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Köln

joint work with

Peter Gracar, Lukas Lüchtrath



Percolation

Suppose G is a random graph with infinite vertex set and finite vertex degrees.
Percolation is the event that there is an infinite connected component in G . Our
interest is in families of graphs G (β) where edge densities increase in β. Does
percolation become impossible when β is decreased and possible if it is increased?

The classical example is the lattice Zd with d ≥ 2 , in which edges are removed
independently with probability p = 1− β. Broadbent and Hammersley (1957)
introduced this model and showed that there is a percolation phase transition,
i.e. there exists a critical edge density

0 < βc < 1,

such that

G (β) does not percolate almost surely if β < βc (the subcritical phase),

G (β) percolates almost surely if β > βc (the supercritical phase).

Problem: When does this hold for graph families G (β) with long-range
dependencies and heavy-tailed degree distribution?
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Percolation

Suppose G is a random graph with infinite vertex set and finite vertex degrees.
Percolation is the event that there is an infinite connected component in G . Our
interest is in families of graphs G (β) where edge densities increase in β.

The classical example is the lattice Zd with d ≥ 2 , in which edges are removed
independently with probability p = 1− β. Broadbent and Hammersley (1957)
introduced this model and showed that there is a percolation phase transition,
i.e. there exists a critical edge density

0 < βc < 1,

such that

G (β) does not percolate almost surely if β < βc (the subcritical phase),

G (β) percolates almost surely if β > βc (the supercritical phase).

Problem: When does this hold for graph families G (β) with long-range
dependencies and heavy-tailed degree distribution?

Peter Mörters (Köln) 2 / 14



Percolation
For a broader range of examples we assume that the vertices of the graph are
given as a standard Poisson process X in Rd , d ≥ 2.

Gilbert disc model: Suppose β > 0. Connect two vertices x , y ∈X if
B(x , β) ∩ B(y , β) 6= ∅.

Gilbert (1961) showed that there is a critical 0 < βc <∞ such that the
graph percolates if β > βc but does not percolate for β < βc .

Poisson-Boolean model: Take (Rx : x ∈X ) positive iid random variables
with E[Rd

x ] <∞. Connect x , y ∈X if
B(x , βRx ) ∩ B(y , βRy ) 6= ∅.

Then Gouéré (2008) showed that there is a percolation phase transition. This
model includes graphs with heavy-tailed degree distribution.
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Percolation

Long-range percolation: Connect x , y ∈X independently with probability

1− exp(−β|x − y |−δd )

for some parameter δ > 1. Then Newman and Schulman (1986) showed that
there is also percolation phase transition. Penrose (1991) extended this to
the random connection model when the connection probability is a decreasing
function of the vertex distance.

Summary: Neither the powerful vertices of graphs with heavy-tailed degree
distribution, nor the long edges in long-range percolation models can remove
the subcritical phase and ensure βc = 0. Is this possible at all?
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Percolation

Scale-free percolation: In the scale-free percolation model of Deijfen,
van der Hofstad, Hooghiemstra (2018) vertices have independent weights
Wx , x ∈X . We connect two points x , y ∈X independently with probability

1− e−
Wx Wy
|x−y|δd .

We assume that δ > 1, η > 0 and the weights Wx are heavy-tailed with

P(Wx > r) = cr−η for r > 1.

Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this
model there is a percolation phase transition if δη > 2 but if δη < 2 we have
βc = 0 i.e. there is no subcritical phase.

This is analogous to the behaviour of classical (non-spatial) scale-free
networks. The behaviour depends only on the variance of the degree
distribution and not on the geometry of the underlying space.

Peter Mörters (Köln) 5 / 14
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Deijfen et al (2018) and Deprez and Wüthrich (2019) have shown that in this
model there is a percolation phase transition if δη > 2 but if δη < 2 we have
βc = 0 i.e. there is no subcritical phase.

This is analogous to the behaviour of classical (non-spatial) scale-free
networks. The behaviour depends only on the variance of the degree
distribution and not on the geometry of the underlying space.

Peter Mörters (Köln) 5 / 14
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Our model: the weight-dependent random connection model

The vertex set of G (β) is a Poisson point process of unit intensity on

Rd × (0, 1] for d ≥ 2.

We think of x = (x , t) as a vertex at position x with mark t.

Vertices x and y are connected by an edge in G (β) independently with probability

ϕ(x, y) = ϕ((x , t), (y , s)) = ρ(g(t, s)|x − y |d ) for

a non-increasing, integrable profile function ρ : R+ → [0, 1] and

a non-decreasing, symmetric kernel g : (0, 1]× (0, 1]→ R+.

We assume (without loss of generality) that∫
Rd

ρ(|x |d ) dx = 1. (1)

Then, the degree distribution only depends on the kernel g and not on ρ.
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Our model: the weight-dependent random connection model

The vertex set of G (β) is a Poisson point process of unit intensity on

Rd × (0, 1] for d ≥ 2.

