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FINITELY AXIOMATIZABLE STRONGLY MINIMAL GROUPS

THOMAS BLOSSIER AND ELISABETH BOUSCAREN

Abstract. We show that if G is a strongly minimal finitely axiomatizable group, the division ring of

quasi-endomorphisms of G must be an infinite finitely presented ring.

§1. Introduction. Questions about finite axiomatizability of first order theories
are nearly as old as model theory itself and seem at first glance to have a fairly
syntactical flavor. But it was in order to show that totally categorical theories cannot
be finitely axiomatized that, in the early eighties, Boris Zilber started developing
what is now known as “Geometric stability theory”. Indeed, as is often the case,
in order to answer such a question, one needs to develop a fine analysis of the
structure of models in the class involved and to understand exactly how each model
is constructed.
The easiest way to force a structure to be infinite by one first order sentence is
to impose an ordering without end points, or a dense ordering, thus making the
structure unstable. It was hence rather natural to wonder about theories at the other
extremity of the stability spectrum, and, in the early 60’s, to askwhether there existed
finitely axiomatizable totally categorical theories or simply uncountably categorical
theories [22, 17].
Each model of a totally categorical theory is prime over a strongly minimal
set. It is not too difficult to see that a totally categorical strongly minimal set
cannot be finitely axiomatizable [15]. Much more complicated, the proof of the non
finite axiomatizability for the whole class goes through a characterization of the
geometries associated to totally categorical strongly minimal sets (locally modular
and locally finite) and then an analysis of how any model is “built” around the
strongly minimal set ([23], [24] and [6] where the result is proved for all ù-stable
ù-categorical theories).
Around the same time as Zilber’s negative answer for the totally categorical
case, Peretjat’kin produced an example of a finitely axiomatized ℵ1-categorical
theory [19]. This example was in the following years simplified by Baisalov (see [9,
§12.2, Example 5]). This final example hasMorley Rank equal to 2, thus still leaving
open the question of the existence of a finitely axiomatizable strongly minimal set
(Morley rank anddegree equal to 1). Furthermore all the known examples of finitely
axiomatizable ℵ1-categorical theories are rather similar and constructed around
a strongly minimal set with trivial pregeometry, also leaving open the question
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of the existence of a finitely axiomatizable ℵ1-categorical theory with non trivial
pregeometry.
In 1994, Hrushovski [10] showed that any finitely axiomatizable ℵ1-categorical
theory must have locally modular pregeometry, thus reducing the remaining open
questions to two very different cases:

– the existence of a finitely axiomatizable trivial strongly minimal set
– the existence of anyfinitely axiomatizableℵ1-categorical theorywhich contains
a locally modular strongly minimal group.

