Percolation phase transition in weight-dependent random connection models

Peter Mörters

joint work with

Peter Gracar, Lukas Lüchtrath

Percolation

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. Percolation is the event that there is an infinite connected component in \mathscr{G}. Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β. Does percolation become impossible when β is decreased and possible if it is increased?

Percolation

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. Percolation is the event that there is an infinite connected component in \mathscr{G}. Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β.

The classical example is the lattice \mathbb{Z}^{d} with $d \geq 2$, in which edges are removed independently with probability $p=1-\beta$. Broadbent and Hammersley (1957) introduced this model and showed that there is a percolation phase transition, i.e. there exists a critical edge density

$$
0<\beta_{c}<1
$$

such that

- $\mathscr{G}(\beta)$ does not percolate almost surely if $\beta<\beta_{c}$ (the subcritical phase),
- $\mathscr{G}(\beta)$ percolates almost surely if $\beta>\beta_{c}$ (the supercritical phase).

Percolation

Suppose \mathscr{G} is a random graph with infinite vertex set and finite vertex degrees. Percolation is the event that there is an infinite connected component in \mathscr{G}. Our interest is in families of graphs $\mathscr{G}(\beta)$ where edge densities increase in β.

The classical example is the lattice \mathbb{Z}^{d} with $d \geq 2$, in which edges are removed independently with probability $p=1-\beta$. Broadbent and Hammersley (1957) introduced this model and showed that there is a percolation phase transition, i.e. there exists a critical edge density

$$
0<\beta_{c}<1
$$

such that

- $\mathscr{G}(\beta)$ does not percolate almost surely if $\beta<\beta_{c}$ (the subcritical phase),
- $\mathscr{G}(\beta)$ percolates almost surely if $\beta>\beta_{c}$ (the supercritical phase).

Problem: When does this hold for graph families $\mathscr{G}(\beta)$ with long-range dependencies and heavy-tailed degree distribution?

Percolation

For a broader range of examples we assume that the vertices of the graph are given as a standard Poisson process \mathscr{X} in $\mathbb{R}^{d}, d \geq 2$.

Percolation

For a broader range of examples we assume that the vertices of the graph are given as a standard Poisson process \mathscr{X} in $\mathbb{R}^{d}, d \geq 2$.

- Gilbert disc model: Suppose $\beta>0$. Connect two vertices $x, y \in \mathscr{X}$ if

$$
B(x, \beta) \cap B(y, \beta) \neq \emptyset .
$$

Gilbert (1961) showed that there is a critical $0<\beta_{c}<\infty$ such that the graph percolates if $\beta>\beta_{c}$ but does not percolate for $\beta<\beta_{c}$.

Percolation

For a broader range of examples we assume that the vertices of the graph are given as a standard Poisson process \mathscr{X} in $\mathbb{R}^{d}, d \geq 2$.

- Gilbert disc model: Suppose $\beta>0$. Connect two vertices $x, y \in \mathscr{X}$ if

$$
B(x, \beta) \cap B(y, \beta) \neq \emptyset
$$

Gilbert (1961) showed that there is a critical $0<\beta_{c}<\infty$ such that the graph percolates if $\beta>\beta_{c}$ but does not percolate for $\beta<\beta_{c}$.

- Poisson-Boolean model: Take $\left(R_{x}: x \in \mathscr{X}\right)$ positive iid random variables with $\mathbb{E}\left[R_{x}^{d}\right]<\infty$. Connect $x, y \in \mathscr{X}$ if

$$
B\left(x, \beta R_{x}\right) \cap B\left(y, \beta R_{y}\right) \neq \emptyset
$$

Then Gouéré (2008) showed that there is a percolation phase transition. This model includes graphs with heavy-tailed degree distribution.

Percolation

Percolation

- Long-range percolation: Connect $x, y \in \mathscr{X}$ independently with probability

$$
1-\exp \left(-\beta|x-y|^{-\delta d}\right)
$$

for some parameter $\delta>1$. Then Newman and Schulman (1986) showed that there is also percolation phase transition. Penrose (1991) extended this to the random connection model when the connection probability is a decreasing function of the vertex distance.

Percolation

- Long-range percolation: Connect $x, y \in \mathscr{X}$ independently with probability

$$
1-\exp \left(-\beta|x-y|^{-\delta d}\right)
$$

for some parameter $\delta>1$. Then Newman and Schulman (1986) showed that there is also percolation phase transition. Penrose (1991) extended this to the random connection model when the connection probability is a decreasing function of the vertex distance.