We think of x = (x , t) as a vertex at position x with mark t.

Vertices x and y are connected by an edge in G (β) independently with probability

ϕ(x, y) = ϕ((x , t), (y , s)) = ρ(g(t, s)|x − y |d ) for

a non-increasing, integrable profile function ρ : R+ → [0, 1] and

a non-decreasing, symmetric kernel g : (0, 1]× (0, 1]→ R+.

We assume (without loss of generality) that∫
Rd

ρ(|x |d ) dx = 1. (1)

Then, the degree distribution only depends on the kernel g and not on ρ.

Peter Mörters (Köln) 6 / 14
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Interesting kernels
Recall

ϕ(x, y) = ρ(g(t, s)|x − y |d ).

Our kernels g are defined in terms of a parameter γ ∈ (0, 1) and have heavy tailed
degree distributions with exponent

τ = 1 + 1
γ .

The sum kernel g sum(s, t) = β−1(s−γ/d + t−γ/d )−d .

The min kernel gmin(s, t) = β−1(s ∧ t)γ .

The max kernel gmax(s, t) = β−1(s ∨ t)γ+1.

The preferential attachment kernel gpa(s, t) = β−1(s ∨ t)1−γ(s ∧ t)γ .

The product kernel gprod(s, t) = β−1sγtγ .

To study the influence of long-range effects on the percolation problem, we focus
primarily on regulary varying profile functions with index δ > 1, that is

lim
r↑∞

ρ(cr)
ρ(r) = c−δ for all c ≥ 1.
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Interesting kernels
Recall

ϕ(x, y) = ρ(g(t, s)|x − y |d ).

Our kernels g are defined in terms of a parameter γ ∈ (0, 1) and have heavy tailed
degree distributions with exponent

τ = 1 + 1
γ .

The sum kernel g sum(s, t) = β−1(s−γ/d + t−γ/d )−d .

The min kernel gmin(s, t) = β−1(s ∧ t)γ .

The max kernel gmax(s, t) = β−1(s ∨ t)γ+1.

The preferential attachment kernel gpa(s, t) = β−1(s ∨ t)1−γ(s ∧ t)γ .

The product kernel gprod(s, t) = β−1sγtγ .

To study the influence of long-range effects on the percolation problem, we focus
primarily on regulary varying profile functions with index δ > 1, that is

lim
r↑∞

ρ(cr)
ρ(r) = c−δ for all c ≥ 1.

Peter Mörters (Köln) 7 / 14
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Interesting kernels
Recall

ϕ(x, y) = ρ(g(t, s)|x − y |d ).

Our kernels g are defined in terms of a parameter γ ∈ (0, 1) and have heavy tailed
degree distributions with exponent

τ = 1 + 1
γ .

The sum kernel g sum(s, t) = β−1(s−γ/d + t−γ/d )−d .

The min kernel gmin(s, t) = β−1(s ∧ t)γ .

The max kernel gmax(s, t) = β−1(s ∨ t)γ+1.

The preferential attachment kernel gpa(s, t) = β−1(s ∨ t)1−γ(s ∧ t)γ .

The product kernel gprod(s, t) = β−1sγtγ .

To study the influence of long-range effects on the percolation problem, we focus
primarily on regulary varying profile functions with index δ > 1, that is

lim
r↑∞

ρ(cr)
ρ(r) = c−δ for all c ≥ 1.

Peter Mörters (Köln) 7 / 14
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Our result

Theorem 1
For the weight-dependent random connection model with preferential attachment
kernel, sum kernel or min kernel and parameters δ > 1 and 0 < γ < 1, we have

(a) if γ < δ
δ+1 , then βc > 0.

(b) If γ > δ
δ+1 , then βc = 0.

Theorem 2
For the product kernel we have

(c) if γ ≤ 1
2 , then βc > 0.

(c) if γ > 1
2 , then βc = 0.

For the max kernel we always have βc = 0 (Yukich (2006)).
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Spatial preferential attachment

We build a network, or graph process, (Gt)t≥0 on the torus Td as follows:

The graph G0 has neither vertices nor edges.

Vertices arrive successively after exponential waiting times and are placed
uniformly on Td .

Given the graph Gt−, a vertex born at time t and placed at x is connected by
an edge to each existing vertex at y born at time s independently with
conditional probability

ρ

(
t d(x ,y)d

β( t
s )γ

)
.

(Gt)t≥0 has a giant component if the largest connected component of Gt is of
asymptotically linear size, it is robust if the percolated sequence (G p

t )t≥0 has a
giant component for every retention parameter p > 0.

Theorem 3
The network (Gt)t≥0 is robust if γ > δ

δ+1 , but non-robust if γ < δ
δ+1 .
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Spatial preferential attachment

We build a network, or graph process, (Gt)t≥0 on the torus Td as follows:

The graph G0 has neither vertices nor edges.