The canonical example of a strongly minimal locally modular non trivial theory
is that of infinite K-vector spaces, for a fixed division ring K . It is open whether
there exists any finitely axiomatizable complete theory of R-modules, for R any
ring, but it is very easy to check that if K is an infinite division ring which is
finitely presented as a ring, then the theory of K-vector spaces can be finitely
axiomatized. Unfortunately, the existence of such a division ring is open (see
Section 4). Conversely, it was originally shown by Paljutin [18], in a paper where he
characterizes finitely axiomatizable uncountably categorical quasi-varieties, that, if
the theory of infinite K-vector spaces is finitely axiomatizable, then K is finitely
presented as a ring (see Section 4.2).
In the paper cited above, Hrushovski conjectures that, more generally, a finitely
axiomatizable ℵ1-categorical non trivial theory exists if and only if such an infinite
finitely presented division ring exists. Anyℵ1-categorical non trivial locally modular
theory must contain a locally modular stronglyminimal groupG , and the geometry
associated to such a group is that of infiniteK-vector spaces, whereK is the division
ring of quasi-endomorphisms of G (see Section 3 for the definitions). The precise
conjecture in [10] is that, in any finitely axiomatizable ℵ1-categorical non trivial
theory, the associated division ring of quasi-endomorphisms is infinite and finitely
presented as a ring.
One should remark that although every ℵ1-categorical non trivial locally modular
theory must contain a definable strongly minimal group, one cannot use general
arguments to transfer down the finite axiomatizability to the strongly minimal
group. We will see in Section 4.1 some general assumptions under which finite
axiomatizability can be transferred (bi-interpretability, definable finite partition).
But, it is not even true in general that, ifM is finitely axiomatizable and contained
in the algebraic closure of a strongly minimal set D (M is then said to be almost
strongly minimal), the strongly minimal set D, with the induced structure fromM ,
must be finitely axiomatizable. In the finitely axiomatized ℵ1-categorical Morley
rank 2 theory which was mentioned above, for example, the whole structure M
is contained in the algebraic closure of a strongly minimal subset D ⊂ M ×M
(the diagonal), whose induced structure is that of the integers with the successor
function, which is not finitely axiomatizable.
In past years, work around strongly minimal finitely axiomatizable trivial sets
has also centered around a conjecture relating their existence to the existence of an
infinite group with specific properties (see Section 4 for some further details).
In this paper we show that Hrushovski’s conjecture holds for strongly minimal
groups, and more generally for Morley Rank one groups: If G is a finitely axiom-
atizable strongly minimal group, then the division ring of quasi-endomorphisms of
G must be infinite and finitely presented (Theorem 4.19).
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By Hrushovski’s result, we know that such a groupmust be locally modular. This
enables us to reduce to the case when G is a strongly minimal abelian structure.
Then we show (Proposition 4.16) that if G is a finitely axiomatizable strongly
minimal abelian structure, the division ring K of quasi-endomorphisms of G must
be infinite and that the theory ofK-vector spaces must also be finitely axiomatizable
(Lemma 4.15).
We begin in Section 2 by recalling or proving some general facts about abelian
structures, under the precise form they will be needed later. In particular, we de-
scribe, in Section 2.2, the theory which will end up being both finitely axiomatizable
and interdefinable with the theory of K-vector spaces. In Section 3 we recall the
basic facts about the ring of quasi-endomorphisms of a locally modular strongly
minimal group and we look at strongly minimal abelian structures. In Section 4,
we consider the question of finite axiomatization. We begin by a somewhat tech-
nical section (4.1) where we give precise definitions of finite axiomatizability in the
case of infinite languages and we show how this notion transfers when changing
languages or structures. In order to be as self-contained as possible on the subject
of finite axiomatizability, in Section 4.2, we recall very precisely the two classical ex-
amples (regular group actions and vector spaces). In the next section (Section 4.3),
we prove the main theorem, that if a strongly minimal abelian structure is finitely
axiomatizable, then its division ring of quasi-endomorphisms, K , must be infinite
and the theory of K-vector spaces must be finitely axiomatizable. Finally in the
last section (4.4) we conclude for strongly minimal groups and more generally for
groups of Morley Rank one.
We would like to thank the many people with whomwe have had very helpful dis-
cussions since we started getting interested in questions of finite axiomatizability, in
particular, Ehud Hrushovski, Alexandre Ivanov, David Lippel, Dugald MacPher-
son, Mike Prest and Gabriel Sabbagh.

§2. Abelian structures.

2.1. Axiomatization and quantifier elimination. In this first section, we recall
the precise statements about axiomatization and pp-elimination of quantifiers for
abelian structures.
We define an abelian structureG, to be a commutative group

G = (G,+,−, 0, (Hi)i∈I ),

where eachHi is a subgroup of someGni . We denote by L0 the following language:
{+,−, 0, (Hi)i∈I }. We are going to consider expansions of abelian structures by
constants and we will denote by Lc the language of an expansion of G by some
constants in a subset C , i.e., Lc = L0 ∪ {c : c ∈ C}.
Recall that the set of positive primitive formulas is the closure of the atomic
formulas by conjunction and existential quantifiers.
It has been well-known for years that in a complete theory of modules, every
formula is equivalent to a Boolean combination of pp-formulas and that a complete
theory of modules is axiomatized by so-called invariant statements describing the
index of pairs of positive primitive definable subgroups [3, 21].
The similar result for abelian structures has also been known for a long time
(abelian structures were originally introduced by E. Fisher in [7]) but was never
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published in any “official” form until it appeared as a special case in the general
treatment of theories given by cosets in [8]. As we are dealing with questions of
finite axiomatization, it is important for us to be precise about the form of the
axioms and the language we are working in. For this reason we will recall briefly
the precise definitions we need and state, mostly without proofs, the results under
the exact form we require. Some similar considerations appear also in [5].

