Monotonicity and phase transition for the VRJP and the ERRW

Rémy Poudevigne

Université Lyon 1

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

イロト イポト イヨト イヨト

Definition (Diaconis, Coppersimth)

Let $\mathscr{G} = (V, E)$ be a locally-finite, connected, non-directed graph and $x_0 \in V$ a vertex of this graph. The edge-reinforced random walk with initial weights $(a_e)_e \in E$ is the process $(X_n)_{n \in \mathbb{N}}$ defined by $X_0 = x_0$ and:

$$\mathbb{P}(X_{n+1} = y | X_0, \dots, X_n) = \mathbb{1}_{\{X_n, y\} \in E} \frac{a_{\{X_n, y\}} + N_n(\{X_n, y\})}{\sum_{z, \{X_n, z\} \in E} a_{\{X_n, z\}} + N_n(\{X_n, z\})}$$

where

$$N_n(\{x,y\}) = \sum_{i=0}^{n-1} \mathbb{1}_{\{X_i, X_{i+1}\} = \{x,y\}}.$$

э

Theorem (Pemantle Merkl,Rolles Sabot,Zeng)

For $d \in \{1,2\}$, the ERRW is recurrent for any initial weight a.

Theorem (Sabot, Tarrès Angel, Crawford, Kozma Disertori, Sabot, Tarrès)

For any $d \ge 3$, there exists $a_r, a_t \in (0, \infty)$ such that for an initial weight a the ERRW in Z^d is recurrent if $a < a_r$ and transient $a > a_t$.

Theorem (P)

For any $d \ge 3$, there exists $a_d \in (0, \infty)$ such that for an initial weight a the ERRW in Z^d is recurrent if $a < a_d$ and transient if $a > a_d$.

-

Definition (Davis, Volkov)

Let $\mathscr{G} = (V, E)$ be a locally-finite, connected, non-directed graph and $x_0 \in V$ a vertex of this graph. The vertex reinforced jump process with initial weights $(W_e)_e \in E$ is the process $(Y_t)_{t \in \mathbb{R}}$ that starts at x_0 and jumps to a neighbour vertex y at a rate

$$1_{\{X_t,y\}\in E}W_{\{X_t,y\}}(1+\ell_y(t)),$$

where

$$\ell_y(t) = \int\limits_{s=0}^t 1_{X_s=y} \mathrm{d}s.$$

-

The ERRW and the VRJP have similar behaviours. This is explained by the following result.

Proposition (Sabot, Tarrès 2013)

The ERRW on a locally finite $\mathscr{G} = (V, E)$ with initial weights $(a_e)_{e \in E}$ is a mixture of discrete time VRJP where the initial weights $(W_e)_{e \in E}$ are independent gamma random variables of parameter a_e : $W_e \sim \Gamma(a_e)$.

(日) (四) (日) (日) (日)

Proposition (Disertori, Spencer, Zirnbauer Sabot, Tarrès)

(i) The probability measure μ_n^W on $\mathscr{H}_{i_0}^n = \{u \in \mathbf{R}^n, u_{i_0} = 0\}$ is defined by the density:

$$\mu_n^{W,i_0}(\mathrm{d} u) := \left(\frac{1}{2\pi}\right)^{\frac{n-1}{2}} e^{-\sum u_i} e^{-\frac{1}{2}\sum_{i\sim j} W_{\{i,j\}}(e^{u_i-u_j}+e^{u_j-u_i}-2)} \sqrt{|H_{W,u}|_{n-1}} \mathrm{d} u_1 \ldots \mathrm{d} u_{n-1},$$

where $H_{W,u}(i,i) = \sum_{j \sim i} W_{\{i,j\}} e^{u_i + u_j}$, $H_{W,u}(i,j) = -W_{\{i,j\}} e^{u_i + u_j}$ and $|H_{W,u}|_{n-1}$ is the determinant of any minor of $H_{W,u}$.

(ii) The VRJP on a finite graph (V, E) with weigths $(W_e)_{e \in E}$ is a time-changed random walk in random reversible environments. The environment is given by conductances $W_{\{x,y\}}e^{U_x+U_y}$ where the random variable U has a probability distribution given by $\mu_{|V|}^W$.