- Summary: Neither the powerful vertices of graphs with heavy-tailed degree distribution, nor the long edges in long-range percolation models can remove the subcritical phase and ensure $\beta_{c}=0$. Is this possible at all?

Percolation

Percolation

- Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights $W_{x}, x \in \mathscr{X}$. We connect two points $x, y \in \mathscr{X}$ independently with probability

$$
1-e^{-\frac{w_{x} w_{y}}{|x-y|^{\delta d}}} .
$$

Percolation

- Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights $W_{x}, x \in \mathscr{X}$. We connect two points $x, y \in \mathscr{X}$ independently with probability

$$
1-e^{-\frac{w_{x} w_{y}}{\left.|x-y|\right|^{d x}}} .
$$

We assume that $\delta>1, \eta>0$ and the weights W_{x} are heavy-tailed with

$$
\mathbb{P}\left(W_{x}>r\right)=c r^{-\eta} \text { for } r>1
$$

Percolation

- Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights $W_{x}, x \in \mathscr{X}$. We connect two points $x, y \in \mathscr{X}$ independently with probability

$$
1-e^{-\frac{w_{x} w_{y}}{\left.|x-y|\right|^{\prime d}}} .
$$

We assume that $\delta>1, \eta>0$ and the weights W_{x} are heavy-tailed with

$$
\mathbb{P}\left(W_{x}>r\right)=c r^{-\eta} \text { for } r>1 .
$$

Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this model there is a percolation phase transition if $\delta \eta>2$ but if $\delta \eta<2$ we have $\beta_{c}=0$ i.e. there is no subcritical phase.

Percolation

- Scale-free percolation: In the scale-free percolation model of Deijfen, van der Hofstad, Hooghiemstra (2018) vertices have independent weights $W_{x}, x \in \mathscr{X}$. We connect two points $x, y \in \mathscr{X}$ independently with probability

$$
1-e^{-\frac{W_{x} W_{y}}{\left.|x-y|\right|^{\delta d}}}
$$

We assume that $\delta>1, \eta>0$ and the weights W_{x} are heavy-tailed with

$$
\mathbb{P}\left(W_{x}>r\right)=c r^{-\eta} \text { for } r>1 .
$$

Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this model there is a percolation phase transition if $\delta \eta>2$ but if $\delta \eta<2$ we have $\beta_{c}=0$ i.e. there is no subcritical phase.

This is analogous to the behaviour of classical (non-spatial) scale-free networks. The behaviour depends only on the variance of the degree distribution and not on the geometry of the underlying space.

Our model: the weight-dependent random connection model
The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

$$
\mathbb{R}^{d} \times(0,1] \text { for } d \geq 2
$$

We think of $\mathbf{x}=(x, t)$ as a vertex at position x with mark t.

Our model: the weight-dependent random connection model
The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

$$
\mathbb{R}^{d} \times(0,1] \text { for } d \geq 2
$$

We think of $\mathbf{x}=(x, t)$ as a vertex at position x with mark t.
Vertices \mathbf{x} and \mathbf{y} are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

$$
\varphi(\mathbf{x}, \mathbf{y})=\varphi((x, t),(y, s))=\rho\left(g(t, s)|x-y|^{d}\right) \quad \text { for }
$$

Our model: the weight-dependent random connection model
The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

$$
\mathbb{R}^{d} \times(0,1] \text { for } d \geq 2
$$

We think of $\mathbf{x}=(x, t)$ as a vertex at position x with mark t.
Vertices \mathbf{x} and \mathbf{y} are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

$$
\varphi(\mathbf{x}, \mathbf{y})=\varphi((x, t),(y, s))=\rho\left(g(t, s)|x-y|^{d}\right) \quad \text { for }
$$

- a non-increasing, integrable profile function $\rho: \mathbb{R}_{+} \rightarrow[0,1]$ and

Our model: the weight-dependent random connection model
The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

$$
\mathbb{R}^{d} \times(0,1] \text { for } d \geq 2
$$

We think of $\mathbf{x}=(x, t)$ as a vertex at position x with mark t.
Vertices \mathbf{x} and \mathbf{y} are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

$$
\varphi(\mathbf{x}, \mathbf{y})=\varphi((x, t),(y, s))=\rho\left(g(t, s)|x-y|^{d}\right) \quad \text { for }
$$

- a non-increasing, integrable profile function $\rho: \mathbb{R}_{+} \rightarrow[0,1]$ and
- a non-decreasing, symmetric kernel $g:(0,1] \times(0,1] \rightarrow \mathbb{R}_{+}$.

