Inhomogeneous percolation on ladder graphs

Réka Szabó

joint work with Daniel Valesin

May 28, 2020

Online probability seminar, Lyon

R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020 1/60

The inhomogeneous percolation framework

 $\mathbb{G}=(\mathbb{V},\mathbb{E})$ oriented/non-oriented graph, split the edge set into two disjoint sets: $\mathbb{E}=\mathbb{E}'\cup\mathbb{E}''$

 $orall e \in \mathbb{E}'$ open with probability p $orall e \in \mathbb{E}''$ open with probability q

The inhomogeneous percolation framework

 $\mathbb{G}=(\mathbb{V},\mathbb{E})$ oriented/non-oriented graph, split the edge set into two disjoint sets: $\mathbb{E}=\mathbb{E}'\cup\mathbb{E}''$

 $\forall e \in \mathbb{E}'$ open with probability p $\forall e \in \mathbb{E}''$ open with probability q

Let C_∞ denote the event that there is an infinite open cluster, then for any $q \in [0,1]$ define

$$p_c(q) := \sup\{p : \mathbb{P}_{p,q}(C_\infty) = 0\}.$$

The inhomogeneous percolation framework

 $\mathbb{G}=(\mathbb{V},\mathbb{E})$ oriented/non-oriented graph, split the edge set into two disjoint sets: $\mathbb{E}=\mathbb{E}'\cup\mathbb{E}''$

 $\forall e \in \mathbb{E}'$ open with probability p $\forall e \in \mathbb{E}''$ open with probability q

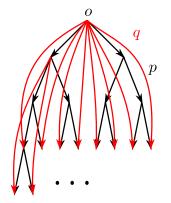
Let C_∞ denote the event that there is an infinite open cluster, then for any $q \in [0,1]$ define

$$p_c(q) := \sup\{p : \mathbb{P}_{p,q}(C_\infty) = 0\}.$$

What can we say about $q \mapsto p_c(q)$?

Related work

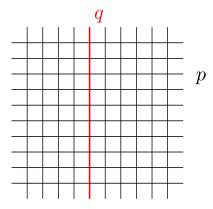
de Lima, Rolla, Valesin (17): oriented d-regular tree with additional edges of length k



 $p_c(q)$ is continuous and strictly decreasing in the region where it is positive

Related work

Zhang (94): bond percolation on \mathbb{Z}^2



 $p_c(q)$ is constant on (0,1)

no infinite cluster at $p_c(q)$

May 28, 2020 4 / 60

Construction of ladder graphs

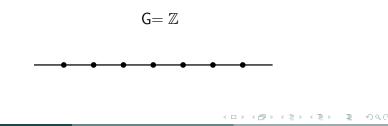
- \boldsymbol{G} is an arbitrary 'base graph' that is
 - connected
 - locally finite
 - (infinite)

We construct a non-oriented and an oriented ladder graph from ${\it G}$

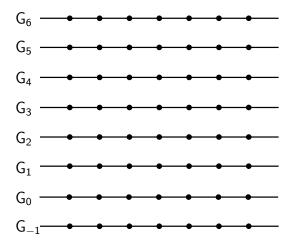
Construction of ladder graphs

- \boldsymbol{G} is an arbitrary 'base graph' that is
 - \bullet connected
 - locally finite
 - (infinite)

