Coordination without communication in two players multi-armed bandits

Thomas Budzinski (CNRS and ENS Lyon) Joint works with Sébastien Bubeck (Microsoft Research) and Mark Sellke (Stanford)

> March 4th, 2021 Lyon Probability Seminar

> > Coordination w/o communication in two players bandits

Stochastic three-armed bandits

- Let T ≥ 1 fixed, and let p = (p₁, p₂, p₃) ∈ [0, 1]³ be unknown from the player.
- Loss functions: let $(\ell_t(i))_{1 \le i \le 3, 1 \le t \le T}$ be independent variables with

$$\mathbb{P}\left(\ell_t(i)=0
ight)=1-p_i \quad ext{ and } \quad \mathbb{P}\left(\ell_t(i)=1
ight)=p_i.$$

- At each step t, the player chooses an arm i_t and receives the loss $\ell_t(i_t)$.
- Regret: $R_T = \left(\sum_{t=1}^T \ell_t(i_t)\right) \mathbf{p}^* T$, where $\mathbf{p}^* = \min(p_1, p_2, p_3)$.
- Goal: find a strategy for which $\max_{\mathbf{p}} \mathbb{E}[R_T]$ is small.

- Motivations: clinical trials, online advertising...
- Two settings:
 - Full information: at time t, the player observes (l_t(1), l_t(2), l_t(3)).
 - Bandits: at time t, the player only observes $\ell_t(i_t)$.
- In both settings, the minimax expected regret is of order \sqrt{T} :
 - If $|p_1 p_2| \approx \frac{1}{\sqrt{T}}$, difficult to distinguish the best arm with T observations.
 - Full information strategy: follow the best arm.
 - Bandit strategy: explore everything at the beginning, discard an arm when it is significantly behind others.

Two players stochastic three-armed bandits

- Again: T ≥ 1, a vector p = (p₁, p₂, p₃) and ℓ_t(i) are independent Bernoulli with parameter p_i.
- Two players A and B. At time t, player A (resp. B) picks arm i_t^A (resp. i_t^B), with no communication between players.
- Collisions are penalized: player A (resp. B) observes the loss:

$$\mathbb{1}_{i_t^A = i_t^B} + \mathbb{1}_{i_t^A \neq i_t^B} \ell_t(i_t^A) \quad (\text{resp. } \ell_t(i_t^B)).$$

• Regret:

$$R_{T} = \sum_{t=1}^{T} \left(2 \cdot \mathbb{1}_{i_{t}^{A} = i_{t}^{B}} + \mathbb{1}_{i_{t}^{A} \neq i_{t}^{B}} \left(\ell_{t}(i_{t}^{A}) + \ell_{t}(i_{t}^{B}) \right) \right) - \mathbf{p}^{*}T,$$

where $\mathbf{p}^{*} = \min(p_{1} + p_{2}, p_{2} + p_{3}, p_{3} + p_{1}).$

• Again, we want to minimise $\max_{\mathbf{p}} \mathbb{E}[R_T]$.

Motivations:

- Situations where gains on an arm have to be "shared" between the players who played this arm.
- Cognitive radios (finding available channels).
- Naive algorithms:
 - A plays the best arms and B the second best? But then what if $p_1 = p_2 \ll p_3$?
 - A plays preferably arm 1 and B plays preferably arm 3? Then what if $p_2 << p_1 = p_3$?

Bounds on the minimax regret

- Some of the previous works:
 - Regret Õ(√T) for p₁, p₂, p₃ bounded away from 1 [Lugosi-Mehrabian 2018] (m players, k arms, stochastic).
 - Regret $\widetilde{O}(T^{3/4})$ [Bubeck–Li–Peres–Sellke 2019] (2 players, k arms, works for adversarial bandits).
- Both "cheat" by using collisions as an implicit form of communication.

Theorem (Bubeck–B. 2020)

There is a randomized strategy (using shared randomness) such that

$$\max_{\mathbf{p}} \mathbb{E}[R_T] = O\left(\sqrt{T\log T}\right)$$

and

$$\mathbb{P}(\text{there is at least one collision}) = o(1).$$

A full-information toy model

- To isolate the problem of collisions from the usual *exploration vs exploitation* trade-off, we look at a full information toy model:
 - Fix $\mathbf{p} = (p_1, p_2, p_3) \in [0, 1]^3$.
 - $(\ell_t^A(i), \ell_t^B(i))_{1 \le i \le 3, 1 \le t \le T}$ are independent Bernoulli with parameter p_i .
 - At time t, player A picks i_t^A and observes $(\ell_t^A(1), \ell_t^A(2), \ell_t^A(3))$ (even if there is a collision), and similarly for B.
 - Regret computed as in the 2-player bandit model.
- No way to use collisions to communicate!

Theorem (Bubeck–B. 2020)

In the full-information toy model, the minimax expected regret is at least $c\sqrt{T\log T}$.

- Topological obstruction: it is not possible to always play what seems best.
- To fix this:
 - either take the risk of a collision in the $\{1,2\}$ region (very costly),
 - or do a suboptimal play to pass "smoothly" from $\{i^A=1, i^B=2\}$ to $\{i^A=2, i^B=1\}$.
- The second option is less costly, provided the location of the suboptimal play is *randomized*.

Strategy for the toy model

Let q_t^A = (1/t-1∑_{s=1}^{t-1} ℓ_s^A(i))_{1≤i≤3} be the estimate of p at time t according to A (and similarly define q_t^B).
Then A (resp. B) plays according to the position of q_t^A (resp. q_t^B) in the following diagram (where w_t = 100√(log T)/t):

Coordination w/o communication in two players bandits

Sketch of proof for the toy model

- Collisions are not possible between neighbour regions, so to have a collision, a player must make an error of more than $\frac{w_t}{2}$.
- So by Hoeffding:

$$\mathbb{P}(\mathsf{collision}) \leq \mathbb{P}\left(\mathsf{error} \geq \frac{w_t}{2}\right) \leq \exp\left(-\frac{t}{2}\left(\frac{w_t}{2}\right)^2\right) \leq T^{-50}.$$

- The loss caused by a suboptimal play in the interface is O(d(p, D)).
- The interface is at a random angle, so the probability to be in the interface is $O\left(\frac{w_t}{d(\mathbf{p},\mathcal{D})}\right)$.

• So the total expected loss is $O\left(\sum_{t=1}^{T} w_t\right) = O(\sqrt{T \log T}).$

The bandit strategy

- Similar to the one for the toy model, but each player needs to have some information about every arm.
 - Close to a boundary, explore both possibilities. E.g. near the boundary between {i^A = 2, i^B = 1} and {i^A = 3, i^B = 1}, player A alternates between arms 2 and 3).
 - Players alternate roles regularly so each has a reasonable estimate of each arm.

Theorem (Bubeck–B–Sellke. 2020)

For multiplayers multi-armed bandits with m players and $K \ge m$ arms, there is a randomized strategy with no collision at all with high probability and

$$\max_{\mathbf{p}} \mathbb{E}[R_T] = O\left(m \mathcal{K}^{11/2} \sqrt{T \log T}\right).$$

• Similar ideas, but the geometric picture is much more complicated:

Coordination w/o communication in two players bandits

THANK YOU!

Coordination w/o communication in two players bandits