We can see that for small values of u, the density

$$\mu_n^W(\mathrm{d} u) := \left(\frac{1}{2\pi}\right)^{\frac{n-1}{2}} e^{-\sum u_i} e^{-\frac{1}{2}\sum_{i\sim j} W_{\{i,j\}}(e^{u_i-u_j}+e^{u_j-u_i}-2)} \sqrt{|H_{W,u}|_{n-1}} \mathrm{d} u_1 \dots \mathrm{d} u_{n-1},$$

is similar to that of the GFF $(Y_x)_{x \in V}$ where we impose $Y_{i_0} = 0$:

$$\mathbf{g}_n^W(\mathrm{d} y) := \left(\frac{1}{2\pi}\right)^{\frac{n-1}{2}} e^{-\frac{1}{2}\sum_{i\sim j} W_{\{i,j\}}(y_i-y_j)^2} \sqrt{|H_W|_{n-1}} \mathrm{d} y_1 \dots \mathrm{d} y_{n-1},$$

where $H_W(i,i) := \sum_{j \sim i} W_{\{i,j\}} = H_{W,0}(i,i)$ and $H_W(i,j) := -W_{\{i,j\}} = H_{W,0}(i,j)$.

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

Proposition

For any weights W and any vertex j we have:

$$\mathbb{E}_{\mu_n^W(\mathrm{d} u)}(e^{u_j})=1.$$

Proposition

For any choice of
$$W$$
, the law of $\frac{1}{2} \sum_{i \sim j} W_{\{i,j\}}(e^{U_i - U_j} + e^{U_j - U_i} - 2)$ is a Gamma of parameter $(n-1)/2$.

Similarly for the GFF, the random variable $\frac{1}{2} \sum_{i \sim j} W_{\{i,j\}} (Y_i - Y_j)^2$ is also a Gamma of parameter (n-1)/2.

イロト 不得下 イヨト イヨト 二日

This representation is not always practical so a new one was introduced.

Definition

Let γ be a Gamma random variable of parameters (1/2, 1/2) independent of the rest. The β -field $(\beta_x)_{x \in V}$ is defined by:

$$orall x \in V, eta_x := \sum_{y \sim x} W_{\{x,y\}} e^{U_y - U_x} + \gamma \mathbf{1}_{x=i_0}$$

The equivalent for the GFF is the vector $(B_x)_{x \in V}$ defined by:

$$\forall x \in V, B_x := \sum_{y \sim x} W_{\{x,y\}}(Y_y - Y_x).$$

This can also be written has $B = H_W Y$.

イロト イポト イヨト イヨト

The law of the β -field is characterized by the following density.

Definition (Sabot, Tarrès, Zeng Letac)

Set $n \in \mathbb{N}$ and non-negative weights $(W_{i,j})_{1 \le i,j \le n}$. Let $\eta \in [0,\infty)^n$ be a vector and let $1_n \in \mathbb{R}^n$ be the vector with only ones. We can define the probability measure $\nu_n^{W,\eta}$ on \mathbb{R}^n by the density:

$$\nu_n^{W,\eta}(\mathrm{d}\beta) := \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\left(t_{1_n}H_\beta 1_n + t_\eta H_\beta^{-1}\eta - 2t_{1_n}\eta\right)} \frac{1}{\sqrt{\text{Det}(H_\beta)}} 1_{H_\beta > 0} \mathrm{d}\beta_1 \dots \mathrm{d}\beta_n,$$

where $H_{\beta}(i,i) = \beta_i$, $H_{\beta}(i,j) = -W_{\{i,j\}}$ and $H_{\beta} > 0$ means that H_{β} is positive definite.

For the GFF, the vector $(B_x)_{x \in V}$ is a degenerate centered gaussian vector of covariance matrix H_W such that $\sum B_x = 0$.

Proposition

The law of the β -field does not depend on the starting point.

Proposition

For any non-negative coefficients $(\lambda_x)_{x \in V}$:

$$\mathbb{E}\left(e^{-\sum\limits_{x\in V}\lambda_x\beta_x}\right) = e^{-\sum\limits_{\{x,y\}\in E}W_{\{x,y\}}(\sqrt{1+2\lambda_x}\sqrt{1+2\lambda_y}-1)}\prod_{x\in V}\frac{1}{\sqrt{1+2\lambda_x}}.$$

Proposition

Let V_1, V_2 be two subset of V such that for any $(x, y) \in V_1 \times V_2$, $d(x, y) \ge 2$. The beta-fields in V_1 and V_2 are independent.