We construct a non-oriented and an oriented ladder graph from G

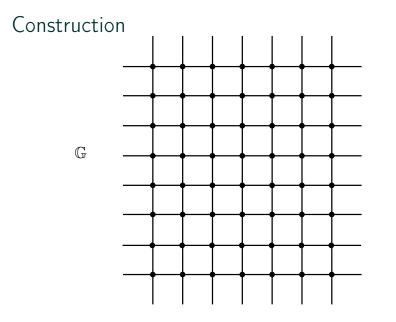


Construction



May 28, 2020 6 / 60

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへで

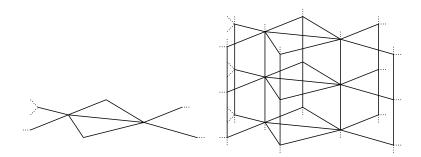


May 28, 2020 7 / 60

999

<ロト < 団ト < 三ト < 三ト 三三、

Construction



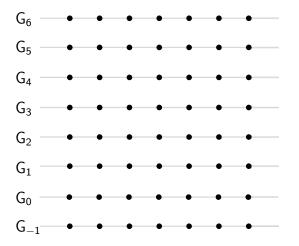
May 28, 2020 8 / 60

1

990

◆□▶ ◆□▶ ◆豆▶ ◆豆≯

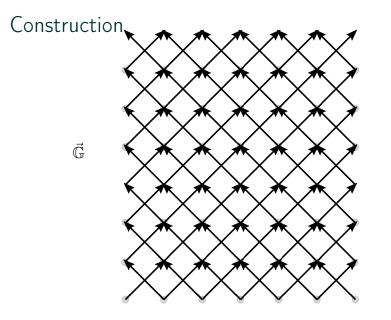
Construction



May 28, 2020 9 / 60

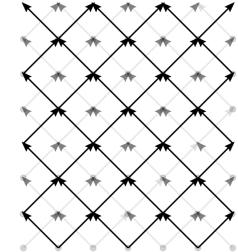
3

▶ < ∃ ▶</p>



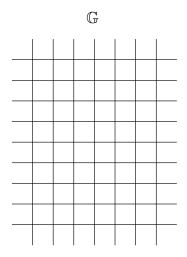
・ロト・日本・日本・日本・日本

Construction



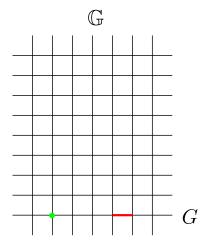
 $\vec{\mathbb{G}}$

Construction

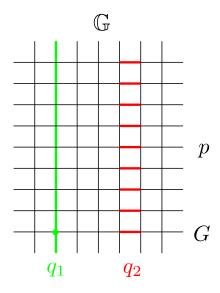




・ロト・日本・日本・日本・日本・日本



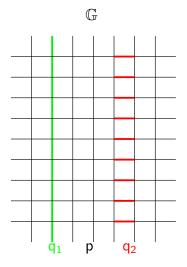
Fix finitely many vertices and edges of the base graph G

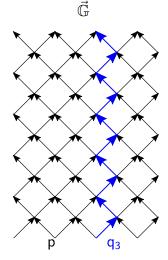


Fix finitely many vertices and edges of the base graph G

Let the edges of the coloumns corresponding to these edges and vertices be open with probability q_1, q_2, \ldots

May 28, 2020

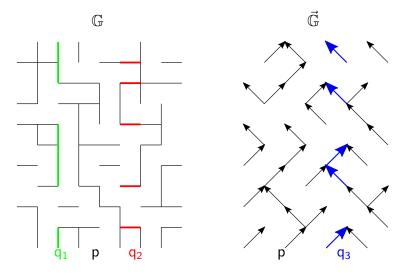




・ロト ・四ト ・ヨト ・ヨト

Э

DQC



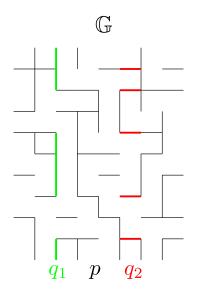
3

-

< 67 ▶

DQC

Result



$$\mathbf{q} := (q_1, q_2, \ldots, q_K)$$

Theorem

The function $\mathbf{q} \mapsto p_c(\mathbf{q})$ is continuous on $(0, 1)^K$.

May 28, 2020

-

DQC

17 / 60

Motivation

Contact Process: model of epidemics on a graph with vertices in state 0 (healthy) or 1 (infected)

Transition rules:

- $\bullet \ 1 \longrightarrow 0 \text{ at rate } 1$
- 0 \longrightarrow 1 at rate $\lambda \cdot \#\{\text{infected neighbors}\}$

 $\lambda_c = \sup\{\lambda : CP \text{ with parameter } \lambda \text{ a.s. dies out}\}$

Motivation

Contact Process: model of epidemics on a graph with vertices in state 0 (healthy) or 1 (infected)

Transition rules:

- $\bullet \ 1 \longrightarrow 0 \text{ at rate } 1$
- 0 \longrightarrow 1 at rate $\lambda \cdot \#\{\text{infected neighbors}\}$

 $\lambda_c = \sup\{\lambda : CP \text{ with parameter } \lambda \text{ a.s. dies out}\}$

graphical representation of CP on ${\it G}$

 \Leftrightarrow percolation on the oriented ladder graph with base graph G

Motivation

Contact Process: model of epidemics on a graph with vertices in state 0 (healthy) or 1 (infected)

Transition rules:

