3. Groupes: sous-groupes distingués, quotients

Rappel: Sous-groupe normal (ou distingué)

On dit qu'un sous-groupe $H\subset G$ est normal (ou distingué) si pour tout $x\in G$ on a xH=Hx.

- **Exercice 3.1** 1. Montrer que le sous-groupe $H = \{id, (12)\} \subset S_3$ n'est pas distingué, et expliciter les classes à droite et à gauche modulo H.
 - 2. Trouver tous les sous-groupes distingués du groupe symétrique S_3 .
 - 3. Montrer que la loi de composition sur S_3 n'induit pas une loi de groupe sur les classes à droite modulo H.

Exercice 3.2 On considère le sous-groupe H de S_5 engendré par (12) et (13).

- 1. Le sous-groupe H est-il distingué dans S_5 ?
- 2. Déterminer le nombre de classes à droite modulo H.

Exercice 3.3 Montrer qu'un sous-groupe $H \subset G$ d'indice 2 est toujours distingué.

Exercice 3.4 Montrer que tous les sous-groupes du groupe quaternionique \mathbb{H}_8 sont normaux dans \mathbb{H}_8 .

Rappel : Soit $\phi: G \to G'$ un homomorphisme de groupe. Alors ker ϕ est distingué.

Exercice 3.5 Montrer que $SL_n(\mathbb{R})$ est un sous-groupe distingué de $GL_n(\mathbb{R})$. Montrer de même que $SO_n(\mathbb{R})$ est un sous-groupe distingué de $O_n(\mathbb{R})$.

Exercice 3.6 Soit $\phi: G \to G'$ un homomorphisme de groupe.

- 1. Soit H' un sous-groupe distingué de G'. Montrer que $\phi^{-1}(H')$ est distingué dans G.
- 2. Supposons que ϕ est surjective. Soit H un sous-groupe distingué de G. Montrer que $\phi(H)$ est distingué dans G'.

Rappel: Quotient

Si H est un sous-groupe distingué de G, l'ensemble des classes (à droite ou à gauche) de G modulo H forme un groupe G/H appelé groupe quotient de G par H.

Passage au quotient (Noëther)

Si $f: G \to G'$ est un morphisme de groupe, il existe un unique morphisme injectif $\bar{f}: G/Ker(\varphi) \to G'$ tel que $f(x) = \bar{f}(\bar{x})$.

Exercice 3.7 1. Montrer que le cercle unité $U \in \mathbb{C}$ est un sous-groupe de \mathbb{C}^* .

- 2. Montrer que le groupe $(\mathbb{R}/\mathbb{Z},+)$ est isomorphe à (U,.).
- 3. Montrer que la loi . sur \mathbb{R} n'induit pas une loi sur le quotient \mathbb{R}/\mathbb{Z} .

Exercice 3.8 On rappelle (ou on admet) que A_n désigne le sous-groupe de S_n constitué des permutations de signature 1 et que ce sous-groupe est engendré par les 3-cycles.

Soit H un sous-groupe normal de A_5 .

- 1. Montrer que si H contient un 3-cycle alors $H = A_5$.
- 2. Montrer que si H contient σ produit de deux transpositions à supports disjoints, alors il existe un 3-cycle $\gamma \in A_5$ tel que $\gamma \sigma \gamma^{-1} \sigma^{-1}$ soit un 3-cycle.
- 3. En s'inspirant de la question précédente, montrer que H contient toujours un 3-cycle.
- 4. Montrer que A_5 est un groupe simple.
- 5. Que peut-on dire de A_n pour $n \geq 5$.

Exercice 3.9 1. Donner un exemple de groupe contenant au moins deux sous-groupes d'indice 2.

- 2. Soit H un sous-groupe d'indice 2 de S_n . Montrer que pour tout $\sigma \in S_n$, $\sigma^2 \in H$. En déduire que H contient l'ensemble des 3-cycles et donc que $H = A_n$.
- 3. Pour un groupe G, on pose D(G) le sous groupe de G engendré par les commutateurs

$$\{\sigma\tau\sigma^{-1}\tau^{-1}, \forall \sigma, \tau \in G\}.$$

Montrer que D(G) est normal dans G.

- 4. En déduire que pour tout $n \geq 5$, $D(A_n) = D(S_n) = A_n$.
- 5. Déterminer tous les sous-groupes propres distingués de S_3 , S_4 , A_3 et A_4 .

Exercice 3.10 Soit G un groupe. On fait opérer G sur l'ensemble de ses sous-groupes par automorphisme intérieur. C'est-à-dire que pour un sous-groupe H de G et un élément g de G, on pose :

$$g \cdot H = gHg^{-1}.$$

Le stabilisateur de H sous cette action est défini par :

$$N_G(H) = \{g \in G \text{ tel que } g \cdot H = H\}.$$

On l'appelle le normalisateur de H dans G.

- 1. Quel est le normalisateur d'un sous-groupe distingué? Est-ce une caractérisation des sous-groupes distingués?
- 2. Vérifier que H est distingué dans son normalisateur.
- 3. Dans le groupe S_4 , trouver le normalisateur du sous-groupe à 2 éléments $\langle (12)(34) \rangle$.
- 4. Montrer que $N_G(H)$ est le plus grand sous-groupe de G dans lequel H est normal.