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The model
ERRW

Definition (Diaconis,Coppersimth)

Let G = (V ,E ) be a locally-finite, connected, non-directed graph and x0 ∈ V a vertex
of this graph. The edge-reinforced random walk with initial weights (ae)e∈ E is the
process (Xn)n∈N defined by X0 = x0 and:

P (Xn+1 = y |X0, . . . ,Xn) = 1{Xn,y}∈E
a{Xn,y} + Nn({Xn, y})∑

z,{Xn,z}∈E
a{Xn,z} + Nn({Xn, z})

,

where

Nn({x , y}) =
n−1∑
i=0

1{Xi ,Xi+1}={x ,y}.
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The model
Phase transition

Theorem (Pemantle Merkl,Rolles Sabot,Zeng)

For d ∈ {1, 2}, the ERRW is recurrent for any initial weight a.

Theorem (Sabot,Tarrès Angel,Crawford,Kozma Disertori,Sabot,Tarrès)

For any d ≥ 3, there exists ar , at ∈ (0,∞) such that for an initial weight a the ERRW
in Zd is recurrent if a < ar and transient a > at .

Theorem (P)

For any d ≥ 3, there exists ad ∈ (0,∞) such that for an initial weight a the ERRW in
Zd is recurrent if a < ad and transient if a > ad .
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The model
VRJP

Definition (Davis,Volkov)

Let G = (V ,E ) be a locally-finite, connected, non-directed graph and x0 ∈ V a vertex
of this graph. The vertex reinforced jump process with initial weights (We)e∈ E is the
process (Yt)t∈R that starts at x0 and jumps to a neighbour vertex y at a rate

1{Xt ,y}∈EW{Xt ,y}(1 + `y (t)),

where

`y (t) =

t∫
s=0

1Xs=yds.
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The model
The link between ERRW and VRJP

The ERRW and the VRJP have similar behaviours. This is explained by the following
result.

Proposition (Sabot,Tarrès 2013)

The ERRW on a locally finite G = (V ,E ) with initial weights (ae)e∈E is a mixture of
discrete time VRJP where the initial weights (We)e∈E are independent gamma random
variables of parameter ae : We ∼ Γ(ae).
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The model
The environment

Proposition (Disertori,Spencer,Zirnbauer Sabot,Tarrès)

(i) The probability measure µWn on H n
i0

= {u ∈ Rn, ui0 = 0} is defined by the density:

µW ,i0
n (du) :=

(
1
2π

) n−1
2

e−
∑

ui e
− 1

2
∑
i∼j

W{i,j}(e
ui−uj+e

uj−ui−2)√
|HW ,u|n−1du1 . . . dun−1,

where HW ,u(i , i) =
∑
j∼i

W{i ,j}e
ui+uj , HW ,u(i , j) = −W{i ,j}eui+uj and |HW ,u|n−1 is the

determinant of any minor of HW ,u.
(ii) The VRJP on a finite graph (V ,E ) with weigths (We)e∈E is a time-changed random
walk in random reversible environments. The environment is given by conductances
W{x ,y}e

Ux+Uy where the random variable U has a probability distribution given by µW|V |.
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The model
A first link with the GFF

We can see that for small values of u, the density

µWn (du) :=

(
1
2π

) n−1
2

e−
∑

ui e
− 1

2
∑
i∼j

W{i,j}(e
ui−uj+e

uj−ui−2)√
|HW ,u|n−1du1 . . . dun−1,

is similar to that of the GFF (Yx)x∈V where we impose Yi0 = 0:

gW
n (dy) :=

(
1
2π

) n−1
2

e
− 1

2
∑
i∼j

W{i,j}(yi−yj )2√
|HW |n−1dy1 . . . dyn−1,

where HW (i , i) :=
∑
j∼i

W{i ,j} = HW ,0(i , i) and HW (i , j) := −W{i ,j} = HW ,0(i , j).
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The environment
A few results

Proposition
For any weights W and any vertex j we have:

EµWn (du)(e
uj ) = 1.