- $\bullet \ 1 \longrightarrow 0 \text{ at rate } 1$
- 0 \longrightarrow 1 at rate $\lambda \cdot \#\{\text{infected neighbors}\}$

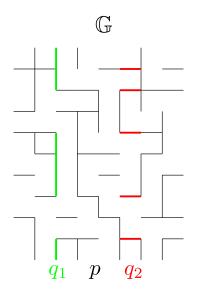
 $\lambda_c = \sup\{\lambda : CP \text{ with parameter } \lambda \text{ a.s. dies out}\}$

graphical representation of CP on G

 \Leftrightarrow percolation on the oriented ladder graph with base graph G

Conjecture (Pemantle and Stacey, 2001) Changing the infection parameter on a finite set of edges does not affect λ_c .

Result



$$\mathbf{q} := (q_1, q_2, \ldots, q_K)$$

Theorem

The function $\mathbf{q} \mapsto p_c(\mathbf{q})$ is continuous on $(0, 1)^K$.

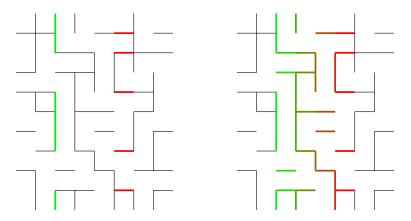
-

DQC

19/60

Result

If the theorem holds for a finite set of columns, than it holds for any subset of these columns.

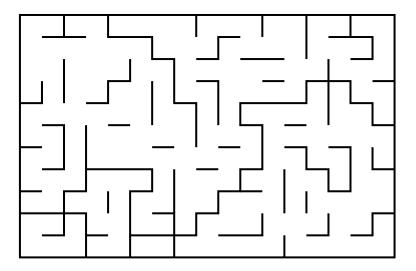


Coupling lemma

Lemma (de Lima, Rolla, Valesin '17)

Let $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ denote probability measures on a finite set S, parametrized by θ , such that $\theta \mapsto \mathbb{P}_{\theta}(x)$ is continuous for every $x \in S$. Assume that for some $\theta_1 \in \Theta$ and $\bar{x} \in S$ we have $\mathbb{P}_{\theta_1}(\bar{x}) > 0$. Then, for any θ_2 close enough to θ_1 , there exists a coupling of two random elements X and Y of S such that $X \sim \mathbb{P}_{\theta_1}$, $Y \sim \mathbb{P}_{\theta_2}$ and

$$\mathbb{P}\left(\{X=Y\}\cup\{X=\bar{x}\}\cup\{Y=\bar{x}\}\right)=1.$$

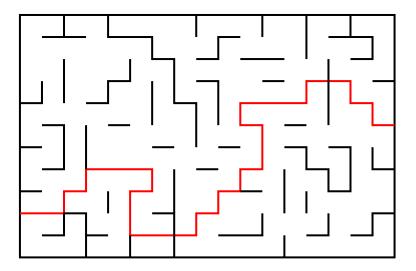


May 28, 2020 22 / 60

3

590

<ロト < 回ト < 回ト < 回ト < 回ト

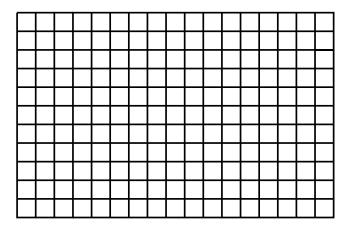


May 28, 2020 23 / 60

3

590

◆□▶ ◆□▶ ◆豆▶ ◆豆≯

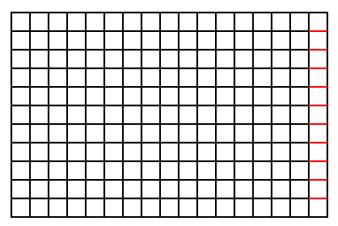


 $\mathbb{P}_{p,p}(\text{crossing})$

May 28, 2020

24 / 60

 $\mathbf{p} + \epsilon$

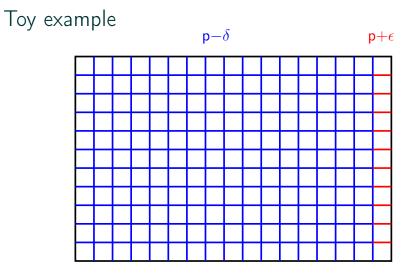


 $\mathbb{P}_{p,p}(\text{crossing})$

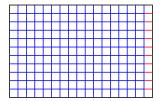
R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020 25 / 60