Lemma 2.1. Let φ(x1, . . . , xn) be a consistent positive primitive formula in L0 in n
variables (n ≥ 1) and without parameters. Then {a ∈ Gn : G |= φ(a)} is a subgroup
of Gn .

Note that the set of pp-definable subgroups inG corresponds to the closure of the
groups (Hi : i ∈ I ), the trivial groups ({0} andG), the diagonal ofG2 and the graph
of the addition, by cartesian product, permutation of coordinates, intersection and
projection.

Lemma 2.2. Let φ(x̄, 0̄) be a pp-formula fromL0 without parameters, which defines
a subgroup in Gn. Let d̄ be a tuple fromG . Then φ(x̄, d̄ ) is empty or is a coset of the
pp-definable subgroup defined by φ(x̄, 0̄).

A pp-formula in the languageLc is equivalent to φ(x̄, c̄) where φ is a pp-formula
fromL0 and c̄ is a tuple of constants. In particular a subgroupofGn which is definable
by a pp-formula from Lc is in fact already pp-definable in L0 without parameters.
Let T (G) be the following set of sentences from L0:

– G is a commutative group,
– for each original predicateHi from L0,Hi is a subgroup of Gni ,
– the equivalence sentences: all sentences of the form ∀x̄ (φ(x̄) ↔ ø(x̄)), for φ
andø pp-formulaswhich define the same subgroup ofGn (note that these sen-
tences give the following relations between pp-definable subgroups: inclusion,
intersection, projection and equality up to a permutation of variables),
– the dimension sentences: for each pair H ⊂ H ′ of pp-definable subgroups of
G , such that the index of H in H ′ is equal to n, the sentence “[H ′ : H ] = n”;
for each pair H ⊂ H ′ of pp-definable subgroups of G , such that the index of
H in H ′ is infinite in G , the infinite scheme of sentences “[H ′ : H ] ≥ k” , for
every k ≥ 1.

Fact 2.3. The theory T (G) is complete in the language L0 and admits quantifier
elimination to the pp-formulas, that is, every formula is equivalent modulo T (G) to a
Boolean combination of pp-formulas.

Note that it follows directly that every abelian structure is stable and one-based (see
Fact 4.5).

Corollary 2.4. The theory ofG in the languageLc is given by T (G) together with
the pp-types of the constants (i.e., for each pp-definable groupH , we have to describe
theH -congruences on the set of constants).

Corollary 2.5. Let a ∈ G and B ⊂ G , then a is algebraic over B in the Lc-
structure G if and only if a is in a B-definable coset of some finite pp-definable
subgroup of G .

Proof. By elimination topp-formulas, the typeofa overB is given by the setX of
B-definable cosets ofpp-definable subgroups towhicha belongs, and the setY ofB-
definable cosets of pp-definable subgroups to which a does not belong. Note thatX
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is closed under finite intersections. By compactness, as a is algebraic overB, there is
some cosetA inX and some cosetsB1, B2, . . . , Bn fromY such thatA\(B1∪· · ·∪Bn)
is finite non empty. We can suppose that each Bi is contained in A, by taking its
intersectionwithA. ThenA = a+H = {a1}∪· · ·∪{am}∪(d1+H1)∪· · ·∪(dn+Hn),
where {ai} is considered as a coset of the trivial group, di +Hi = Bi andHi ⊂ H .
By Neumann’s Lemma, if some coset a+H is covered by a finite number of cosets,
then it is covered by those cosets which correspond to subgroups of finite index in
H . It follows thatA itself is finite (as A \ (B1 ∪ · · · ∪ Bn) is not empty, {0}must be
of finite index in A). ⊣

Wefinish with a remark thatwill be very useful in the sequel. As abelian structures
are stable andone-based, it follows by general results (seeFact 4.5) that any definable
connected subgroup is definable over acl eq(∅). But for abelian structures, one can
in fact show more:

Proposition 2.6. LetG be an abelian structure inLc. LetH ⊂ Gn be any definable
connected subgroup (with parameters) in Lc . Then H is pp-definable. In particular,
H is definable in L0 over ∅.