Proposition

For any choice of W , the law of 1
2
∑
i∼j

W{i ,j}(e
Ui−Uj + eUj−Ui − 2) is a Gamma of

parameter (n − 1)/2.

Similarly for the GFF, the random variable 1
2
∑
i∼j

W{i ,j}(Yi − Yj)
2 is also a Gamma of

parameter (n − 1)/2.
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The model
The β-field

This representation is not always practical so a new one was introduced.

Definition
Let γ be a Gamma random variable of parameters (1/2, 1/2) independent of the rest.
The β-field (βx)x∈V is defined by:

∀x ∈ V , βx :=
∑
y∼x

W{x ,y}e
Uy−Ux + γ1x=i0

The equivalent for the GFF is the vector (Bx)x∈V defined by:

∀x ∈ V ,Bx :=
∑
y∼x

W{x ,y}(Yy − Yx).

This can also be written has B = HWY .
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The model
The β-field

The law of the β-field is characterized by the following density.

Definition (Sabot,Tarrès,Zeng Letac)

Set n ∈ N and non-negative weights (Wi ,j)1≤i ,j≤n. Let η ∈ [0,∞)n be a vector and let
1n ∈ Rn be the vector with only ones. We can define the probability measure νW ,η

n on
Rn by the density:

νW ,η
n (dβ) :=

(
1
2π

) n
2

e−
1
2( t1nHβ1n+ tηH−1

β η−2 t1nη) 1√
Det(Hβ)

1Hβ>0dβ1 . . . dβn,

where Hβ(i , i) = βi , Hβ(i , j) = −W{i ,j} and Hβ > 0 means that Hβ is positive definite.

For the GFF, the vector (Bx)x∈V is a degenerate centered gaussian vector of covariance
matrix HW such that

∑
Bx = 0.

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW



The model
Properties of the β-field

Proposition
The law of the β-field does not depend on the starting point.

Proposition

For any non-negative coefficients (λx)x∈V :

E
(
e
−

∑
x∈V

λxβx
)

= e
−

∑
{x,y}∈E

W{x,y}(
√

1+2λx
√

1+2λy−1) ∏
x∈V

1√
1 + 2λx

.

Proposition

Let V1,V2 be two subset of V such that for any (x , y) ∈ V1 × V2, d(x , y) ≥ 2. The
beta-fields in V1 and V2 are independent.
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The model
Properties of the β-field

Proposition

Let V1 be a subset of V . The marginal law of the β-field on V1 is νW ,η
|V1| for some η.

Proposition
Let V1,V2 be a partition of V . Let We be non-negative weights. Let β be distributed
according to νW|V |, the law of (βx)x∈V1 knowing (βy )y∈V2 is νW+W ′

|V1| where W ′ are
non-negative weights that do not depend on (βx)x∈V1 .
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The model
Equivalent for the GFF

Let V1,V2 be a partition of V . Let We be non-negative weights. Let B be a centered
gaussian vector of covariance matrix HW with:(

H1
W −W 12

−W 21 H2
W

)
.

Let B1,B2 be the restriction of B to V1 and V2 respectively. Let B1 be defined by :

B1 := B1 + W 12 (H2
W

)−1
B2.

The vectors B1 and B2 are independent and centered. Furthermore, the value of B1
only depends on the GFF on V1.
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Link between β and U

Theorem (Sabot,Tarrès,Zeng)

Set a finite graph G = (V ,E ) and non-negative weights (We)e∈E . Let Hβ be
distributed according to νWn and let Gβ be its inverse. For any i0 ∈ V , the random walk
in random reversible environment given by the random conductances (ωe)e∈E defined
by:

ωx ,y := Wx ,yGβ(i0, x)Gβ(i0, y)

has the same law as a time-change of the VRJP with initial weights (We)e∈E and
starting point i0.

This allows us to get back U from β.