 $\forall \boldsymbol{p}, \epsilon \; \exists \delta : \mathbb{P}_{\boldsymbol{p}, \boldsymbol{p}}(\text{crossing}) \leq \mathbb{P}_{\boldsymbol{p}-\delta, \boldsymbol{p}+\epsilon}(\text{crossing})$

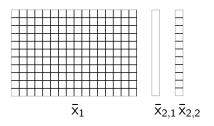


Sets of all possible configurations: S_1 , S_2

Goal: introduce a coupling of configurations (s, s') on $(S_1 \times S_2)^2$ such that $s \sim \mathbb{P}_{p,p}$, $s' \sim \mathbb{P}_{p-\delta,p+\epsilon}$ and

crossing on $s \Rightarrow$ crossing on s'

$$\begin{split} S &:= S_1 \times S_2 \times S_2 \\ \theta_1 &:= \left(p, p, \frac{\epsilon}{1-p}\right) \\ \theta_2 &:= \left(p - \delta, p, \frac{\epsilon}{1-p}\right) \\ \bar{x} &:= \left(\bar{x}_1, \bar{x}_{2,1}, \bar{x}_{2,2}\right) \end{split}$$

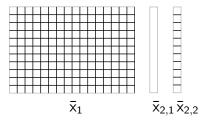


Lemma

Let $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ denote probability measures on a finite set S, parametrized by θ , such that $\theta \mapsto \mathbb{P}_{\theta}(x)$ is continuous for every $x \in S$. Assume that for some $\theta_1 \in \Theta$ and $\bar{x} \in S$ we have $\mathbb{P}_{\theta_1}(\bar{x}) > 0$. Then, for any θ_2 close enough to θ_1 , there exists a coupling of two random elements X and Y of S such that $X \sim \mathbb{P}_{\theta_1}$, $Y \sim \mathbb{P}_{\theta_2}$ and

$$\mathbb{P}\left(\{X=Y\}\cup\{X=\bar{x}\}\cup\{Y=\bar{x}\}\right)=1.$$

$$egin{aligned} S &:= S_1 imes S_2 imes S_2 \ heta_1 &:= (p, p, rac{\epsilon}{1-p}) \ heta_2 &:= (p-\delta, p, rac{\epsilon}{1-p}) \ ar{x} &:= (ar{x}_1, ar{x}_{2,1}, ar{x}_{2,2}) \end{aligned}$$



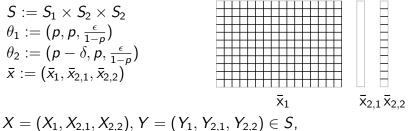
Then
$$X = (X_1, X_{2,1}, X_{2,2}), Y = (Y_1, Y_{2,1}, Y_{2,2}) \in S$$
,
 $X \sim \mathbb{P}_{p,p,\frac{\epsilon}{1-p}}, Y \sim \mathbb{P}_{p-\delta,p,\frac{\epsilon}{1-p}}$ and
 $\mathbb{P}(\{X = Y\} \cup \{X = \bar{x}\} \cup \{Y = \bar{x}\}) = 1.$

R. Szabó, D. Valesin

1

590

イロト イボト イヨト イヨト

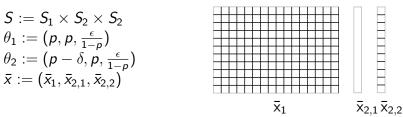


Then
$$X = (X_1, X_{2,1}, X_{2,2}), Y = (Y_1, Y_{2,1}, Y_{2,2}) \in S,$$

 $X \sim \mathbb{P}_{p,p,\frac{\epsilon}{1-\rho}}, Y \sim \mathbb{P}_{p-\delta,p,\frac{\epsilon}{1-\rho}}$ and
 $\mathbb{P}(\{X = Y\} \cup \{X = \bar{x}\} \cup \{Y = \bar{x}\}) = 1.$

$$s = (s_1, s_2) := (X_1, X_{2,1}) \sim \mathbb{P}_{p,p}$$

A 1



Then
$$X = (X_1, X_{2,1}, X_{2,2}), Y = (Y_1, Y_{2,1}, Y_{2,2}) \in S$$
,
 $X \sim \mathbb{P}_{\rho, \rho, \frac{\epsilon}{1-\rho}}, Y \sim \mathbb{P}_{\rho-\delta, \rho, \frac{\epsilon}{1-\rho}}$ and
 $\mathbb{P}(\{X = Y\} \cup \{X = \bar{x}\} \cup \{Y = \bar{x}\}) = 1.$