Proof. Let H be a connected definable subgroup of Gn. By pp-elimination,
there is a set A such thatH is equivalent to a Boolean combination of pp-formulas
with parameters in A. We can suppose that the unique generic type of H , q, is
defined and stationary over A. As q is a complete type over A, we can suppose
that there are ā0, ā1, . . . , ām ∈ A and pp-definable (in L0 over ∅) subgroups φ0,
φ1, . . . , φm of Gn such that:

1. for each i > 0, φi is a subgroup of φ0,
2. (ā0 + φ0) \ (ā1 + φ1 ∪ · · · ∪ ām + φm) ⊆ H ,
3. every generic ofH over A is in (ā0 + φ0) \ (ā1 + φ1 ∪ · · · ∪ ām + φm),
4. for each i > 0, each φi is of infinite index in φ0: indeed if φi has finite index in
φ0, by enlargingA if necessary, we can suppose that ā0+φ0 =

⋃
1≤j≤k ēj +φi ,

with ēj ∈ A, and replace ā0 + φ0 with one of the ēj + φi .

It follows that H = φ0: the difference of two generics of H (over A) is in φ0, so
H ⊂ φ0. Conversely, let h be a generic of H over A. Take a generic x of φ0 over
Ah. Since for each i > 0, φi is a subgroup of φ0 of infinite index, x /∈ (āi − h) + φi .
Thus x + h ∈ (ā0 + φ0) \ (ā1 + φ1 ∪ · · · ∪ ām + φm) and x ∈ H . ⊣

2.2. Direct sums and pure injectives. In this section we consider an abelian struc-
ture G = (G,+,−, 0, (Hi )i∈I , {c ∈ C}) with constants, in the language Lc , and we
denote its complete theory by T.
The following direct sum construction plays an essential role in the paper.
Let S be an abelian structure in the language L0. Let GS := G ⊕ S, be the Lc-
structure with universe the group GS = G ⊕ S and with the obvious interpretation
of the symbols in the language: each constant c is interpreted by (c, 0); for H of
arity n , we interpret H in GS by H (G) ⊕H (S) where H (G) := {(h, 0) ∈ GS

n :
G |= H (h)} and H (S) := {(0, h) ∈ GS

n : S |= H (h)}. If g = (g1, . . . , gn) ∈ Gn

and s = (s1, . . . , sn), we will use both notations g+ s or (g, s) to denote the element
(g1 + s1, . . . , gn + sn) ∈ GS

n.
The following lemmas (2.7 to 2.10) are well known for the case of modules (in
the usual language for modules, see [21]) and mostly folklore for abelian structures.



30 THOMAS BLOSSIER AND ELISABETH BOUSCAREN

The proofs are similar to the ones in the case of modules. We give here only the
ones that provide information which can be useful.

Lemma 2.7. For each pp-formula φ(x) (x = (x1, . . . , xn)) from L0, φ(GS) =
φ(G) ⊕ φ(S), i.e., for h1 ∈ Gn, and h2 ∈ GS

n, GS |= φ(h1 + h2) if and only if
G |= φ(h1) and S |= φ(h2).

