts that these models share a
triple (1, 1/3, 2/3) of exponents.

Planar LPP is a canonical model believed to exhibit KPZ
universal behaviour.
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Exactly Solvable Models

• While planar first and last passage percolation models are believed
to exhibit KPZ scaling for general class of weights, it has rigorously
been verified only for a handful of exactly solvable models.

• There are some remarkable bijections which allow exact
computation for the distribution function of last passage times in
exactly solvable LPP.

• For exponential LPP, last passage time has the same distribution
as the largest eigenvalue of a random matrix ensemble with an
explicit eigenvalue density.

• Other examples: Poissonian LPP on R2, Geometric LPP on Z2,
semi-discrete Brownian LPP.

• In all these models, it is predicted that scaling time direction by n
and space direction by n2/3 gives rise to universal scaling limits.

Riddhipratim Basu (ICTS) Geodesics in LPP 17 / 32



Conjectural Limit for the Geodesic

• For t ∈ [0, 2n], let Γn(t) = x(t)− y(t) where (x(t), y(t)) is the
unique point at which Γn intersects the line x+ y = t.

• Set πn(s) = n−2/3Γn(2ns) for s ∈ [0, 1].

• It is believed that πn weakly converges to a C[0, 1] valued
stochastic process π.

t
0

n

Γn(t)

0 1

t
n

n−2/3Γn(t)

⇒
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Space time scaling and the conjectural limit

Scale the time direction by n and the
spatial direction by n2/3, i.e., for
s, x ∈ R the point
(sn+ x(2n)2/3, sn− x(2n)2/3) is
mapped to (x, s).

For (x, s), (y, t) ∈ R2 with s < t,
define the four parameter random
field Wn(x, s; y, t) by considering the
last passage time from (x, s) to (y, t)
(in the scaled co-ordinates) centered
by 4(t− s)n and scaled by 24/3n1/3

(well defined for n sufficiently large).

sn

tn

n2/3

xn2/3

yn2/3

0

n

(x, s)

(y, t)
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Space time scaling and the conjectural limit

It is expected that as n→∞

Wn(x, s; y, t)⇒W(x, s; y, t),

where W is a universal random
object.

Both these limits are recently shown
to exist starting with the exactly
solvable model of Brownian LPP.
Dauvergne-Ortmann-Virag (2018)

sn

tn

n2/3

xn2/3

yn2/3

0

n

(x, s)

(y, t)
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Robustness of our methods

• In this talk, we shall only talk about geodesics in exponential LPP,
but our methods are largely not specific to the exponential case.

• For the most part, we only use curvature of limit shape,
Tracy-Widom convergence and uniform moderate deviation
estimates.

• These are available for all known exactly solvable models of planar
LPP.

• Hence variants of many of our results are expected to hold for
other models and in the limit.
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Results
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Quantitative Results for Transversal Fluctuations

Theorem (B., Sidoravicius, Sly (2014))

For all x and n sufficiently large, we have for some c > 0

P
(

TFn ≥ xn2/3
)
≤ e−cx3 .

• One point estimate is obtained by tightening Johansson’s
calculation presented before, and the rest is a chaining argument.

• Matching lower bound is available. Hammond-Sarkar (2020)
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Quantitative Results for Transversal Fluctuations

Theorem (B., Bhatia (2020+))

For δ > 0 small, and n sufficiently large, we have for some c, c′ > 0

e−c
′δ−3/2 ≤ P

(
TFn ≤ δn2/3

)
≤ e−cδ−3/2

.

• The upper bound is a calculation of the probability of the large
deviation event that the probability of the best path constrained
in the small ball is competitive with the global best path.

• The lower bound is a geometric construction of a favourable event
on which there is a good path in the small ball and all paths
exiting the small ball are uncompetitive.
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Semi-infinite Geodesics

• We only describe the picture for semi-infinite geodesics in the
direction (1, 1), similar results hold in all fixed non-axial directions.

Almost surely the following hold:

Starting from any x ∈ Z2, there exists a unique semi-infinite
geodesic Γx in the direction (1, 1).

Every sequence of finite geodesics from x to yn where yn has
asymptotic direction (1, 1) converges to Γx.

For x 6= x′, Γx and Γx′ coalesce.

Ferrari-Pimentel (2005), Coupier (20111)
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Coalescence of Semi-infinite Geodesics

• Consider the semi-infinite geodesics
from (k,−k) and (−k, k) in the
direction (1, 1).

• C(k) be such that the first point of
intersection of these two geodesics lie
on the line x+ y = C(k).

(−k, k)

(k,−k)

(n, n)

v = (v1, v2)

Θ(k3/2)

Theorem (B., Sarkar, Sly (2019))

There exists C1, C2 > 0 such that

C1R
−2/3 ≤ P(C(k) ≥ Rk3/2) ≤ C2R

−2/3.

• Lower bound was independently proved before. Pimentel (2016)
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Coalescence of Finite Geodesics

• Consider the same question as before but now for geodesics to
(n, n).

• There exists c > 0 such that for n� Rk, P(C(k) ≥ Rk3/2) ≤ R−c.
B., Sarkar, Sly (2019)

• For n� Rk, P(C(k) ≥ Rk3/2) ≤ R−2/3. Zhang (2020)

• Parallel results using joint distribution of Busemann increments.
Balász, Busani, Seppäläinen(2020)
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Disjoint Geodesics across a parallelogram

• Consider the parallelogram
{0 ≤ x+ y ≤ 2n, |x− y| ≤ n2/3}.
• Let Nn denote the maximum number

of disjoint geodesics between the two
sides of length n2/3.

• Since any attractive region is likely to
be used by every nearby geodesic, one
expects most geodesics to merge with
finitely many “highways”.

n

n2/3
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Disjoint geodesics and nonexistence of bigeodesics

• One can use the one point estimates and the BK inequality to
make this rigorous.

• Nn is uniformly tight with stretched exponential tails.
B., Hoffman, Sly (2018)

B., Ganguly, Hammond, Hegde (2020)

• This result goes into the proof of the optimal coalescence
estimates.

• Also used to settle the bigeodesic existence problem.

Theorem (B., Hoffman, Sly (2018))

Almost surely the only bigeodesics in exponential LPP are lines parallel
to the co-ordinate axes.
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Key technical inputs

Integrable Inputs

• Curvature of the limit shape.

• Tracy-Widom convergence for point-to-point passage times.

• Uniform moderate deviation estimates:
I P(T0,(m,n) − (

√
m+

√
n)2 ≥ xn1/3) ≤ Ce−cx3/2

.

I P(T0,(m,n) − (
√
m+

√
n)2 ≤ −xn1/3) ≤ Ce−cx3

.

Tools from Percolation

Correlation inequalities.

Chaining argument.

Geometric construction of favourable events at various scales.
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Summary

• Exponential LPP is an exactly solvable model of last passage
percolation where the geometry of geodesics is well understood.

• The methods include limited and streamlined inputs from
integrable probability (curvature of limit shape together with one
point moderate deviation estimates) together with percolation
techniques.

• Expected to apply to all known models of exactly solvable planar
LPP and also in the limit in some cases.

• Finer results than what we discussed today are known including
the behaviour of geodesic trees, local geometry of the geodesics etc.

• Other techniques include stationary LPP, Busemann functions,
Brownian Gibbs property etc.

Riddhipratim Basu (ICTS) Geodesics in LPP 31 / 32



Thank You

Questions?
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