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Percolation

Suppose ¢ is a random graph with infinite vertex set and finite vertex degrees.
Percolation is the event that there is an infinite connected component in ¢. Our
interest is in families of graphs ¢(3) where edge densities increase in 5. Does
percolation become impossible when 3 is decreased and possible if it is increased?
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The classical example is the lattice Z9 with d > 2 , in which edges are removed
independently with probability p =1 — 3. Broadbent and Hammersley (1957)
introduced this model and showed that there is a percolation phase transition,
i.e. there exists a critical edge density

0<p:<1,
such that

@ ¥(3) does not percolate almost surely if 3 < 5. (the subcritical phase),

@ 9(3) percolates almost surely if 3 > . (the supercritical phase).
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Percolation

Suppose ¢ is a random graph with infinite vertex set and finite vertex degrees.
Percolation is the event that there is an infinite connected component in ¢. Our
interest is in families of graphs ¢4(3) where edge densities increase in (.

The classical example is the lattice 79 with d > 2, in which edges are removed
independently with probability p = 1 — 8. Broadbent and Hammersley (1957)
introduced this model and showed that there is a percolation phase transition,
i.e. there exists a critical edge density

0< (<1,

such that
@ ¥(B) does not percolate almost surely if 5 < B¢ (the subcritical phase),

@ 9(3) percolates almost surely if 3 > . (the supercritical phase).

Problem: When does this hold for graph families ¢(3) with long-range
dependencies and heavy-tailed degree distribution?
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Percolation

For a broader range of examples we assume that the vertices of the graph are
given as a standard Poisson process 2" in R, d > 2.
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@ Gilbert disc model: Suppose 8 > 0. Connect two vertices x,y € 2 if

B(x.5) N B(y. 5) # 0.

Gilbert (1961) showed that there is a critical 0 < 3. < co such that the
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Percolation
For a broader range of examples we assume that the vertices of the graph are
given as a standard Poisson process 2" in R, d > 2.

@ Gilbert disc model: Suppose 8 > 0. Connect two vertices x,y € 2 if

B(x.5) N B(y. 5) # 0.

Gilbert (1961) showed that there is a critical 0 < 3. < co such that the
graph percolates if 5 > . but does not percolate for 5 < . .

@ Poisson-Boolean model: Take (Ry: x € Z7) positive iid random variables
with E[RY] < oo. Connect x,y € 2" if

B(x,BR:) N B(y, BR,) # 0.

Then Gouéré (2008) showed that there is a percolation phase transition. This
model includes graphs with heavy-tailed degree distribution.
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Percolation

@ Long-range percolation: Connect x,y € £ independently with probability
1 —exp(—8|x — y|7%9)

for some parameter § > 1. Then Newman and Schulman (1986) showed that
there is also percolation phase transition. Penrose (1991) extended this to
the random connection model when the connection probability is a decreasing
function of the vertex distance.
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Percolation

@ Long-range percolation: Connect x,y € 2" independently with probability
1 —exp(—8|x — y|7%9)

for some parameter § > 1. Then Newman and Schulman (1986) showed that
there is also percolation phase transition. Penrose (1991) extended this to
the random connection model when the connection probability is a decreasing
function of the vertex distance.

@ Summary: Neither the powerful vertices of graphs with heavy-tailed degree

distribution, nor the long edges in long-range percolation models can remove
the subcritical phase and ensure 5. = 0. Is this possible at all?
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Percolation

@ Scale-free percolation: In the scale-free percolation model of Deijfen,
van der Hofstad, Hooghiemstra (2018) vertices have independent weights
W,,x € Z . We connect two points x,y € 2" independently with probability

Wy Wy
1—e Ix—yI%7,
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We assume that § > 1,77 > 0 and the weights W, are heavy-tailed with

P(W, >r)=cr™" for r > 1.
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We assume that § > 1,77 > 0 and the weights W, are heavy-tailed with
P(W, >r)=cr™" for r > 1.

Deijfen et al (2018) and Deprez and Withrich (2019) have shown that in this
model there is a percolation phase transition if dn > 2 but if 61 < 2 we have
[e = 0 i.e. there is no subcritical phase.
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Percolation

@ Scale-free percolation: In the scale-free percolation model of Deijfen,
van der Hofstad, Hooghiemstra (2018) vertices have independent weights
W,,x € Z . We connect two points x,y € 2" independently with probability

Wy Wy,
1—e Ix—yI%7,

We assume that § > 1,77 > 0 and the weights W, are heavy-tailed with
P(W, >r)=cr™" for r > 1.

