2. Groupe symétrique S_n

Rappel: Ordre d'une permutation

L'ordre d'une permutation est égal au PPCM des ordres des cycles de sa décomposition canonique.

Exercice 2.1 Soient
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1 \end{pmatrix}$$
 et $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$.

- 1. Calculer (en notation cyclique) $\sigma \circ \tau$, $\sigma^2 \circ \tau$, $\sigma \circ \tau^{-1}$.
- 2. Quels sont les ordres de τ , σ , $\sigma \circ \tau$, $\sigma^2 \circ \tau$, $\sigma \circ \tau^{-1}$?
- 3. Exprimer τ comme un produit de transpositions de la forme (i, i+1).
- 4. Exprimer $\sigma \circ \tau$ comme un produit de 3-cycles.

Rappel: Permutations conjuguées

Deux permutations sont conjuguées ssi les ordres des cycles de leurs décompositions canoniques coïncident.

Exercice 2.2 1. Montrer que tout élément $\sigma \in S_n$ est conjugué à son symétrique σ^{-1} .

2. Soit $\tau = (1\ 2\ 3\ 4)$ dans S_4 , expliciter la conjugaison entre τ et τ^{-1} .

Exercice 2.3 On note:

$$s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 4 & 3 & 7 & 1 & 2 \end{pmatrix}$$
$$s' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 3 & 7 & 5 & 2 & 1 \end{pmatrix}.$$

- 1. Ces deux permutations sont-elles conjuguées dans S_7 ?
- 2. Posons $s_1 = (3\ 5)s'$, $s_2 = (5\ 7)s'$. Ces deux permutations sont-elles conjuguées à s?

Exercice 2.4 1. Quels sont les diviseurs de $|S_5|$?

- 2. Combien y a-t-il de classes de conjugaison dans S_5 ?
- 3. Quels sont les ordres possibles pour un élément de S_5 ?

Exercice 2.5 Montrer que tout groupe fini G peut être vu comme un sous-groupe d'un groupe symétrique S_n pour un certain n.

Exercice 2.6 Dans S_8 , déterminer le nombre de permutations qui se décomposent :

- 1. en un produit de deux cycles de longueur 3,
- 2. en un produit de trois cycles dont deux de longueur 2 et un de longueur 3.

Exercice 2.7 Montrer que les 3-cycles engendrent A_n pour $n \geq 3$.

Rappel: Signature

La signature d'un produit est égale au produit des signatures.

La signature d'un r-cycle est $(-1)^{r-1}$.

Exercice 2.8 (Novembre 1999) Dans le groupe symétrique S_9 , on considère les cycles

$$\sigma = (1, 4, 5, 2, 3, 6)$$
 et $\tau = (7, 6, 5, 8, 9)$.

- 1. Quelle est la signature de $\pi = \sigma \tau$?
- 2. Décomposer π en produit de cycles disjoints. Quel est l'ordre de π ?
- 3. Expliquer pour quoi π^{2001} est produit de trois transpositions disjointes. Calculer ces trois transpositions.

Exercice 2.9 (Novembre 2005) On considère les deux permutations dans S_6 :

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{array}\right) \text{ et } \tau = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 2 & 1 \end{array}\right).$$

- 1. Donner les décompositions en cycles disjoints de σ et τ .
- 2. Calculer l'ordre de σ et τ . Ces deux permutations sont-elles conjuguées?
- 3. Calculer la signature de $\sigma^2 \tau^3$.
- 4. Combien y a-t-il d'élément de S_6 qui sont conjugués à τ ?
- 5. Décomposer $\tau \circ \sigma^{-1}$ en un produit de 3-cycles, si c'est possible.

Exercice 2.10 (Juin 2003) On considère dans S_7 :

$$\pi = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 1 & 4 & 3 & 6 \end{array}\right).$$

- 1. Ecrire π comme produit de cycles disjoints.
- 2. En déduire la signature et l'ordre de π .
- 3. Combien y-a-t'il d'éléments dans S_7 conjugués avec π ?

Exercice 2.11 (Novembre 2008) On considère les deux permutations dans S_6 :

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{array}\right) \text{ et } \tau = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 6 & 1 & 2 \end{array}\right).$$

- 1. Donner les décompositions en cycles disjoints de σ et τ .
- 2. Calculer la signature de $\sigma^6 \tau^{-7}$.
- 3. Combien y a-t-il d'éléments de S_6 qui sont conjugués à σ ?
- 4. Expliciter un élément de S_6 qui conjugue σ et $\sigma^{-1}\tau$, si c'est possible.
- 5. Décomposer $\tau \circ \sigma^{-1}$ en un produit de 3-cycles, si c'est possible.

Exercice 2.12 1. Donner un exemple de sous-groupe d'ordre 2, 3, et 4 du groupe alterné A_4 .

2. A_4 admet-il un sous-groupe d'ordre 6 (si oui, donner un exemple; si non, justifier)?