Vertices arrive successively after exponential waiting times and are placed
uniformly on Td .

Given the graph Gt−, a vertex born at time t and placed at x is connected by
an edge to each existing vertex at y born at time s independently with
conditional probability

ρ

(
t d(x ,y)d

β( t
s )γ

)
.

(Gt)t≥0 has a giant component if the largest connected component of Gt is of
asymptotically linear size, it is robust if the percolated sequence (G p

t )t≥0 has a
giant component for every retention parameter p > 0.

Theorem 3
The network (Gt)t≥0 is robust if γ > δ

δ+1 , but non-robust if γ < δ
δ+1 .

Peter Mörters (Köln) 9 / 14
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conditional probability

ρ

(
t d(x ,y)d

β( t
s )γ

)
.

(Gt)t≥0 has a giant component if the largest connected component of Gt is of
asymptotically linear size, it is robust if the percolated sequence (G p

t )t≥0 has a
giant component for every retention parameter p > 0.

Theorem 3
The network (Gt)t≥0 is robust if γ > δ

δ+1 , but non-robust if γ < δ
δ+1 .
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Proof of Theorem 1 (b)

as gpa, g sum ≤ gmin we can work with gmin.

As γ > δ
δ+1 we can find

α1 ∈ (1, γ
δ(1−γ) ) and then α2 ∈ (α1,

γ
δ (1 + α1δ)).

As s ↓ 0 the probability that for a fixed vertex (x0, s0) with s0 < s there exists
an infinite sequence of vertices

(x0, s0), (x1, s1), (x2, s2), . . .

such that
I sk+1 < sα1

k and |xk+1 − xk |d < β
2 s−α2

k , and
I (xk , sk) is connected to (xk+1, sk+1) by a path of length two;

converges to one.
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Proof of Theorem 1 (a)

as 2g sum ≥ gmin ≥ gpa we can work with gpa.

only if γ < 1
2 we can use the first moment bound

E[]shortcut-free paths of length n starting in 0] ≤ (Cβ)n.

If 1
2 ≤ γ <

δ
δ+1 we look at a path of length n and identify its skeleton.

1
t

2
t

3
t

4
t
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Proof of Theorem 1 (a)

If {x k←→ y} is the event that x and y are connected by a shortcut-free path
comprising k − 1 vertices with larger marks, then

Px,y{x
k←→ y} ≤ (Cβ)k−1Px,y{x ∼ y}.

The ways in which the k − 1 vertices are inserted is encoded by a binary tree.
t

y1

y3

y2

y0

y4

y6

y5

y2

y3

y4

y6

y5

Add local maxima successively according to the tree using∫ 1

t1

dt2

∫
Rd

dy2 ϕ((y0, t0), (y2, t2))ϕ((y2, t2), (y1, t1)) ≤ (Cβ)Py0,y1{y0 ∼ y1}.
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Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons.
We only count paths that are free of shortcuts.

A skeleton S = (x0, x1, . . . , xm) of length m is regular if its lowest mark is
larger than 2−m. A path is regular if its skeleton is regular.

An infinite path (x0, x1, . . . ) is regular if there exists N such that all paths
(x0, . . . , xn), n ≥ N are regular.

By stopping a path when it goes below the threshold and using our tool, we
show that if β is below some positive constant depending only on ρ, γ and d ,
almost surely every infinite path is regular.

The probability that there exists a regular path of length n can be bounded
by (Cβ)n combining our tool with the first moment method. Hence for
β < 1

C there are no infinite regular paths.
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Proof of Theorem 1 (a)

We now use a truncated first moment method on the skeletons.
We only count paths that are free of shortcuts.

A skeleton S = (x0, x1, . . . , xm) of length m is regular if its lowest mark is
larger than 2−m. A path is regular if its skeleton is regular.

An infinite path (x0, x1, . . . ) is regular if there exists N such that all paths
(x0, . . . , xn), n ≥ N are regular.

By stopping a path when it goes below the threshold and using our tool, we
show that if β is below some positive constant depending only on ρ, γ and d ,
almost surely every infinite path is regular.

The probability that there exists a regular path of length n can be bounded
by (Cβ)n combining our tool with the first moment method. Hence for
β < 1

C there are no infinite regular paths.

Peter Mörters (Köln) 13 / 14
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Further interesting topics

Find typical distances of vertices in the infinite cluster of G (β).
(Ongoing project with Gracar, Grauer, M)

Random walks on the infinite cluster in G (β), are they recurrent or transient?
(Ongoing project by Gracar, Heydenreich, Mönch, M)

How does clustering affect the spread of infections on weight-dependent
random connection graphs?
(Newly funded project with Amitai Linker)

Study the weight-dependent random connection graphs with moving points,
resp. time varying networks.
(Newly funded project with Amitai Linker)

Thank you very much for your attention!
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