Deijfen et al (2018) and Deprez and Withrich (2019) have shown that in this
model there is a percolation phase transition if dn > 2 but if 61 < 2 we have
[e = 0 i.e. there is no subcritical phase.

This is analogous to the behaviour of classical (non-spatial) scale-free

networks. The behaviour depends only on the variance of the degree
distribution and not on the geometry of the underlying space.
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Our model: the weight-dependent random connection model
The vertex set of ¥(3) is a Poisson point process of unit intensity on
R x (0,1] for d > 2.

We think of x = (x, t) as a vertex at position x with mark t.
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Our model: the weight-dependent random connection model
The vertex set of ¥(3) is a Poisson point process of unit intensity on
R? x (0,1] for d > 2.

We think of x = (x, t) as a vertex at position x with mark t.

Vertices x and y are connected by an edge in 4(3) independently with probability

p(x.y) = ¢((x, 1), (v, 5)) = p(g(t,s)]x — y|9)  for

@ a non-increasing, integrable profile function p: Ry — [0,1] and
@ a non-decreasing, symmetric kernel g: (0,1] x (0,1] — R,

We assume (without loss of generality) that

[, olixl) =1 1)
Rd
Then, the degree distribution only depends on the kernel g and not on p.
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Interesting kernels
Recall
p(x.y) = p(g(t,s)lx —y|%).
Our kernels g are defined in terms of a parameter v € (0,1) and have heavy tailed

degree distributions with exponent
1
T 1+ =.
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o The sum kernel g™ (s, t) = B~ (s~ /9 4 t=7/9)=4,
e The min kernel g™"(s,t) = B~ (s A t)7.
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Interesting kernels
Recall
p(x.y) = p(g(t,s)lx —y|%).
Our kernels g are defined in terms of a parameter v € (0,1) and have heavy tailed

degree distributions with exponent
1
; —_— l + .

The sum kernel g™ (s, t) = B~ Y(s~ /9 4 t=/d)=9,
The min kernel g™"(s,t) = B~ (s A t)7.

@ The max kernel g™®(s,t) = (s V t)7*L.

The preferential attachment kernel gP(s,t) = B=Y(s vV t)! (s A t)7.

e The product kernel gP®d(s,t) = B~ 1s7¢t7.

To study the influence of long-range effects on the percolation problem, we focus
primarily on regulary varying profile functions with index § > 1, that is

lim pler) =c % forallc>1.
rteo p(r)
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Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment

kernel, sum kernel or min kernel and parameters 6 > 1 and 0 < v < 1, we have
@ ify < 325, then B> 0.

@ Ifv> 5%, then 5. = 0.
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Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment
kernel, sum kernel or min kernel and parameters 6 > 1 and 0 < v < 1, we have
@ ify < 325, then B> 0.

@ Ifv> 5%, then 5. = 0.

Theorem 2

For the product kernel we have

@ ify< % then 8. > 0.

@ ify> %, then . = 0.

For the max kernel we always have 3. = 0 (Yukich (2006)).
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Spatial preferential attachment

We build a network, or graph process, (¢;):>0 on the torus T¢ as follows:
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Spatial preferential attachment

We build a network, or graph process, (¢;):>0 on the torus T¢ as follows:
@ The graph %, has neither vertices nor edges.

@ Vertices arrive successively after exponential waiting times and are placed
uniformly on T¢9.

@ Given the graph %;_, a vertex born at time t and placed at x is connected by
an edge to each existing vertex at y born at time s independently with

conditional probability
td(x,y)?
g < 5(t) )
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Spatial preferential attachment

We build a network, or graph process, (¥;):>0 on the torus T as follows:
@ The graph %, has neither vertices nor edges.

@ Vertices arrive successively after exponential waiting times and are placed
uniformly on T¢9.

@ Given the graph %;_, a vertex born at time t and placed at x is connected by
an edge to each existing vertex at y born at time s independently with

conditional probability
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(%:)¢>0 has a giant component if the largest connected component of &; is of
asymptotically linear size, it is robust if the percolated sequence (¥4{):>0 has a
giant component for every retention parameter p > 0.
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Spatial preferential attachment

We build a network, or graph process, (¥;):>0 on the torus T as follows:
@ The graph %, has neither vertices nor edges.

