Percolation phase transition in weight-dependent random connection models

Peter Mörters

joint work with

Peter Gracar, Lukas Lüchtrath

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. *Percolation* is the event that there is an infinite connected component in \mathscr{G} . Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β . Does percolation become impossible when β is decreased and possible if it is increased?

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. *Percolation* is the event that there is an infinite connected component in \mathscr{G} . Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β .

The classical example is the lattice \mathbb{Z}^d with $d \ge 2$, in which edges are removed independently with probability $p = 1 - \beta$. Broadbent and Hammersley (1957) introduced this model and showed that there is a percolation phase transition, i.e. there exists a critical edge density

$$0 < \beta_c < 1$$
,

such that

- $\mathscr{G}(\beta)$ does *not percolate* almost surely if $\beta < \beta_c$ (the subcritical phase),
- $\mathscr{G}(\beta)$ percolates almost surely if $\beta > \beta_c$ (the supercritical phase).

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. *Percolation* is the event that there is an infinite connected component in \mathscr{G} . Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β .

The classical example is the lattice \mathbb{Z}^d with $d \ge 2$, in which edges are removed independently with probability $p = 1 - \beta$. Broadbent and Hammersley (1957) introduced this model and showed that there is a percolation phase transition, i.e. there exists a critical edge density

$$0 < \beta_c < 1$$
,

such that

- $\mathscr{G}(\beta)$ does *not percolate* almost surely if $\beta < \beta_c$ (the subcritical phase),
- $\mathscr{G}(\beta)$ percolates almost surely if $\beta > \beta_c$ (the supercritical phase).

Problem: When does this hold for graph families $\mathscr{G}(\beta)$ with long-range dependencies and heavy-tailed degree distribution?

For a broader range of examples we assume that the vertices of the graph are given as a *standard Poisson process* \mathscr{X} in \mathbb{R}^d , $d \geq 2$.

For a broader range of examples we assume that the vertices of the graph are given as a *standard Poisson process* \mathscr{X} in \mathbb{R}^d , $d \geq 2$.

• Gilbert disc model: Suppose $\beta > 0$. Connect two vertices $x, y \in \mathscr{X}$ if

$$B(x,\beta) \cap B(y,\beta) \neq \emptyset.$$

Gilbert (1961) showed that there is a critical $0 < \beta_c < \infty$ such that the graph percolates if $\beta > \beta_c$ but does not percolate for $\beta < \beta_c$.

For a broader range of examples we assume that the vertices of the graph are given as a *standard Poisson process* \mathscr{X} in \mathbb{R}^d , $d \geq 2$.

• Gilbert disc model: Suppose $\beta > 0$. Connect two vertices $x, y \in \mathscr{X}$ if

$$B(x,\beta) \cap B(y,\beta) \neq \emptyset.$$

Gilbert (1961) showed that there is a critical $0 < \beta_c < \infty$ such that the graph percolates if $\beta > \beta_c$ but does not percolate for $\beta < \beta_c$.

Poisson-Boolean model: Take (R_x: x ∈ X) positive iid random variables with E[R^d_x] < ∞. Connect x, y ∈ X if

 $B(x,\beta R_x)\cap B(y,\beta R_y)\neq \emptyset.$

Then Gouéré (2008) showed that there is a percolation phase transition. This model includes graphs with heavy-tailed degree distribution.

• Long-range percolation: Connect $x, y \in \mathscr{X}$ independently with probability

$$1 - \exp(-\beta |x - y|^{-\delta d})$$

for some parameter $\delta > 1$. Then Newman and Schulman (1986) showed that there is also percolation phase transition. Penrose (1991) extended this to the random connection model when the connection probability is a decreasing function of the vertex distance.

• Long-range percolation: Connect $x, y \in \mathscr{X}$ independently with probability

$$1 - \exp(-\beta |x - y|^{-\delta d})$$

for some parameter $\delta > 1$. Then Newman and Schulman (1986) showed that there is also percolation phase transition. Penrose (1991) extended this to the random connection model when the connection probability is a decreasing function of the vertex distance.

• Summary: Neither the powerful vertices of graphs with heavy-tailed degree distribution, nor the long edges in long-range percolation models can remove the subcritical phase and ensure $\beta_c = 0$. Is this possible at all?

Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights W_x, x ∈ X. We connect two points x, y ∈ X independently with probability

$$1-e^{-rac{W_x W_y}{|x-y|^{\delta d}}}$$

Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights W_x, x ∈ X. We connect two points x, y ∈ X independently with probability

$$1-e^{-\frac{W_x W_y}{|x-y|^{\delta d}}}$$

We assume that $\delta > 1, \eta > 0$ and the weights W_{x} are heavy-tailed with

$$\mathbb{P}(W_x > r) = cr^{-\eta} \text{ for } r > 1.$$

Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights W_x, x ∈ X. We connect two points x, y ∈ X independently with probability

$$1-e^{-\frac{W_x W_y}{|x-y|^{\delta d}}}$$

We assume that $\delta > 1, \eta > 0$ and the weights W_{x} are heavy-tailed with

$$\mathbb{P}(W_x > r) = cr^{-\eta} \text{ for } r > 1.$$

Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this model there is a percolation phase transition if $\delta \eta > 2$ but *if* $\delta \eta < 2$ *we have* $\beta_c = 0$ i.e. there is no subcritical phase.

Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights W_x, x ∈ X. We connect two points x, y ∈ X independently with probability

$$1-e^{-\frac{W_x W_y}{|x-y|^{\delta d}}}$$

We assume that $\delta > 1, \eta > 0$ and the weights W_{x} are heavy-tailed with

$$\mathbb{P}(W_x > r) = cr^{-\eta} \text{ for } r > 1.$$

Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this model there is a percolation phase transition if $\delta \eta > 2$ but if $\delta \eta < 2$ we have $\beta_c = 0$ i.e. there is no subcritical phase.

This is analogous to the behaviour of classical (non-spatial) scale-free networks. The behaviour depends only on the variance of the degree distribution and *not* on the geometry of the underlying space.

The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

 $\mathbb{R}^d \times (0,1]$ for $d \geq 2$.

We think of $\mathbf{x} = (x, t)$ as a vertex at position x with mark t.

The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

 $\mathbb{R}^d \times (0,1]$ for $d \geq 2$.

We think of $\mathbf{x} = (x, t)$ as a vertex at position x with mark t.

Vertices **x** and **y** are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

 $\varphi(\mathbf{x}, \mathbf{y}) = \varphi((x, t), (y, s)) = \rho(g(t, s)|x - y|^d)$ for

The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

 $\mathbb{R}^d \times (0,1]$ for $d \geq 2$.

We think of $\mathbf{x} = (x, t)$ as a vertex at position x with mark t.

Vertices **x** and **y** are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

 $\varphi(\mathbf{x}, \mathbf{y}) = \varphi((x, t), (y, s)) = \rho(g(t, s)|x - y|^d)$ for

• a non-increasing, integrable profile function $\rho \colon \mathbb{R}_+ \to [0,1]$ and

The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

 $\mathbb{R}^d \times (0,1]$ for $d \geq 2$.

We think of $\mathbf{x} = (x, t)$ as a vertex at position x with mark t.

Vertices **x** and **y** are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

 $\varphi(\mathbf{x}, \mathbf{y}) = \varphi((x, t), (y, s)) = \rho(g(t, s)|x - y|^d)$ for

- a non-increasing, integrable profile function $\rho \colon \mathbb{R}_+ \to [0,1]$ and
- a non-decreasing, symmetric kernel $g : (0,1] \times (0,1] \rightarrow \mathbb{R}_+$.

The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

 $\mathbb{R}^d \times (0,1]$ for $d \geq 2$.

We think of $\mathbf{x} = (x, t)$ as a vertex at position x with mark t.

Vertices **x** and **y** are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

 $\varphi(\mathbf{x}, \mathbf{y}) = \varphi((x, t), (y, s)) = \rho(g(t, s)|x - y|^d)$ for

- a non-increasing, integrable profile function $\rho \colon \mathbb{R}_+ \to [0,1]$ and
- a non-decreasing, symmetric kernel $g : (0,1] \times (0,1] \to \mathbb{R}_+.$

We assume (without loss of generality) that

$$\int_{\mathbb{R}^d} \rho(|x|^d) \, dx = 1. \tag{1}$$

Then, the degree distribution only depends on the kernel g and not on ρ .

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent

 $\tau = 1 + \frac{1}{\gamma}.$

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent $\tau = 1 + \frac{1}{2}$.