Proposition

For any i0, x ∈ V , E
(

Gβ(i0,x)
Gβ(i0,i0)

)
= 1.
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The martingale ψ
Definition

For an infinite, connected, locally finite graph G = (V ,E ) and initial weights (We)e∈E
we look at the sequence of graphs Gn = (Vn,En) obtained by keeping a finite subset of
G and collapsing all other vertices into one vertex δn. We define ψn(x) :=

Gβ(δn,x)
Gβ(δn,δn)

.
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The martingale ψ
Recurrence

Proposition
For some choice of coupling of the β-fields on a sequence of graphs Gn that is
increasing, for any x ∈ V , for n large enough:

E (ψn+1(x)|ψn(x)) = ψn(x).

Since ψn(x) ≥ 0, there exists a random variable ψ∞(x) such that a.s

ψn(x)→ ψ∞(x).

Theorem (Sabot,Zeng)

If ψ∞(0) = 0 the VRJP starting at 0 is recurrent, otherwise it is transient.
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Monotonicity and phase transition

Theorem ((P))

Let G = (V ,E ) be a finite graph and (W−
e )e∈E and (W+

e )e∈E two families of weights
such that for all e ∈ E , 0 <W−

e ≤W+
e . For any x ∈ V , there exists (β−i )i∈V and

(β+i )i∈V distributed according to νW
−

|V | and νW
+

|V | respectively such that:

∀y ∈ V , E
(
Gβ−(x , y)

Gβ−(x , x)
|β+
)

=
Gβ+(x , y)

Gβ+(x , x)
.

This is the same as saying that for any convex function f :

EW−

(
f

(
Gβ(x , y)

Gβ(x , x)

))
≥ EW+

(
f

(
Gβ(x , y)

Gβ(x , x)

))
.
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The proof
Reduction to 2 points

The idea is to look at what happens when we decrease a weight W{x ,y}.
We look at the following partition of V : V1 := {x , y} and V2 := V \{x , y}.

Proposition
The law of the β-field on V2 does not depend on the weight W{x ,y}.

This means that we can condition on the value of the β-field on V2 and look at what
the impact of W{x ,y} is on V1.
For the GFF, the covariance matrix of B is given by HW ,0 with HW ,0(i , i) =

∑
j∼i

W{i ,j}

and HW ,u(i , j) = −W{i ,j}. So the law of B on V2 does not depend on W{x ,y}.
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The proof
What happens for 2 points

We will look at the simple case when the graph has only two points i0, x joined by an
edge of weight w . In the general case the starting point is a mixture of the two points.

1
2π

e−
∑

ux e−
1
2w(eux+e−ux−2)√weuxdux .

The law of K := w
2 (eUx + e−Ux − 2) is a gamma of parameters (1/2, 1).

Knowing K , the expectation of eUx is 1.
Knowing K , the smaller w is, the further away from 1 the random variable Ux is.

For a gaussian Y of variance σ2, the equivalent of k is the random variable 1
2σ2Y

2

which is also a gamma of parameters (1/2, 1). For the coupling of two centered
gaussians Y+ and Y− of variances σ2

+ and σ2
−, this would be the same has sending Y−

onto σ+
σ−

Y− and − σ+
σ−

Y−.
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The proof
What happens for 2 points

1 2 3 4 5
0

1

2

3

4

5

w

e
U
x

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW



A few other consequences

Theorem (P)

If the simple walk on a graph (V ,E ) with conductances (We)e∈E is recurrent then so is
the ERRW and the VRJP with initial weights (We)e∈E .

Theorem (Sabot,Zeng)

On a graph (V ,E ) the ERRW and the VRJP with initial weights (We)e∈E are recurrent
with probability 0 or 1 (almost every environment are recurrent or almost every
environment are transient) if the graph and the weigths are invariant by translation.

Theorem (P)

On a graph (V ,E ) the ERRW and the VRJP with initial weights (We)e∈E are recurrent
with probability 0 or 1.
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Recurrence on recurrent graphs
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