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The inhomogeneous percolation framework
G = (V,E) oriented/non-oriented graph, split the edge set into two
disjoint sets: E = E′ ∪ E′′

∀e ∈ E′ open with probability p
∀e ∈ E′′ open with probability q

Let C∞ denote the event that there is an infinite open cluster, then
for any q ∈ [0, 1] define

pc(q) := sup{p : Pp,q(C∞) = 0}.

What can we say about q 7→ pc(q)?
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Related work
de Lima, Rolla, Valesin (17): oriented d-regular tree with additional
edges of length k

pc(q) is continuous and strictly de-
creasing in the region where it is
positive
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Related work
Zhang (94): bond percolation on Z2

pc(q) is constant on (0, 1)

no infinite cluster at pc(q)
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Construction of ladder graphs
G is an arbitrary ‘base graph’ that is

connected
locally finite
(infinite)

We construct a non-oriented and an oriented ladder graph from G

G= Z
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Construction

G−1

G0

G1

G2

G3

G4

G5

G6
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Construction

G
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Construction

~G
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Construction
G ~G
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The inhomogeneous percolation model

Fix finitely many vertices
and edges of the base
graph G

Let the edges of the
coloumns corresponding to
these edges and vertices
be open with probabil-
ity q1, q2, . . .
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The inhomogeneous percolation model
G ~G

q1 q2 q3p p
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The inhomogeneous percolation model
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Result

q := (q1, q2, . . . , qK )

Theorem
The function q 7→ pc(q) is
continuous on (0, 1)K .
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Motivation
Contact Process: model of epidemics on a graph with vertices in
state 0 (healthy) or 1 (infected)

Transition rules:
1 −→ 0 at rate 1
0 −→ 1 at rate λ ·#{infected neighbors}

λc = sup{λ : CP with parameter λ a.s. dies out}

graphical representation of CP on G
⇔ percolation on the oriented ladder graph with base graph G

Conjecture (Pemantle and Stacey, 2001)
Changing the infection parameter on a finite set of edges does not
affect λc .
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Result

q := (q1, q2, . . . , qK )

Theorem
The function q 7→ pc(q) is
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Result
If the theorem holds for a finite set of columns, than it holds for any
subset of these columns.
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Coupling lemma

Lemma (de Lima, Rolla, Valesin ‘17)
Let {Pθ}θ∈Θ denote probability measures on a finite set S ,
parametrized by θ, such that θ 7→ Pθ(x) is continuous for every
x ∈ S . Assume that for some θ1 ∈ Θ and x̄ ∈ S we have Pθ1(x̄) > 0.
Then, for any θ2 close enough to θ1, there exists a coupling of two
random elements X and Y of S such that X ∼ Pθ1 , Y ∼ Pθ2 and

P ({X = Y } ∪ {X = x̄} ∪ {Y = x̄}) = 1.

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 21 / 60



Toy example
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Toy example

Pp,p(crossing)

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 24 / 60



Toy example
p+ε

Pp,p(crossing)
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Toy example
p+εp−δ

∀p, ε ∃δ : Pp,p(crossing) ≤ Pp−δ,p+ε(crossing)
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Toy example

Sets of all possible configurations:
S1, S2

Goal: introduce a coupling of configurations (s, s ′) on (S1× S2)2 such
that s ∼ Pp,p, s ′ ∼ Pp−δ,p+ε and

crossing on s ⇒ crossing on s ′
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Toy example
S := S1 × S2 × S2

θ1 := (p, p, ε
1−p )

θ2 := (p − δ, p, ε
1−p )

x̄ := (x̄1, x̄2,1, x̄2,2)

x̄1 x̄2,1 x̄2,2

Lemma
Let {Pθ}θ∈Θ denote probability measures on a finite set S ,
parametrized by θ, such that θ 7→ Pθ(x) is continuous for every
x ∈ S . Assume that for some θ1 ∈ Θ and x̄ ∈ S we have Pθ1(x̄) > 0.
Then, for any θ2 close enough to θ1, there exists a coupling of two
random elements X and Y of S such that X ∼ Pθ1 , Y ∼ Pθ2 and

P ({X = Y } ∪ {X = x̄} ∪ {Y = x̄}) = 1.
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Toy example

x̄1 x̄2,1 x̄2,2

s if X= x̄ s’ if Y= x̄
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Toy example

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 31 / 60



Toy example
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Toy example
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Proof of Theorem

q := (q1, q2, . . . , qK )

Theorem
The function q 7→ pc(q) is
continuous on (0, 1)K .
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Proof of Theorem

Claim
For all p ∈ (0, 1), q ∈ RK and ε ∈ (0, 1− p) if δ ∈ RK is small
enough, then

Pp,q(C∞) ≤ Pp+ε,q−δ(C∞).

Proof:

Goal: Introduce a coupling of configurations (ω, ω′) such
that ω ∼ Pp,q, ω′ ∼ Pp+ε,q−δ and

C∞ in ω ⇒ C∞ in ω′.
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Proof of Claim

U

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 36 / 60



Proof of Claim

U U

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 37 / 60



Proof of Claim

U U

R. Szabó, D. Valesin Inhom. percolation on ladder graphs May 28, 2020 38 / 60



Proof of Claim

U U

p p
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Proof of Claim

U U

p p+ε
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Proof of Claim

U U
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Proof of Claim
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Proof of Claim

ω0

A
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Proof of Claim

ω0

A CA(ω0)

Goal: coupling (ω0, ω
′
0) satisfying CA(ω0) ⊆ CA(ω′0) ∀A
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Proof of Claim
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Proof of Claim

p q p + εq − δ
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Proof of Claim
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Proof of Claim

U U
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Proof of Claim

U U
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Thank you!
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Oriented case
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