• The sum kernel $g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$.

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent $\tau = 1 + \frac{1}{2}$.

• The sum kernel
$$g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$$
.

• The min kernel $g^{\min}(s,t) = \beta^{-1}(s \wedge t)^{\gamma}$.

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent $\tau = 1 + \frac{1}{\gamma}$.

• The sum kernel
$$g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$$
.

• The min kernel
$$g^{\min}(s,t) = \beta^{-1}(s \wedge t)^{\gamma}$$
.

• The max kernel
$$g^{\max}(s,t) = \beta^{-1}(s \vee t)^{\gamma+1}$$
.

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent $\tau = 1 + \frac{1}{2}$.

- The sum kernel $g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$.
- The min kernel $g^{\min}(s,t) = \beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max}(s,t) = \beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{pa}(s,t) = \beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent

$$au = 1 + \frac{1}{\gamma}$$

- The sum kernel $g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$.
- The min kernel $g^{\min}(s,t) = \beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max}(s,t) = \beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{pa}(s,t) = \beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.
- The product kernel $g^{\text{prod}}(s,t) = \beta^{-1} s^{\gamma} t^{\gamma}$.

Recall

$$\varphi(\mathbf{x},\mathbf{y}) = \rho(g(t,s)|x-y|^d).$$

Our kernels g are defined in terms of a parameter $\gamma \in (0, 1)$ and have heavy tailed degree distributions with exponent

$$\tau = 1 + \frac{1}{\gamma}.$$

• The sum kernel $g^{sum}(s,t) = \beta^{-1}(s^{-\gamma/d} + t^{-\gamma/d})^{-d}$.

• The min kernel
$$g^{\min}(s,t) = \beta^{-1}(s \wedge t)^{\gamma}$$
.

- The max kernel $g^{\max}(s,t) = \beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{pa}(s,t) = \beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.
- The product kernel $g^{\text{prod}}(s,t) = \beta^{-1} s^{\gamma} t^{\gamma}$.

To study the influence of long-range effects on the percolation problem, we focus primarily on regulary varying profile functions with index $\delta > 1$, that is

$$\lim_{r\uparrow\infty}rac{
ho(cr)}{
ho(r)}=c^{-\delta} \quad ext{ for all } c\geq 1.$$

Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment kernel, sum kernel or min kernel and parameters $\delta > 1$ and $0 < \gamma < 1$, we have \circ if $\gamma < \frac{\delta}{\delta+1}$, then $\beta_c > 0$.

$$If \gamma > \frac{\delta}{\delta+1}, then \beta_c = 0.$$

Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment kernel, sum kernel or min kernel and parameters $\delta > 1$ and $0 < \gamma < 1$, we have if $\gamma < \frac{\delta}{\delta+1}$, then $\beta_c > 0$.

(b) If
$$\gamma > rac{\delta}{\delta+1}$$
, then $\beta_c = 0$

Theorem 2

For the product kernel we have

(a) if
$$\gamma \leq \frac{1}{2}$$
, then $\beta_c > 0$

(a) if
$$\gamma > \frac{1}{2}$$
, then $\beta_c = 0$.

For the max kernel we always have $\beta_c = 0$ (Yukich (2006)).

We build a network, or graph process, $(\mathscr{G}_t)_{t\geq 0}$ on the torus \mathbb{T}^d as follows:

We build a network, or graph process, $(\mathscr{G}_t)_{t\geq 0}$ on the torus \mathbb{T}^d as follows:

• The graph \mathscr{G}_0 has neither vertices nor edges.

We build a network, or graph process, $(\mathscr{G}_t)_{t\geq 0}$ on the torus \mathbb{T}^d as follows:

- The graph \mathscr{G}_0 has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on $\mathbb{T}^d.$

We build a network, or graph process, $(\mathscr{G}_t)_{t>0}$ on the torus \mathbb{T}^d as follows:

- The graph \mathscr{G}_0 has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on $\mathbb{T}^d.$
- Given the graph \mathscr{G}_{t-} , a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$\rho\left(\frac{t\,d(x,y)^d}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right).$$

We build a network, or graph process, $(\mathscr{G}_t)_{t>0}$ on the torus \mathbb{T}^d as follows:

- The graph \mathscr{G}_0 has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on $\mathbb{T}^d.$
- Given the graph \mathscr{G}_{t-} , a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$0\left(\frac{t\,d(x,y)^d}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right).$$

 $(\mathscr{G}_t)_{t\geq 0}$ has a *giant component* if the largest connected component of \mathscr{G}_t is of asymptotically linear size, it is *robust* if the percolated sequence $(\mathscr{G}_t^p)_{t\geq 0}$ has a giant component for every retention parameter p > 0.