Our model: the weight-dependent random connection model
The vertex set of $\mathscr{G}(\beta)$ is a Poisson point process of unit intensity on

$$
\mathbb{R}^{d} \times(0,1] \text { for } d \geq 2
$$

We think of $\mathbf{x}=(x, t)$ as a vertex at position x with mark t.
Vertices \mathbf{x} and \mathbf{y} are connected by an edge in $\mathscr{G}(\beta)$ independently with probability

$$
\varphi(\mathbf{x}, \mathbf{y})=\varphi((x, t),(y, s))=\rho\left(g(t, s)|x-y|^{d}\right) \quad \text { for }
$$

- a non-increasing, integrable profile function $\rho: \mathbb{R}_{+} \rightarrow[0,1]$ and
- a non-decreasing, symmetric kernel $g:(0,1] \times(0,1] \rightarrow \mathbb{R}_{+}$.

We assume (without loss of generality) that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \rho\left(|x|^{d}\right) d x=1 \tag{1}
\end{equation*}
$$

Then, the degree distribution only depends on the kernel g and not on ρ.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.
- The min kernel $g^{\min }(s, t)=\beta^{-1}(s \wedge t)^{\gamma}$.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.
- The min kernel $g^{\min }(s, t)=\beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max }(s, t)=\beta^{-1}(s \vee t)^{\gamma+1}$.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.
- The min kernel $g^{\min }(s, t)=\beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max }(s, t)=\beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{\mathrm{pa}}(s, t)=\beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.
- The min kernel $g^{\min }(s, t)=\beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max }(s, t)=\beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{\mathrm{pa}}(s, t)=\beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.
- The product kernel $g^{\text {prod }}(s, t)=\beta^{-1} s^{\gamma} t^{\gamma}$.

Interesting kernels
Recall

$$
\varphi(\mathbf{x}, \mathbf{y})=\rho\left(g(t, s)|x-y|^{d}\right)
$$

Our kernels g are defined in terms of a parameter $\gamma \in(0,1)$ and have heavy tailed degree distributions with exponent

$$
\tau=1+\frac{1}{\gamma}
$$

- The sum kernel $g^{\text {sum }}(s, t)=\beta^{-1}\left(s^{-\gamma / d}+t^{-\gamma / d}\right)^{-d}$.
- The min kernel $g^{\text {min }}(s, t)=\beta^{-1}(s \wedge t)^{\gamma}$.
- The max kernel $g^{\max }(s, t)=\beta^{-1}(s \vee t)^{\gamma+1}$.
- The preferential attachment kernel $g^{\mathrm{pa}}(s, t)=\beta^{-1}(s \vee t)^{1-\gamma}(s \wedge t)^{\gamma}$.
- The product kernel $g^{\text {prod }}(s, t)=\beta^{-1} s^{\gamma} t^{\gamma}$.

To study the influence of long-range effects on the percolation problem, we focus primarily on regulary varying profile functions with index $\delta>1$, that is

$$
\lim _{r \uparrow \infty} \frac{\rho(c r)}{\rho(r)}=c^{-\delta} \quad \text { for all } c \geq 1
$$

Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment kernel, sum kernel or min kernel and parameters $\delta>1$ and $0<\gamma<1$, we have (0) if $\gamma<\frac{\delta}{\delta+1}$, then $\beta_{c}>0$.
(c) If $\gamma>\frac{\delta}{\delta+1}$, then $\beta_{c}=0$.

Our result

Theorem 1

For the weight-dependent random connection model with preferential attachment kernel, sum kernel or min kernel and parameters $\delta>1$ and $0<\gamma<1$, we have
(0) if $\gamma<\frac{\delta}{\delta+1}$, then $\beta_{c}>0$.
(c) If $\gamma>\frac{\delta}{\delta+1}$, then $\beta_{c}=0$.

Theorem 2

For the product kernel we have
(0) if $\gamma \leq \frac{1}{2}$, then $\beta_{c}>0$.
(0) if $\gamma>\frac{1}{2}$, then $\beta_{c}=0$.

For the max kernel we always have $\beta_{c}=0$ (Yukich (2006)).

Spatial preferential attachment
We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

Spatial preferential attachment

We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

- The graph \mathscr{G}_{0} has neither vertices nor edges.

Spatial preferential attachment

We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

- The graph \mathscr{G}_{0} has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on \mathbb{T}^{d}.