э

Proposition

Let V_1 be a subset of V. The marginal law of the β -field on V_1 is $\nu_{|V_1|}^{W,\eta}$ for some η .

Proposition

Let V_1, V_2 be a partition of V. Let W_e be non-negative weights. Let β be distributed according to $\nu_{|V|}^W$, the law of $(\beta_x)_{x \in V_1}$ knowing $(\beta_y)_{y \in V_2}$ is $\nu_{|V_1|}^{W+W'}$ where W' are non-negative weights that do not depend on $(\beta_x)_{x \in V_1}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let V_1, V_2 be a partition of V. Let W_e be non-negative weights. Let B be a centered gaussian vector of covariance matrix H_W with:

$$egin{pmatrix} H^1_W & -W^{12} \ -W^{21} & H^2_W \end{pmatrix} .$$

Let B_1, B_2 be the restriction of B to V_1 and V_2 respectively. Let \overline{B}_1 be defined by :

$$\overline{B}_1 := B_1 + W^{12} \left(H_W^2 \right)^{-1} B_2.$$

The vectors \overline{B}_1 and B_2 are independent and centered. Furthermore, the value of \overline{B}_1 only depends on the GFF on V_1 .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Sabot, Tarrès, Zeng)

Set a finite graph $\mathscr{G} = (V, E)$ and non-negative weights $(W_e)_{e \in E}$. Let H_β be distributed according to ν_n^W and let G_β be its inverse. For any $i_0 \in V$, the random walk in random reversible environment given by the random conductances $(\omega_e)_{e \in E}$ defined by:

$$\omega_{x,y} := W_{x,y}G_{\beta}(i_0,x)G_{\beta}(i_0,y)$$

has the same law as a time-change of the VRJP with initial weights $(W_e)_{e \in E}$ and starting point i_0 .

This allows us to get back U from β .

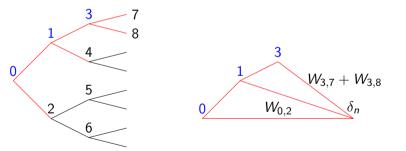
Proposition

For any
$$i_0, x \in V$$
, $\mathbb{E}\left(\frac{G_{\beta}(i_0,x)}{G_{\beta}(i_0,i_0)}\right) = 1$.

э

(日) (四) (日) (日) (日)

For an infinite, connected, locally finite graph $\mathscr{G} = (V, E)$ and initial weights $(W_e)_{e \in E}$ we look at the sequence of graphs $\mathscr{G}_n = (V_n, E_n)$ obtained by keeping a finite subset of \mathscr{G} and collapsing all other vertices into one vertex δ_n . We define $\psi_n(x) := \frac{G_\beta(\delta_n, x)}{G_2(\delta_n, \delta_n)}$.



Proposition

For some choice of coupling of the β -fields on a sequence of graphs \mathscr{G}_n that is increasing, for any $x \in V$, for n large enough:

 $\mathbb{E}\left(\psi_{n+1}(x)|\psi_n(x)\right)=\psi_n(x).$

Since $\psi_n(x) \ge 0$, there exists a random variable $\psi_{\infty}(x)$ such that a.s

 $\psi_n(x) \to \psi_\infty(x).$

Theorem (Sabot, Zeng)

If $\psi_{\infty}(0) = 0$ the VRJP starting at 0 is recurrent, otherwise it is transient.

