Feuille 4 - Formules - Compacité : les premiers pas.

Exercice 1. Montrer que toute formule est équivalente à une formule ne contenant ni le connecteur booléen \vee , ni le quantificateur \forall .

Exercice 2. Montrer que toute formule est équivalente à une formule prénexe, c'est-à-dire à une formule de la forme $Q_1x_1Q_2x_2...Q_nx_n\varphi(\bar{x},\bar{y})$ où les Q_i sont des quantificateurs et $\varphi(\bar{x},\bar{y})$ est une formule sans quantificateurs.

- **Exercice 3.** 1. Soit T une théorie et φ un énoncé tel que $T \vdash \varphi$. Montrer qu'il existe une partie finie $T' \subseteq T$ telle que $T' \vdash \varphi$.
 - 2. Montrer que si T est une théorie finiment axiomatisable, alors de toute axiomatisation de T, on peut extraire une axiomatisation finie.

Exercice 4. Montrer qu'une théorie T qui a des modèles finis de cardinal arbitrairement grand a un modèle infini.

Exercice 5. Montrer qu'il n'existe pas d'ensemble de formules $\Phi(x)$ dans le langage des groupes tel que pour tout groupe G et tout $g \in G$, g satisfait $\Phi(x)$ si et seulement si l'ordre de g est fini.

Exercice 6. Soit \mathcal{L} un langage, θ un énoncé de ce langage et T_1, T_2 deux théories dans ce langage qui contiennent θ . On suppose que tout modèle de θ est soit modèle de T_1 soit modèle de T_2 mais jamais des deux. Montrer que T_1 et T_2 sont finiment axiomatisables.

Exercice 7. Soit \mathcal{L} un langage fini, et T une théorie dans le langage \mathcal{L} . On suppose que, dans tout modèle de T, les sous-structures engendrées par un nombre fini d'éléments sont finies. Montrer qu'il existe une fonction $f: \mathbb{N} \to \mathbb{N}$ telle que, pour tout n, une sous-structure engendrée par n éléments d'un modèle de T est de cardinal inférieur à f(n).