Spatial preferential attachment

We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

- The graph \mathscr{G}_{0} has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on \mathbb{T}^{d}.
- Given the graph \mathscr{G}_{t-}, a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$
\rho\left(\frac{t d(x, y)^{d}}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right) .
$$

Spatial preferential attachment

We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

- The graph \mathscr{G}_{0} has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on \mathbb{T}^{d}.
- Given the graph \mathscr{G}_{t-}, a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$
\rho\left(\frac{t d(x, y)^{d}}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right) .
$$

$\left(\mathscr{G}_{t}\right)_{t \geq 0}$ has a giant component if the largest connected component of \mathscr{G}_{t} is of asymptotically linear size, it is robust if the percolated sequence $\left(\mathscr{G}_{t}^{P}\right)_{t \geq 0}$ has a giant component for every retention parameter $p>0$.

Spatial preferential attachment

We build a network, or graph process, $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ on the torus \mathbb{T}^{d} as follows:

- The graph \mathscr{G}_{0} has neither vertices nor edges.
- Vertices arrive successively after exponential waiting times and are placed uniformly on \mathbb{T}^{d}.
- Given the graph \mathscr{G}_{t-}, a vertex born at time t and placed at x is connected by an edge to each existing vertex at y born at time s independently with conditional probability

$$
\rho\left(\frac{t d(x, y)^{d}}{\beta\left(\frac{t}{s}\right)^{\gamma}}\right) \text {. }
$$

$\left(\mathscr{G}_{t}\right)_{t \geq 0}$ has a giant component if the largest connected component of \mathscr{G}_{t} is of asymptotically linear size, it is robust if the percolated sequence $\left(\mathscr{G}_{t}^{P}\right)_{t \geq 0}$ has a giant component for every retention parameter $p>0$.

Theorem 3
The network $\left(\mathscr{G}_{t}\right)_{t \geq 0}$ is robust if $\gamma>\frac{\delta}{\delta+1}$, but non-robust if $\gamma<\frac{\delta}{\delta+1}$.

Proof of Theorem 1 (b)

- as $g^{\text {pa }}, g^{\text {sum }} \leq g^{\text {min }}$ we can work with $g^{\text {min }}$.

Proof of Theorem 1 (b)

- as $g^{\text {pa }}, g^{\text {sum }} \leq g^{\text {min }}$ we can work with $g^{\text {min }}$.
- As $\gamma>\frac{\delta}{\delta+1}$ we can find

$$
\alpha_{1} \in\left(1, \frac{\gamma}{\delta(1-\gamma)}\right) \text { and then } \alpha_{2} \in\left(\alpha_{1}, \frac{\gamma}{\delta}\left(1+\alpha_{1} \delta\right)\right) .
$$

Proof of Theorem 1 (b)

- as $g^{\text {pa }}, g^{\text {sum }} \leq g^{\text {min }}$ we can work with $g^{\text {min }}$.
- As $\gamma>\frac{\delta}{\delta+1}$ we can find

$$
\alpha_{1} \in\left(1, \frac{\gamma}{\delta(1-\gamma)}\right) \text { and then } \alpha_{2} \in\left(\alpha_{1}, \frac{\gamma}{\delta}\left(1+\alpha_{1} \delta\right)\right) .
$$

- As $s \downarrow 0$ the probability that for a fixed vertex $\left(x_{0}, s_{0}\right)$ with $s_{0}<s$ there exists an infinite sequence of vertices

$$
\left(x_{0}, s_{0}\right),\left(x_{1}, s_{1}\right),\left(x_{2}, s_{2}\right), \ldots
$$

such that

- $s_{k+1}<s_{k}^{\alpha_{1}}$ and $\left|x_{k+1}-x_{k}\right|^{d}<\frac{\beta}{2} s_{k}^{-\alpha_{2}}$, and
- $\left(x_{k}, s_{k}\right)$ is connected to $\left(x_{k+1}, s_{k+1}\right)$ by a path of length two;
converges to one.

Proof of Theorem 1 (a)

Proof of Theorem 1 (a)

- as $2 g^{\text {sum }} \geq g^{\text {min }} \geq g^{\text {pa }}$ we can work with $g^{\text {pa }}$.

Proof of Theorem 1 (a)

- as $2 g^{\text {sum }} \geq g^{\text {min }} \geq g^{\text {pa }}$ we can work with $g^{\text {pa }}$.
- only if $\gamma<\frac{1}{2}$ we can use the first moment bound
$\mathbb{E}[\sharp$ shortcut-free paths of length n starting in 0$] \leq(C \beta)^{n}$.

Proof of Theorem 1 (a)

- as $2 g^{\text {sum }} \geq g^{\text {min }} \geq g^{\text {pa }}$ we can work with $g^{\text {pa }}$.
- only if $\gamma<\frac{1}{2}$ we can use the first moment bound
$\mathbb{E}[\sharp$ shortcut-free paths of length n starting in 0$] \leq(C \beta)^{n}$.
- If $\frac{1}{2} \leq \gamma<\frac{\delta}{\delta+1}$ we look at a path of length n and identify its skeleton.