Proof. By induction on pp-formulas. For atomic formulas, it follows from
the way GS is defined as being the direct sum of G and S as L0-structures. For
a conjunction of two pp-formulas, it follows easily from the fact that GS is the
direct sum of G and S as groups. There remains to check the case of a projection.
Let φ(x1, . . . , xn) be a pp-formula such that φ(GS) = φ(G) ⊕ φ(S) and consider
the pp-formula ø := ∃x1φ. We have trivially that ø(G) ⊕ ø(S) ⊂ ø(GS). Let
(a2, . . . , an) ∈ ø(GS). Then there is a1 ∈ GS such that (a1, . . . , an) ∈ φ(GS) =
φ(G)⊕φ(S). So (a1, . . . , an) = (b1, . . . , bn)+(c1, . . . , cn), with (b1, . . . , bn) ∈ φ(G)
and (c1, . . . , cn) ∈ φ(S). But then (a2, . . . , an) = (b2, . . . , bn) + (c2, . . . , cn) with
(b2, . . . , bn) ∈ ø(G) and (c2, . . . , cn) ∈ ø(S). ⊣

Remark. In particular, if φ(x, y) is a pp-formula in L0 and c = (c1, . . . , cn) are
some constants from C , then GS |= φ(g + s, c) if and only if G |= φ(g, c) and
S |= φ(s, 0).

Definition. LetM be an abelian structure. We say thatM is pure injective if every
set of pp-formulas with parameters inM (with possibly infinitely many variables)
which is finitely realized inM is realized inM .

Proposition 2.8. If G0 is an elementary substructure of G and is pure injective,
then there exists f, an Lc-homomorphism from G to G0, such that f is the identity
on G0.

Corollary 2.9. If G0 is an elementary substructure of G and is pure injective,
then G = G0 ⊕ G1 and for each pp-definable subgroup H ⊂ Gn in L0, H =
H ∩ (G0

n)⊕H ∩ (G1
n).

Proof. Let G1 = kerf where f is given by the previous proposition. Then
a = f(a)+(a−f(a)) anda−f(a) ∈ Kerf for each a ∈ G : indeedf(a−f(a)) =
f(a) − f(f(a)) = f(a) − f(a) = 0. Similarly, for any n ≥ 2, Gn = Gn0 ⊕ G1

n.
So we can suppose that H ⊂ G to simplify the notation. Since H is a pp-
definable subgroup and f is an L0-homomorphism, f(H ) ⊂ H ∩ G0 and so
f(H ) = H ∩ G0. Thus H = H ∩G0 ⊕H ∩ G1: for each h ∈ H , f(h) ∈ H ∩ G0
and (h − f(h)) ∈ kerf ∩H . ⊣

Let G = G0 ⊕ G1, as above in Corollary 2.9, where G0 is a pure injective ele-
mentary substructure of G for the language Lc , and where G1 = kerf, f given by
Proposition 2.8. LetG1 be the following abelian structure onG1 in the languageL0:

G1 = (G1,+,−, 0, (Hi ∩G
ni
1 )i∈I ).

Then G = G0 ⊕ G1 as abelian structures and by Lemma 2.7:

Lemma 2.10. For every subgroup H of Gn definable by a pp-formula φ in G, the
group φ(G1) := {a ∈ G1

n : G1 |= φ(a)} is equal toH ∩Gn1 .

We will now describe an axiomatization for the theory of G1.
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Let T1(G) be the following modification of the axioms T (G):

– the axioms for abelian groups,
– for each original predicateH from L0, “H is a subgroup”,
– the equivalence sentences from T (G),
– “[φ : ø] is infinite” for every pair of pp-formulas such that in G, ø(G) ⊂
φ(G) ⊂ G and [φ(G) : ø(G)] is infinite,
– [φ : ø] = 1 for every pair of pp-formulas such that in G, ø(G) ⊂ φ(G) ⊂ G
and [φ(G) : ø(G)] is finite.

Proposition 2.11. IfG is |G0|+-saturated,T1(G) axiomatizes the complete theory
of the abelian structureG1, that is, T1(G) ⊢ T (G1).