We build a network, or graph process, $(\mathscr{G}_t)_{t>0}$ on the torus \mathbb{T}^d as follows:

- The graph \mathscr{G}_0 has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on $\mathbb{T}^d.$
- Given the graph \mathscr{G}_{t-} , a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$O\left(\frac{t\,d(x,y)^d}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right).$$

 $(\mathscr{G}_t)_{t\geq 0}$ has a *giant component* if the largest connected component of \mathscr{G}_t is of asymptotically linear size, it is *robust* if the percolated sequence $(\mathscr{G}_t^p)_{t\geq 0}$ has a giant component for every retention parameter p > 0.

Theorem 3

The network $(\mathscr{G}_t)_{t\geq 0}$ is robust if $\gamma > \frac{\delta}{\delta+1}$, but non-robust if $\gamma < \frac{\delta}{\delta+1}$.

```
Proof of Theorem 1 (b)
```

• as $g^{pa}, g^{sum} \leq g^{min}$ we can work with g^{min} .

• as $g^{\text{pa}}, g^{\text{sum}} \leq g^{\min}$ we can work with g^{\min} .

• As $\gamma > \frac{\delta}{\delta+1}$ we can find

$$\alpha_1 \in (1, \frac{\gamma}{\delta(1-\gamma)})$$
 and then $\alpha_2 \in (\alpha_1, \frac{\gamma}{\delta}(1+\alpha_1\delta)).$

• as $g^{\text{pa}}, g^{\text{sum}} \leq g^{\min}$ we can work with g^{\min} .

• As $\gamma > \frac{\delta}{\delta+1}$ we can find

$$\alpha_1 \in (1, \frac{\gamma}{\delta(1-\gamma)})$$
 and then $\alpha_2 \in (\alpha_1, \frac{\gamma}{\delta}(1+\alpha_1\delta)).$

 As s ↓ 0 the probability that for a fixed vertex (x₀, s₀) with s₀ < s there exists an infinite sequence of vertices

$$(x_0, s_0), (x_1, s_1), (x_2, s_2), \ldots$$

such that

- $s_{k+1} < s_k^{\alpha_1}$ and $|x_{k+1} x_k|^d < \frac{\beta}{2} s_k^{-\alpha_2}$, and
- (x_k, s_k) is connected to (x_{k+1}, s_{k+1}) by a path of length two;

converges to one.

• as $2g^{sum} \ge g^{min} \ge g^{pa}$ we can work with g^{pa} .

- as $2g^{sum} \ge g^{min} \ge g^{pa}$ we can work with g^{pa} .
- only if $\gamma < \frac{1}{2}$ we can use the first moment bound

 $\mathbb{E}[\sharp$ shortcut-free paths of length *n* starting in $0] \leq (C\beta)^n$.

- as $2g^{sum} \ge g^{min} \ge g^{pa}$ we can work with g^{pa} .
- only if $\gamma < \frac{1}{2}$ we can use the first moment bound

 $\mathbb{E}[\sharp$ shortcut-free paths of length *n* starting in $0] \leq (C\beta)^n$.

• If $\frac{1}{2} \leq \gamma < \frac{\delta}{\delta+1}$ we look at a path of length *n* and identify its *skeleton*.

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}\$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising k - 1 vertices with larger marks, then

$$\mathbb{P}_{\mathsf{x},\mathsf{y}}\{\mathsf{x} \stackrel{k}{\leftrightarrow} \mathsf{y}\} \leq (C\beta)^{k-1} \mathbb{P}_{\mathsf{x},\mathsf{y}}\{\mathsf{x} \sim \mathsf{y}\}.$$

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising k - 1 vertices with larger marks, then

$$\mathbb{P}_{\mathbf{x},\mathbf{y}}\{\mathbf{x} \stackrel{k}{\leftrightarrow} \mathbf{y}\} \leq (C\beta)^{k-1} \mathbb{P}_{\mathbf{x},\mathbf{y}}\{\mathbf{x} \sim \mathbf{y}\}.$$

• The ways in which the k - 1 vertices are inserted is encoded by a binary tree.