@ Vertices arrive successively after exponential waiting times and are placed
uniformly on T¢9.

@ Given the graph %;_, a vertex born at time t and placed at x is connected by
an edge to each existing vertex at y born at time s independently with

conditional probability
td(x,y)?
”( () )

(%:)¢>0 has a giant component if the largest connected component of &; is of
asymptotically linear size, it is robust if the percolated sequence (¥4{):>0 has a
giant component for every retention parameter p > 0.

The network (%;)¢>o is robust if v > 5%_1, but non-robust if v < (%Ll.

Theorem 3 J
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Proof of Theorem 1 (b)

@ as gP? g™ < g™ we can work with g™,
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Proof of Theorem 1 (b)

@ as gP? g™ < g™ we can work with g™,

o As vy > % we can find

a1 € (1, 5755) and then az € (a1, F(1+ 1))

@ As s | 0 the probability that for a fixed vertex (xg, o) with sp < s there exists
an infinite sequence of vertices
(%05 50); (x1,51), (%2, %2), - .-
such that

d —
> Sip1 < st and X1 — xi]? < gsk o2

, and
> (Xk, sk) is connected to (xk+1, Sk+1) by a path of length two;

converges to one.
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Proof of Theorem 1 (a)
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Proof of Theorem 1 (a)

@ as 2g%'™ > gMin > gPa e can work with gP?.
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Proof of Theorem 1 (a)

@ as 2g™™ > gMin > gP? we can work with gP?.

e only ify < % we can use the first moment bound

E[fshortcut-free paths of length n starting in 0] < (CgB)".
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Proof of Theorem 1 (a)

@ as 2g%U™ > g™Min > gP3 we can work with gP?.

e only ify < % we can use the first moment bound

E[fshortcut-free paths of length n starting in 0] < (CgB)".

6

541 we look at a path of length n and identify its skeleton.

° /f%§7<

®t ®r
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Proof of Theorem 1 (a)

If {x & y} is the event that x and y are connected by a shortcut-free path
comprising k — 1 vertices with larger marks, then

Pey{x <5 y} < (CBF Py {x ~y}.
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Proof of Theorem 1 (a)

If {x & y} is the event that x and y are connected by a shortcut-free path
comprising k — 1 vertices with larger marks, then

Pey{x <5 y} < (CBF Py {x ~y}.

@ The ways in which the k — 1 vertices are inserted is encoded by a binary tree.

t

¥
[ ]
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Proof of Theorem 1 (a)

If {x & y} is the event that x and y are connected by a shortcut-free path
comprising k — 1 vertices with larger marks, then

Pey{x <5 y} < (CBF Py {x ~y}.

@ The ways in which the k — 1 vertices are inserted is encoded by a binary tree.

t

¥
[ ]

Yo
L ]

@ Add local maxima successively according to the tree using

[ tr [ (000, 10). 0 ) (2 2. (01,10) < (CB) Pyl ~ i)
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Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons.
We only count paths that are free of shortcuts.
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Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons.
We only count paths that are free of shortcuts.

@ A skeleton S = (xo, X1, ...,X;) of length m is regular if its lowest mark is
larger than 2=™. A path is regular if its skeleton is regular.

@ An infinite path (xo, X1, ...) is regular if there exists N such that all paths
(X0 --,Xp), n > N are regular.

@ By stopping a path when it goes below the threshold and using our tool, we
show that if /3 is below some positive constant depending only on p,~ and d,
almost surely every infinite path is regular.

@ The probability that there exists a regular path of length n can be bounded
by (CB)" combining our tool with the first moment method. Hence for
B8 < % there are no infinite regular paths.

Peter Mérters (Kéln) 13/14
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Further interesting topics

o Find typical distances of vertices in the infinite cluster of 4(23).
(Ongoing project with Gracar, Grauer, M)

e Random walks on the infinite cluster in (/3), are they recurrent or transient?
(Ongoing project by Gracar, Heydenreich, Ménch, M)

@ How does clustering affect the spread of infections on weight-dependent
random connection graphs?
(Newly funded project with Amitai Linker)

@ Study the weight-dependent random connection graphs with moving points,
resp. time varying networks.
(Newly funded project with Amitai Linker)

Thank you very much for your attention!
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