Feuille 1

Exercice 1 (Ensembles ordonnés: ordres totaux, bons ordres, ordres denses.)

- 1. Montrer que toute partie finie d'un ensemble totalement ordonné est bien ordonnée par rapport à la même relation d'ordre.
- 2. Montrer que le produit cartésien de deux ensembles totalement ordonnés, muni de l'ordre lexicographique défini à partir des deux ordres, est totalement ordonné. Que peut-on dire si les deux ordres sont bons?
- 3. On munit \mathbb{N} de son bon ordre usuel, noté <. Montrer que si $A \subset \mathbb{N}$ est un sous-ensemble infini, alors (A, <) est isomorphe à $(\mathbb{N}, <)$.
- 4. Soit (X, <) un ensemble totalement ordonné. Montrer que (X, <) est un bon ordre si et seulement s'il ne contient pas de suite strictement décroissante d'éléments.
- 5. Montrer qu'un ensemble X muni d'un ordre total < est fini si à la fois < et son inverse définissent des bons ordres sur X.
- 6. On dira qu'une relation d'ordre total < définie sur un ensemble X est dense si pour tous $a, b \in X$ distincts tels que a < b, il existe $c \in X$ différent de a et de b tel que a < c < b. Montrer que si X et Y sont deux ensembles dénombrables densement ordonnés et qui ne sont ni majorés ni minorés, alors ils sont isomorphes.

Exercice 2 (Plongements de bons ordres.) Un plongement d'un ensemble ordonné (X, <) dans un autre (Y, <') est une injection $f: X \longrightarrow Y$ qui préserve l'ordre : pour tous $x, x' \in X$, f(x) < f(x') si et seulement si x < x'.

- 1. Montrer que tout bon ordre dénombrable ou fini se plonge dans $(\mathbb{Q}, <)$.
- 2. Quels sont les bons ordres qui admettent un plongement dans $(\mathbb{R}, <)$?

Exercice 3 (Segments initiaux)

- **A.** Donner un exemple d'ensemble totalement ordonné (X, <) qui contient un segment initial propre qui n'est pas de la forme $\{x \in X | x < a\}$ pour un certain $a \in X$.
- **B.** Soit (X, <) un ensemble totalement ordonné. Notons I_X l'ensemble des segments initiaux propres de X et $\sigma: X \longrightarrow I_X$ qui associe à chaque $x \in X$ le segment initial propre $X_{< x} = \{y \in X | y < x\}$.
 - 1. Vérifier que σ est injective.
 - 2. Montrer que σ est surjective si et seulement si (X, <) est un bon ordre.
 - 3. Si (X, <) est un bon ordre, montrer que $S(X) = X \cup \{X\}$ admet un bon ordre isomorphe à (J_X, \subset) , où J_X est l'ensemble de tous les segments initiaux de X.
 - 4. Que peut-on dire de X si pour tout $x \in X$, $x = X_{\leq x}$?

Exercice 4 (Propriétés élémentaires des ordinaux)

- 1. Montrer qu'un ordinal α est un entier naturel (donc, un ordinal fini) si, et seulement si, tout sous-ensemble non vide de α a un plus grand élément.
- 2. Montrer qu'un ordinal α est limite si et seulement si $\alpha = \sup\{\beta | \beta \in \alpha\}$.
- 3. Montrer que si α, β sont deux ordinaux et $f: \alpha \to \beta$ est strictement croissante alors $\alpha \leq \beta$.
- 4. Montrer que si A est une partie d'un ordinal α , alors l'appartenance définit sur A une relation de bon ordre qui est isomorphe à un ordinal inférieur ou égal à α .

Exercice 5 Somme ordinale Rappelons la définition par récurrence transfinie de la somme de deux ordinaux α et β :

$$\alpha + \beta = \begin{cases} \alpha & \text{si } \beta = 0\\ S(\alpha + \gamma) & \text{si } \beta = S(\gamma)\\ \sup \left(\{ \alpha + \xi \colon \xi < \beta \} \right) & \text{si } \beta \text{ est limite} \end{cases}$$

Nous allons maintenant décrire une opération sur les bons ordres qui est équivalente :

- 1. Soient A et B deux ensembles bien ordonnés. Montrer que l'on peut supposer qu'ils sont disjoints.
- 2. On suppose maintenant $A \cap B = \emptyset$ et on considère $X = A \cup B$. Montrer que l'on peut définir de manière unique un bon ordre sur X prolongeant celui de A et celui de B (i.e. tel que l'ordre de X induise ceux de A et de B) et tel que A soit un segment initial de X.
- 3. Montrer que si A et B sont respectivement isomorphes aux ordinaux α et β alors X est isomorphe à $\alpha + \beta$.
- 4. En déduire les propriétés suivantes de l'addition ordinale :
 - (a) associativité;
 - (b) non commutativité;
 - (c) monotonie stricte à droite, i.e $\beta < \beta' \Rightarrow \alpha + \beta < \alpha + \beta'$;
 - (d) régularité à gauche, i.e $\alpha + \beta = \alpha + \beta' \Rightarrow \beta = \beta'$;
 - (e) non monotonie stricte à gauche et non régularité à droite;
 - (f) $\alpha \leq \alpha' \Rightarrow \alpha + \beta \leq \alpha' + \beta$.