Proof of Theorem 1 (a)

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising $k-1$ vertices with larger marks, then

$$
\mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\} \leq(C \beta)^{k-1} \mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \sim \mathbf{y}\} .
$$

Proof of Theorem 1 (a)

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising $k-1$ vertices with larger marks, then

$$
\mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\} \leq(C \beta)^{k-1} \mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \sim \mathbf{y}\} .
$$

- The ways in which the $k-1$ vertices are inserted is encoded by a binary tree.

Proof of Theorem 1 (a)

If $\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\}$ is the event that \mathbf{x} and \mathbf{y} are connected by a shortcut-free path comprising $k-1$ vertices with larger marks, then

$$
\mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \stackrel{k}{\longleftrightarrow} \mathbf{y}\} \leq(C \beta)^{k-1} \mathbb{P}_{\mathbf{x}, \mathbf{y}}\{\mathbf{x} \sim \mathbf{y}\} .
$$

- The ways in which the $k-1$ vertices are inserted is encoded by a binary tree.

- Add local maxima successively according to the tree using

$$
\int_{t_{1}}^{1} d t_{2} \int_{\mathbb{R}^{d}} d y_{2} \varphi\left(\left(y_{0}, t_{0}\right),\left(y_{2}, t_{2}\right)\right) \varphi\left(\left(y_{2}, t_{2}\right),\left(y_{1}, t_{1}\right)\right) \leq(C \beta) \mathbb{P}_{\mathbf{y}_{0}, \mathbf{y}_{1}}\left\{\mathbf{y}_{0} \sim \mathbf{y}_{1}\right\} .
$$

Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons. We only count paths that are free of shortcuts.

Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons. We only count paths that are free of shortcuts.

- A skeleton $S=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ of length m is regular if its lowest mark is larger than 2^{-m}. A path is regular if its skeleton is regular.

Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons. We only count paths that are free of shortcuts.

- A skeleton $S=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ of length m is regular if its lowest mark is larger than 2^{-m}. A path is regular if its skeleton is regular.
- An infinite path ($\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$) is regular if there exists N such that all paths $\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{n}\right), n \geq N$ are regular.

We now use a truncated first moment method on the skeletons. We only count paths that are free of shortcuts.

- A skeleton $S=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ of length m is regular if its lowest mark is larger than 2^{-m}. A path is regular if its skeleton is regular.
- An infinite path ($\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$) is regular if there exists N such that all paths $\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{n}\right), n \geq N$ are regular.
- By stopping a path when it goes below the threshold and using our tool, we show that if β is below some positive constant depending only on ρ, γ and d, almost surely every infinite path is regular.

Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons.
We only count paths that are free of shortcuts.

- A skeleton $S=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ of length m is regular if its lowest mark is larger than 2^{-m}. A path is regular if its skeleton is regular.
- An infinite path ($\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$) is regular if there exists N such that all paths $\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{n}\right), n \geq N$ are regular.
- By stopping a path when it goes below the threshold and using our tool, we show that if β is below some positive constant depending only on ρ, γ and d, almost surely every infinite path is regular.
- The probability that there exists a regular path of length n can be bounded by $(C \beta)^{n}$ combining our tool with the first moment method. Hence for $\beta<\frac{1}{C}$ there are no infinite regular paths.

Further interesting topics

Further interesting topics

- Find typical distances of vertices in the infinite cluster of $\mathscr{G}(\beta)$. (Ongoing project with Gracar, Grauer, M)

Further interesting topics

- Find typical distances of vertices in the infinite cluster of $\mathscr{G}(\beta)$. (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in $\mathscr{G}(\beta)$, are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)

Further interesting topics

- Find typical distances of vertices in the infinite cluster of $\mathscr{G}(\beta)$. (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in $\mathscr{G}(\beta)$, are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)
- How does clustering affect the spread of infections on weight-dependent random connection graphs?
(Newly funded project with Amitai Linker)

Further interesting topics

- Find typical distances of vertices in the infinite cluster of $\mathscr{G}(\beta)$. (Ongoing project with Gracar, Grauer, M)
- Random walks on the infinite cluster in $\mathscr{G}(\beta)$, are they recurrent or transient? (Ongoing project by Gracar, Heydenreich, Mönch, M)
- How does clustering affect the spread of infections on weight-dependent random connection graphs?
(Newly funded project with Amitai Linker)
- Study the weight-dependent random connection graphs with moving points, resp. time varying networks.
(Newly funded project with Amitai Linker)

Thank you very much for your attention!