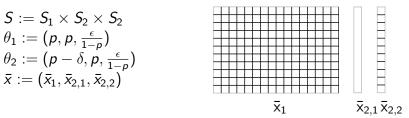
$$egin{aligned} s &= (s_1, s_2) := (X_1, X_{2,1}) \sim \mathbb{P}_{p,p} \ s' &= (s'_1, s'_2) := (Y_1, Y_{2,1} \lor Y_{2,2}) \sim \mathbb{P}_{p-\delta, p+\epsilon} \end{aligned}$$

R. Szabó, D. Valesin

May 28, 2020 29 / 60

3

< (□) ► <

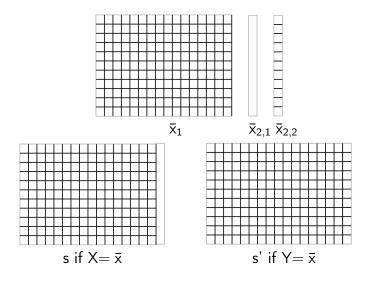


Then
$$X = (X_1, X_{2,1}, X_{2,2}), Y = (Y_1, Y_{2,1}, Y_{2,2}) \in S$$
,
 $X \sim \mathbb{P}_{p,p,\frac{\epsilon}{1-\rho}}, Y \sim \mathbb{P}_{p-\delta,p,\frac{\epsilon}{1-\rho}}$ and
 $\mathbb{P}(\{X = Y\} \cup \{X = \bar{x}\} \cup \{Y = \bar{x}\}) = 1.$

$$egin{aligned} &s = (s_1, s_2) := (X_1, X_{2,1}) \sim \mathbb{P}_{p,p} \ &s' = (s_1', s_2') := (Y_1, Y_{2,1} \lor Y_{2,2}) \sim \mathbb{P}_{p-\delta, p+\epsilon} \ & ext{Need:} \quad & ext{crossing on } s \Rightarrow ext{crossing on } s' \end{aligned}$$

3

< (□) ► <



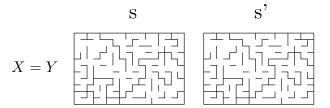
May 28, 2020 30 / 60

1

590

< ∃ →

イロト イボト イヨト

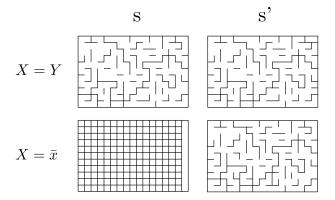


May 28, 2020 31 / 60

1

DQC

◆□▶ ◆□▶ ◆豆▶ ◆豆≯

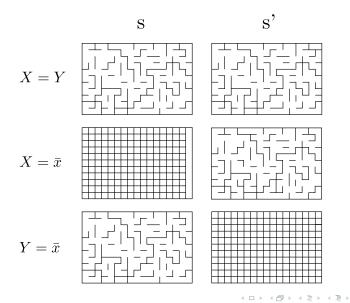


May 28, 2020 32 / 60

1

990

イロト イボト イヨト イヨト



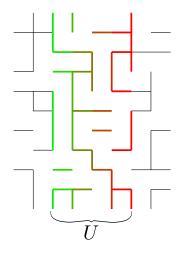
R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020 33 / 60

1

Proof of Theorem



$$\mathbf{q} := (q_1, q_2, \ldots, q_K)$$

Theorem The function $\mathbf{q} \mapsto p_c(\mathbf{q})$ is continuous on $(0, 1)^K$.

∃ > May 28, 2020 34 / 60

Proof of Theorem

Claim

For all $p \in (0, 1)$, $\mathbf{q} \in \mathbb{R}^{K}$ and $\epsilon \in (0, 1 - p)$ if $\delta \in \mathbb{R}^{K}$ is small enough, then $\mathbb{P}_{p,\mathbf{q}}(C_{\infty}) \leq \mathbb{P}_{p+\epsilon,\mathbf{q}-\delta}(C_{\infty}).$