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

- 34

Theorem ((P))

Let G = (V, E) be a finite graph and $(W_e^-)_{e \in E}$ and $(W_e^+)_{e \in E}$ two families of weights such that for all $e \in E$, $0 < W_e^- \le W_e^+$. For any $x \in V$, there exists $(\beta_i^-)_{i \in V}$ and $(\beta_i^+)_{i \in V}$ distributed according to $\nu_{|V|}^{W^-}$ and $\nu_{|V|}^{W^+}$ respectively such that:

$$orall y \in V, \,\, \mathbb{E}\left(rac{\mathcal{G}_{eta^-}(x,y)}{\mathcal{G}_{eta^-}(x,x)}|eta^+
ight) = rac{\mathcal{G}_{eta^+}(x,y)}{\mathcal{G}_{eta^+}(x,x)}.$$

This is the same as saying that for any convex function f:

$$\mathbb{E}_{W^-}\left(f\left(rac{G_eta(x,y)}{G_eta(x,x)}
ight)
ight) \geq \mathbb{E}_{W^+}\left(f\left(rac{G_eta(x,y)}{G_eta(x,x)}
ight)
ight).$$

(日) (四) (日) (日) (日)

The idea is to look at what happens when we decrease a weight $W_{\{x,y\}}$. We look at the following partition of V: $V_1 := \{x, y\}$ and $V_2 := V \setminus \{x, y\}$.

Proposition

The law of the β -field on V_2 does not depend on the weight $W_{\{x,y\}}$.

This means that we can condition on the value of the β -field on V_2 and look at what the impact of $W_{\{x,y\}}$ is on V_1 . For the GFF, the covariance matrix of B is given by $H_{W,0}$ with $H_{W,0}(i,i) = \sum_{j \sim i} W_{\{i,j\}}$ and $H_{W,u}(i,j) = -W_{\{i,j\}}$. So the law of B on V_2 does not depend on $W_{\{x,y\}}$.

イロト 不得 トイヨト イヨト ニヨー

We will look at the simple case when the graph has only two points i_0 , x joined by an edge of weight w. In the general case the starting point is a mixture of the two points.

$$\frac{1}{2\pi}e^{-\sum u_x}e^{-\frac{1}{2}w(e^{u_x}+e^{-u_x}-2)}\sqrt{we^{u_x}}\mathrm{d}u_x.$$

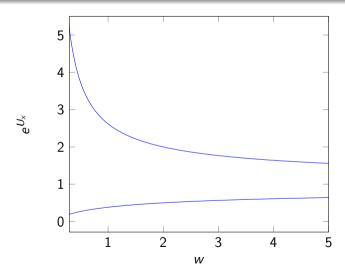
The law of $K := \frac{w}{2}(e^{U_x} + e^{-U_x} - 2)$ is a gamma of parameters (1/2, 1). Knowing K, the expectation of e^{U_x} is 1.

Knowing K, the smaller w is, the further away from 1 the random variable U_x is.

For a gaussian Y of variance σ^2 , the equivalent of k is the random variable $\frac{1}{2\sigma^2}Y^2$ which is also a gamma of parameters (1/2, 1). For the coupling of two centered gaussians Y_+ and Y_- of variances σ^2_+ and σ^2_- , this would be the same has sending Y_- onto $\frac{\sigma_+}{\sigma_-}Y_-$ and $-\frac{\sigma_+}{\sigma_-}Y_-$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うのぐ

The proof What happens for 2 points



Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

<ロ> (日) (日) (日) (日) (日)

æ

Theorem (P)

If the simple walk on a graph (V, E) with conductances $(W_e)_{e \in E}$ is recurrent then so is the ERRW and the VRJP with initial weights $(W_e)_{e \in E}$.

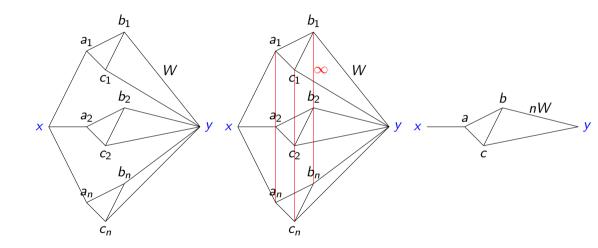
Theorem (Sabot, Zeng)

On a graph (V, E) the ERRW and the VRJP with initial weights $(W_e)_{e \in E}$ are recurrent with probability 0 or 1 (almost every environment are recurrent or almost every environment are transient) if the graph and the weights are invariant by translation.

Theorem (P)

On a graph (V, E) the ERRW and the VRJP with initial weights $(W_e)_{e \in E}$ are recurrent with probability 0 or 1.

Recurrence on recurrent graphs



Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

イロト イポト イヨト イヨト

э

Rémy Poudevigne Monotonicity and phase transition for the VRJP and the ERRW

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●