Proof. We show first that G1 is a model of T1 := T1(G). By Lemma 2.10, G1
satisfies the equivalence sentences from T (G). LetK ⊂ H be a pair of pp-definable
subgroups ofG . If [H : K ] is infinite then by |G0|+-saturation ofG, [H : K ] > |G0|.
Thus [H ∩G1 : K ∩G1] is infinite. If [H : K ] is equal to k, sinceG0 is an elementary
substructure, there are a1, . . . , ak ∈ G0 such thatH = a1 +K ∪ · · · ∪ ak +K . Let
x ∈ H ∩ G1. Then x = ai + b where b ∈ K . Let f be as in Proposition 2.8,
then 0 = f(x) = f(ai) + f(b) = ai + f(b). But f(b) ∈ K , so x ∈ K and
H ∩G1 = K ∩G1.
Now we show that T (G1) is a consequence of T1. Let φ and ø be a pair of
pp-formulas from L0 which define subgroupsH and K of G

n such thatH ∩Gn1 =
K ∩ Gn1 . We have to show that the sentence ∀x̄ (φ(x̄) ↔ ø(x̄)) is a consequence
of T1. Note first that if K ⊂ H and [H : K ] is finite, this follows from the last
axioms by an easy induction on n. But we can consider the pair K ∩ H ⊂ H
and remark that [H : K ∩ H ] is finite: indeed, if [H : K ∩ H ] was infinite, then
[H ∩Gn1 : K ∩H ∩Gn1 ] would be infinite. For the dimension sentences, suppose now
thatH and K are pp-definable subgroups of G such thatK ∩G1 ⊂ H ∩G1. Then
the sentence for the index of [H ∩ G1 : K ∩ G1] is a consequence of the sentence
from T1 corresponding to the pair of pp-formulas ø ∩ φ and φ. ⊣

Remark 2.12. Note thatG1 contains no non trivial finite pp-definable subgroup.
So, in G1, the algebraic closure of the empty set is reduced to 0 and algebraic closure
corresponds to definable closure.

The assumption that G is saturated is essential in the previous proposition in
order to obtain that G1 is a model of the right theory. But if one considers abelian
structures which are models of T1, saturation is no longer relevant:

Proposition 2.13. If S is a model of T1 and G is a model of T, then GS (the
abelian structureG⊕S) is a model of T and the map i fromG intoGS , i(g) = (g, 0)
is an Lc-elementary isomorphism (i.e., G ⊕ {0} is an Lc-elementary substructure
of GS).

Proof. Let φ and ø be two pp-formulas such that φ(G) ⊂ ø(G). Then φ(S) ⊂
ø(S) (by equivalence sentences). If [ø(G) : φ(G)] = k then ø(S) = φ(S) (by
T1), so [ø(GS) : φ(GS)] = k. If [ø(G) : φ(G)] = ∞ then [ø(GS) : φ(GS)] = ∞.
Moreover, by definition of GS , the pp-types of the constants are preserved. Hence
GS is a model of T, so G ⊕ {0} and GS are elementarily equivalent, and it follows
by pp-elimination in T and Lemma 2.7 that G ⊕ {0} ≺ GS . ⊣
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The above construction will be particularly relevant when the theory T is totally
transcendental.
Recall that in a totally transcendental group, there is no infinite strictly decreasing
sequence of definable subgroups. It follows easily that the same is true for cosets
and that exactly as for modules (see [21]):

Proposition 2.14. If T is totally transcendental then every model of T is pure
injective.

§3. The strongly minimal case. We remind the reader that a definable set D in
a structureM (defined by a formula φ(x̄) with parameters from M ) is said to be
strongly minimal if, in every elementary extensionN ofM , every relatively definable
subset of D is finite or co-finite (i.e., for every formula ø(x̄) with parameters from
N , φ(x̄) ∧ ø(x̄) is finite or φ(x̄) ∧ ¬ø(x̄) is finite). A structure M is said to be
strongly minimal if the formula (x = x) is strongly minimal. If M is strongly
minimal, model theoretic algebraic closure (denoted acl) defines a pregeometry on
M . In particular, for anyX ⊂M , the dimension ofX (the cardinality of amaximal
algebraically free subset in X ) is well defined. We say thatM is trivial, or has trivial
pregeometry if, for all A ⊂ M , acl(A) =