Proof of Theorem

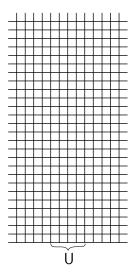
Claim

For all $p \in (0, 1)$, $\mathbf{q} \in \mathbb{R}^{K}$ and $\epsilon \in (0, 1 - p)$ if $\delta \in \mathbb{R}^{K}$ is small enough, then $\mathbb{P}_{p,\mathbf{q}}(C_{\infty}) \leq \mathbb{P}_{p+\epsilon,\mathbf{q}-\delta}(C_{\infty}).$

Proof:

Goal: Introduce a coupling of configurations (ω, ω') such that $\omega \sim \mathbb{P}_{p,\mathbf{q}}$, $\omega' \sim \mathbb{P}_{p+\epsilon,\mathbf{q}-\delta}$ and

$$C_{\infty}$$
 in $\omega \Rightarrow C_{\infty}$ in ω' .

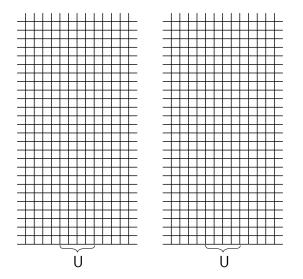


R. Szabó, D. Valesin

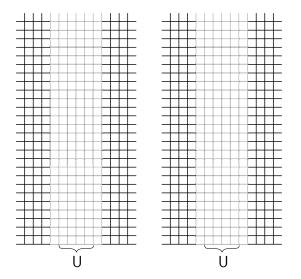
Inhom. percolation on ladder graphs

May 28, 2020 3

36 / 60

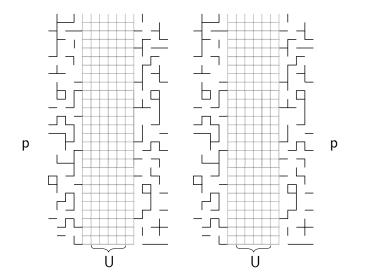


May 28, 2020 37 / 60



May 28, 2020

38 / 60



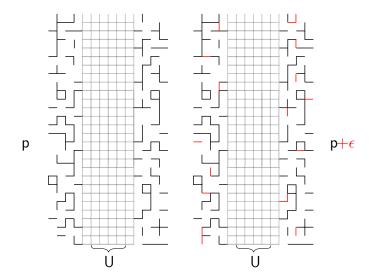
R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020

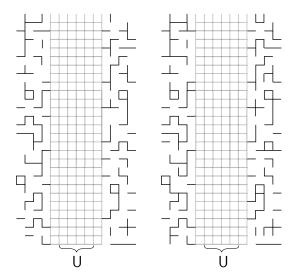
<ロト < 回ト < 回ト < 回ト < 回ト</p>

୬ < ୯ 39 / 60



May 28, 2020

<ロト < 回ト < 回ト < 回ト < 回ト</p>



May 28, 2020

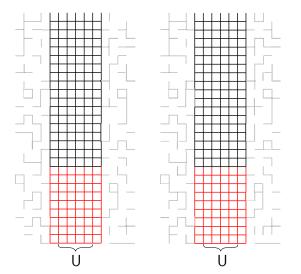
<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

クへで 41/60

1

990

<ロト < 回ト < 回ト < 回ト < 回ト</p>



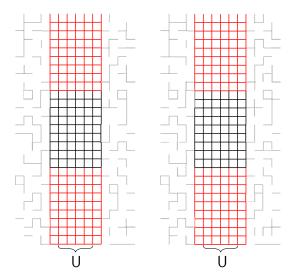
May 28, 2020

1

990

43 / 60

<ロト < 回ト < 回ト < 回ト < 回ト</p>



R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020

イロト イボト イヨト イヨト

୬ ୯.୧⁻ 44 / 60

R. Szabó, D. Valesin

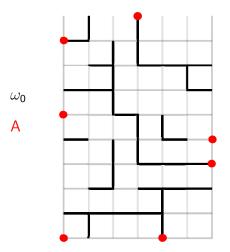
Inhom. percolation on ladder graphs

May 28, 2020 4

◆□▶ ◆□▶ ◆□▶ ◆□▶

୬ ୯.୦° 45 / 60

Proof of Claim

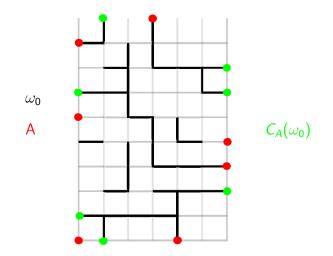


1

990

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Proof of Claim



R. Szabó, D. Valesin

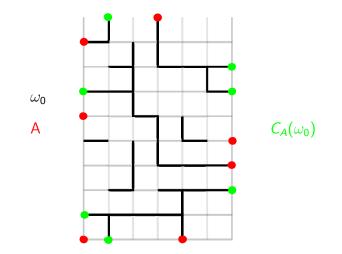
May 28, 2020 47 / 60

1

590

イロト イボト イヨト イヨト

Proof of Claim



Goal: coupling (ω_0, ω'_0) satisfying $C_A(\omega_0) \subseteq C_A(\omega'_0) \forall A$