Exercice 6 Multiplication ordinale Rappelons la définition par récurrence transfinie du produit de deux ordinaux α et β :

$$\alpha.\beta = \begin{cases} 0 & \text{si } \beta = 0 \\ (\alpha.\gamma) + \alpha & \text{si } \beta = \gamma + 1 \\ \sup (\{\alpha.\xi \colon \xi < \beta\}) & \text{si } \beta \text{ est limite} \end{cases}$$

Soient deux ordinaux α et β , nous allons définir un bon ordre sur l'ensemble $\alpha \times \beta$ qui sera isomorphe à l'ordinal $\alpha.\beta$:

1. On munit $\alpha \times \beta$ de l'ordre (anti-)lexicographique suivant

$$(\gamma_1, \delta_1) < (\gamma_2, \delta_2) \text{ ssi } \delta_1 < \delta_2 \text{ ou } (\delta_1 = \delta_2 \& \gamma_1 < \gamma_2).$$

Montrer que cela définit un bon ordre sur $\alpha \times \beta$.

- 2. Montrer que ce bon ordre est isomorphe à l'ordinal $\alpha.\beta$.
- 3. En déduire les propriétés suivantes de la multiplication ordinale :
 - (a) associativité;
 - (b) non commutativité;
 - (c) si $\alpha > 0$ et $\beta < \gamma$ alors $\alpha . \beta < \alpha . \gamma$;
 - (d) si $\alpha < \beta$ alors $\alpha \cdot \gamma < \beta \cdot \gamma$;
 - (e) $\alpha(\beta + \gamma) = \alpha . \beta + \alpha . \gamma$;

Exercice 7 Soustraction et division euclidienne sur les ordinaux

- 1. Montrer que l'on peut définir une opération \ominus sur les ordinaux telle que pour tous les ordinaux α, β on ait :
 - $\alpha \ominus \beta = 0$ si $\alpha < \beta$

• $\beta + (\alpha \ominus \beta) = \alpha \text{ si } \alpha \ge \beta$.

Donner un exemple d'ordinaux $\alpha > \beta$ tels qu'il n'existe pas d'ordinal γ tel que $\gamma + \beta = \alpha$.

2. Soient α et β deux ordinaux avec $\beta \neq 0$. Montrer qu'il existe un unique couple d'ordinaux (γ, δ) tel que $\alpha = \beta \cdot \gamma + \delta$ et $\delta < \beta$.

(Indication: on pourra d'abord montrer qu'il existe γ' tel que $\alpha < \beta . \gamma'$ et que le plus petit tel γ' est successeur).

Exercice 8 Puissance ordinale Rappelons la définition par récurrence transfinie de $\alpha > 0$ à la puissance β :

$$\alpha^{\beta} = \begin{cases} 1 & \text{si } \beta = 0 \\ \alpha^{\gamma} \cdot \alpha & \text{si } \beta = \gamma + 1 \\ \sup \left(\left\{ \alpha^{\xi} \colon \xi < \beta \right\} \right) & \text{si } \beta \text{ est limite} \end{cases}$$

- 1. Vérifiez les propriétés suivantes pour $\alpha > 0$, β et γ trois ordinaux :
 - si $\alpha > 1$ et $\beta > \gamma$ alors $\alpha^{\beta} > \alpha^{\gamma}$;
 - $-\alpha^{\beta}.\alpha^{\gamma} = \alpha^{\beta'+\gamma};$ $-(\alpha^{\beta})^{\gamma} = \alpha^{\beta.\gamma}.$
- 2. Montrer que si α et β sont dénombrables alors α^{β} est aussi dénombrable 1
- 3. Prouver qu'il existe un ordinal dénombrable ξ tel que $\xi = \omega^{\xi}$. Existe-t-il un ordinal tel que $\xi = \xi^{\omega}$?

Exercice 9 (Développement de Cantor) On souhaite ici démontrer que tout ordinal admet un « développement en base ω », autrement dit que tout ordinal α non nul s'écrit de manière unique

$$\alpha = \omega^{\alpha_1} n_1 + \ldots + \omega^{\alpha_m} n_m$$

avec $\alpha_1, \ldots, \alpha_n$ des ordinaux tels que $\alpha_1 > \ldots > \alpha_m$ et n_1, \ldots, n_m des entiers non nuls. On appelle ce développement le développement de Cantor de α .

- 1. Montrer que pour tout ordinal α on a $\omega^{\alpha} \geq \alpha$.
- 2. Montrer que pour tout ordinal α non nul il existe un unique couple (α_1, n_1) tel que

$$\omega^{\alpha_1} n_1 \leq \alpha < \omega^{\alpha_1} (n_1 + 1)$$
.

- 3. En déduire qu'il existe un unique $\beta_1 < \omega^{\alpha_1}$ tel que $\alpha = \omega^{\alpha_1} n_1 + \beta_1$.
- 4. Montrer l'existence du développement de Cantor et son unicité.
- 5. Montrer que les ordinaux de la forme ω^{α} sont exactement les ordinaux β tels que pour tout $\gamma < \beta$ on ait $\gamma + \beta = \beta$.
- 6. En déduire le développement de Cantor de $\alpha + \beta$ connaissant le développement de Cantor de α et celui de β .

^{1.} en particulier, α^{β} ne correspond PAS à l'ensemble des fonctions de β dans α : ça, c'est le produit de cardinaux.