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The inhomogeneous percolation framework

G = (V,E) oriented/non-oriented graph, split the edge set into two
disjoint sets: E = E' UE”

Ve € E' open with probability p
Ve € E” open with probability g
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Let C,, denote the event that there is an infinite open cluster, then
for any g € [0, 1] define

pc(q) :=sup{p : P, 4(Cs) = 0}.
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The inhomogeneous percolation framework

G = (V,E) oriented/non-oriented graph, split the edge set into two
disjoint sets: E = E' UE”

Ve € E' open with probability p
Ve € E” open with probability g

Let C,, denote the event that there is an infinite open cluster, then
for any g € [0, 1] define

pc(q) :=sup{p : P, 4(Cs) = 0}.

What can we say about g — p.(q)?
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Related work

de Lima, Rolla, Valesin (17): oriented d-regular tree with additional
edges of length k

pc(q) is continuous and strictly de-
creasing in the region where it is
positive
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Related work
Zhang (94): bond percolation on Z?

p pc(q) is constant on (0, 1)

no infinite cluster at p.(q)
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Construction of ladder graphs

G is an arbitrary ‘base graph’ that is
@ connected
@ locally finite
o (infinite)
We construct a non-oriented and an oriented ladder graph from G
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The inhomogeneous percolation model
G

Fix finitely many vertices
and edges of the base
graph G
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The inhomogeneous percolation model
G

Fix finitely many vertices
and edges of the base
graph G

D Let the edges of the
coloumns corresponding to
these edges and vertices
be open with probabil-

G Ity qi, q2; . - .

q1 q2
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The inhomogeneous percolation model
G G

q1 p dz p qs
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The inhomogeneous percolation model
G
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Result
G

q:=(q1,,---,9«)

— Theorem
- - T The function q — p.(q) is

continuous on (0,1).
—‘ l_;\_’T [

qgr P g2
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Motivation

Contact Process: model of epidemics on a graph with vertices in
state 0 (healthy) or 1 (infected)

Transition rules:
@1l —0atratel
@ 0 —> 1 at rate \ - #{infected neighbors}

Ac = sup{A: CP with parameter \ a.s. dies out}
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Motivation

Contact Process: model of epidemics on a graph with vertices in
state 0 (healthy) or 1 (infected)

Transition rules:
@1l —0atratel
@ 0 —> 1 at rate \ - #{infected neighbors}

Ac = sup{A: CP with parameter \ a.s. dies out}
graphical representation of CP on G
< percolation on the oriented ladder graph with base graph G
Conjecture (Pemantle and Stacey, 2001)

Changing the infection parameter on a finite set of edges does not
affect \..
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Result
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— Theorem
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Result

If the theorem holds for a finite set of columns, than it holds for any
subset of these columns.
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Coupling lemma

Lemma (de Lima, Rolla, Valesin 17)

Let {Pp}gco denote probability measures on a finite set S,
parametrized by 0, such that 0 — Py(x) is continuous for every

x € S. Assume that for some 6, € © and X € S we have Py, (X) > 0.
Then, for any 0, close enough to 0, there exists a coupling of two
random elements X and Y of S such that X ~ Py, Y ~ Py, and

P{X=YU{X=x}U{Y=x))=1

R. Szabé, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 21 /60



Toy example
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Toy example

P, »(crossing)
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Toy example
p+e€

P, »(crossing)
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Toy example
p—a p+e

Vp,e 36 : P, p(crossing) < P,_s ,1c(crossing)
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Toy example

Sets of all possible configurations:
51 5

Goal: introduce a coupling of configurations (s, s’) on (S; x $,)? such
that s~ P,,, s ~ P, 5, and

crossing on s = crossing on s’
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Toy example

S = 51 X 52 X 52
91 = (p7 pleep)
02 = (p_ 57p71%p)

X = (%1,X2,1,%,2)

X1 X2 1X22

Lemma

Let {Py}gco denote probability measures on a finite set S,
parametrized by 0, such that 0 — Py(x) is continuous for every

x € S. Assume that for some 0; € © and x € S we have Py, (x) > 0.
Then, for any 6, close enough to 0, there exists a coupling of two
random elements X and Y of S such that X ~ Py,, Y ~ Py, and

P({X=YU{X=3}U{Y=x))=1
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Toy example

S = 51 X 52 X 52
91 = (papalTep)
02 = (p_dapafp)

X = (%1,X2,1,%,2)

X1 X2 1X22
Then X = (X1, X21,X22), Y = (Y1, Y21, Y22) € S,
X~Ppp e, Y~P, 5, < and

1—p 1-p

PUX=Y}U{X=3}U{Y=x3))=1
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Then X = (X1, X21,X22), Y = (Y1, Y21, Y22) € S,
X~Ppp e, Y~P, 5, < and

1—p 1-p

PUX=Y}U{X=3}U{Y=x3))=1

s = (s1,%) = (X1, X21) ~ Py,
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Toy example

S = 51 X 52 X 52
91 = (papalTep)
02 = (p_dapal%p)

X = (%1,X2,1,%,2)

X1 X2 1X22
Then X = (X1, X21,X22), Y = (Y1, Y21, Y22) € S,
X~Ppp e, Y~P, 5, < and

1—p 1-p

PUX=Y}U{X=3}U{Y=x3))=1

s = (s1,%) = (X1, X21) ~ Py,
s’ = (517 Sé) = (Y17 Y271 N Y2,2) ~ IP>P—(ip-l-e
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Toy example

S = 51 X 52 X 52
91 = (papalTep)
02 = (p_dapal%p)

X = (%1,X2,1,%,2)

X1 X2 1X22
Then X = (X1, X21,X22), Y = (Y1, Y21, Y22) € S,
X~Ppp e, Y~P, 5, < and

1—p 1-p

PUX=Y}U{X=3}U{Y=x3))=1

s = (s1,%) = (X1, X21) ~ Py,
s'=(s1,85) = (Y1, Y21V Yap2) ~ Ppspie
Need: crossing on s = crossing on s’
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Toy example
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s if X=X s if Y=X
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Toy example

o = = = z 9ace

Inhom. percolation on ladder graphs



Proof of Theorem

q:= (91,9, --,9)

|
—[ _

_ Theorem

The function q — p.(q) is

—‘ — continuous on (0,1).

e
U

] = =

R. Szabé, D. Valesin Inhom. percolation on ladder graphs




Proof of Theorem
Claim

enough, then

For all p € (0,1), g € RX and ¢ € (0,1 — p) if 6 € RX is small

IP>P q(COO) < PP-I—e,q—J(COO)'
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Proof of Theorem

Claim
For all p € (0,1), g € RX and ¢ € (0,1 — p) if 6 € RX is small
enough, then

PPM(COO) < IP)P—Ire,q—ts(COO)-

Proof:

Goal: Introduce a coupling of configurations (w,w’) such
that w ~ Ppq, W' ~ Ppicq-s and

Co inw= Cyxinw.

R. Szabé, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 35 /60



Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim

Wo
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Proof of Claim

Wo

Goal: coupling (wo, wp) satisfying Ca(wo) C Ca(wp) VA
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim
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Proof of Claim




Thank youl
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Oriented case
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Oriented case
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Oriented case
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Oriented case
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