47 ▶ ∢

Э

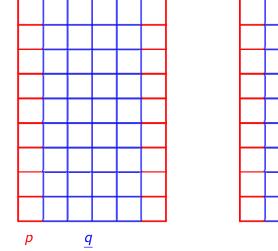
DQC

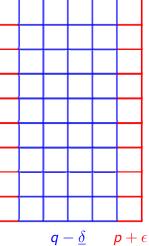
х.

——		 	
L	. <u> </u>	 	 J

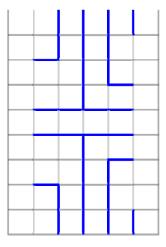
イロト イボト イヨト イヨト

1





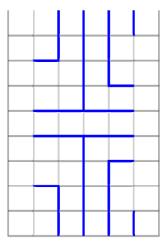
May 28, 2020 49 / 60

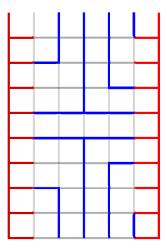


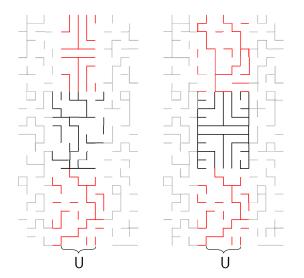
R. Szabó, D. Valesin

May 28, 2020 50 / 60

999



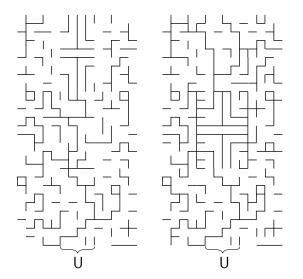




Э

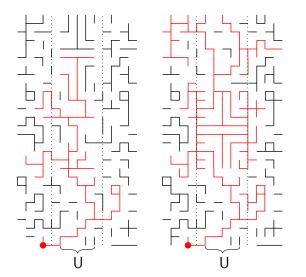
590

イロト イボト イヨト イヨト



May 28, 2020

イロト イボト イヨト イヨト



May 28, 2020

イロト イボト イヨト イヨト

Э

Thank you!

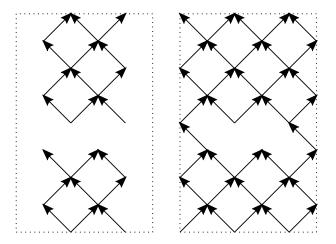
R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020

イロト イボト イヨト イヨト

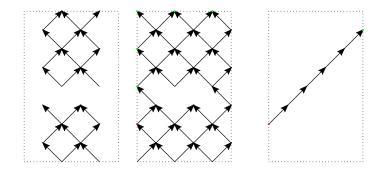
୬ ଏ (୦ 55 / 60



May 28, 2020 56 / 60

990

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

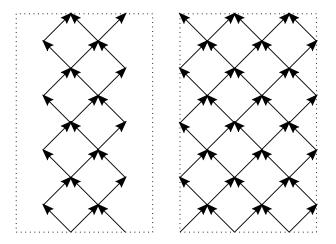


May 28, 2020 57 / 60

3

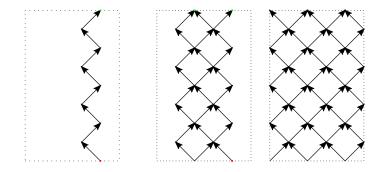
990

<ロト < 回ト < 回ト < 回ト < 回ト</p>



May 28, 2020 58 / 60

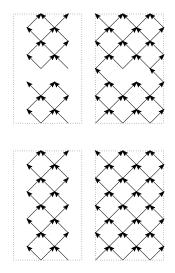
<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>



May 28, 2020 59 / 60

990

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>



R. Szabó, D. Valesin

Inhom. percolation on ladder graphs

May 28, 2020

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

୬ ୯.୧^୦ 60 / 60