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising k - 1 vertices with larger marks, then

$$\mathbb{P}_{\mathbf{x},\mathbf{y}}\{\mathbf{x} \stackrel{k}{\leftrightarrow} \mathbf{y}\} \leq (C\beta)^{k-1} \mathbb{P}_{\mathbf{x},\mathbf{y}}\{\mathbf{x} \sim \mathbf{y}\}.$$

• The ways in which the k - 1 vertices are inserted is encoded by a binary tree.

Add local maxima successively according to the tree using

$$\int_{t_1}^1 dt_2 \int_{\mathbb{R}^d} dy_2 \,\, \varphi((y_0, t_0), (y_2, t_2)) \, \varphi((y_2, t_2), (y_1, t_1)) \leq (C\beta) \, \mathbb{P}_{\mathbf{y}_0, \mathbf{y}_1} \{ \mathbf{y}_0 \sim \mathbf{y}_1 \}.$$

We now use a *truncated first moment method* on the *skeletons*. We only count paths that are free of shortcuts.

We now use a *truncated first moment method* on the *skeletons*. We only count paths that are free of shortcuts.

• A skeleton $S = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_m)$ of length *m* is *regular* if its lowest mark is larger than 2^{-m} . A path is *regular* if its skeleton is regular.

We now use a *truncated first moment method* on the *skeletons*. We only count paths that are free of shortcuts.

- A skeleton $S = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_m)$ of length *m* is *regular* if its lowest mark is larger than 2^{-m} . A path is *regular* if its skeleton is regular.
- An infinite path $(\mathbf{x}_0, \mathbf{x}_1, ...)$ is *regular* if there exists N such that all paths $(\mathbf{x}_0, ..., \mathbf{x}_n)$, $n \ge N$ are regular.

We now use a *truncated first moment method* on the *skeletons*. We only count paths that are free of shortcuts.

- A skeleton $S = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_m)$ of length *m* is *regular* if its lowest mark is larger than 2^{-m} . A path is *regular* if its skeleton is regular.
- An infinite path $(\mathbf{x}_0, \mathbf{x}_1, ...)$ is *regular* if there exists N such that all paths $(\mathbf{x}_0, ..., \mathbf{x}_n)$, $n \ge N$ are regular.
- By stopping a path when it goes below the threshold and using our tool, we show that if β is below some positive constant depending only on ρ, γ and d, almost surely every infinite path is regular.

We now use a *truncated first moment method* on the *skeletons*. We only count paths that are free of shortcuts.

- A skeleton $S = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_m)$ of length *m* is *regular* if its lowest mark is larger than 2^{-m} . A path is *regular* if its skeleton is regular.
- An infinite path $(\mathbf{x}_0, \mathbf{x}_1, ...)$ is *regular* if there exists N such that all paths $(\mathbf{x}_0, ..., \mathbf{x}_n)$, $n \ge N$ are regular.
- By stopping a path when it goes below the threshold and using our tool, we show that if β is below some positive constant depending only on ρ, γ and d, almost surely every infinite path is regular.
- The probability that there exists a regular path of length *n* can be bounded by $(C\beta)^n$ combining our tool with the first moment method. Hence for $\beta < \frac{1}{C}$ there are no infinite regular paths.

 Find typical distances of vertices in the infinite cluster of G(β). (Ongoing project with Gracar, Grauer, M)

- Find typical distances of vertices in the infinite cluster of G(β). (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in 𝒢(β), are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)

- Find typical distances of vertices in the infinite cluster of G(β). (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in 𝒢(β), are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)
- How does clustering affect the spread of infections on weight-dependent random connection graphs? (Newly funded project with Amitai Linker)

- Find typical distances of vertices in the infinite cluster of G(β). (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in G(β), are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)
- How does clustering affect the spread of infections on weight-dependent random connection graphs? (Newly funded project with Amitai Linker)
- Study the weight-dependent random connection graphs with moving points, resp. time varying networks. (Newly funded project with Amitai Linker)

Thank you very much for your attention!