⋃
a∈A acl({a}). We say thatM is locally

modular if for all algebraically closed X,Y ⊂ M , such that dim(X ∩ Y ) > 0,
dim(X ∪Y ) = dim(X )+dim(Y )−dim(X ∩Y ). We will explicitly state the results
we use about locally modular strongly minimal groups. For proofs and details we
refer to [20], [4] or [16].
By a strongly minimal group, we mean, as usual, a group G with possibly extra
structure in a language L, which is strongly minimal as an L-structure.
Let G = (G,L) be a strongly minimal group in a language L. Let G0 :=
G ∩acl(∅). A quasi-endomorphismof G is a connected subgroupH ofG2, definable
over acl eq(∅), different from G ×G and such that the first projection ofH is equal
to G . It follows that H is strongly minimal. We define the kernel of H and the
cokernel of H to be respectively:

KerH := {a ∈ G : (a, 0) ∈ H}, Coker(H ) := {a ∈ G : (0, a) ∈ H}.

The cokernel of H is always finite, and if H is not trivial, that is, if H 6= G × {0},
the kernel of H is finite. We denote by QS(G ) the set of quasi-endomorphisms
of G .
Remark: By strong minimality, if G0 is infinite, G0 is an elementary substructure
of G and in that case, all quasi-endomorphisms of G are actually definable over
G0. In any case, if M0 is a prime model for Th(G ), all quasi-endomorphisms are
definable overM0.
A quasi-endomorphism induces an endomorphism of G/G0: if H ∈ QS(G ),
then {(a+G0, b+G0) : (a, b) ∈ H} is the graph of an endomorphismfH ofG/G0.
Furthermore the map which to everyH ∈ QS(G ) assigns the endomorphism fH is
a bijection from QS(G ) onto the ring of the “quasi-definable” endomorphisms of
G/G0. The ring of endomorphisms of G/G0 induces the structure of a division ring
on QS(G ).
In the case of a locally modular group, the pregeometry on G defined by the
relation of algebraic closure corresponds to the geometry of QS(G )-vector spaces.
More precisely:
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Fact 3.1. LetG be a locally modular stronglyminimal group, let b, a1, . . . , an ∈ G .
Then b ∈ acl(a1, . . . , an) if and only if there are quasi-endomorphismsS1, . . . , Sn and
elements h1, . . . , hn ∈ G such that for each i , 1 ≤ i ≤ n,

(ai , hi) ∈ Si and b − (h1 + · · ·+ hn) ∈ G0.

Any strongly minimal abelian structure A is locally modular and by 2.6 all quasi-
endomorphisms of A are definable over ∅.
By general results about one-based groups (see Section 4.4), any locally modular
strongly minimal group is “almost interdefinable” with a strongly minimal abelian
structure. This will enable us at the end to reduce to the case of finitely axiomatizable
abelian structures.

Fromnowon in this section,G is a stronglyminimal abelian structure with constants,
in the language Lc , and T denotes its theory in Lc .

Consider, T (G), the axiomatization of the theory ofG in L0 given in the previous
sections, and T1 = T1(G), the associated theory.
Note that one can see directly from the axiomatizations of the formT (G) when an
abelian structure is strongly minimal: by pp-eliminationGwill be strongly minimal
if and only if G is infinite and for any pp-definable subgroupH of G ,H is finite or
equal to G .

Lemma 3.2. The theory T1 is strongly minimal.

Proof. First a model of T1 must be infinite (the formula x = x is a pp-formula).
Let φ be a pp-definable subgroup of G . By strong minimality of G, either φ is
finite, or φ is equal to G . Hence in any model H of T1, φ is trivial or φ = H . By
pp-elimination, T1 is also strongly minimal. ⊣

We also know (see Remark 2.12) that in any model of T1, acl(∅) = {0} and
acl = dcl . It follows easily that, if G1 is a model of T1 and if K1 is the division
ring of quasi-endomorphisms of G1, the structure on G1 is exactly the K1-vector
space structure. But we want to check thatK1 = K , where K is the division ring of
quasi-endomorphisms of G.
Let us recall the definition of interdefinability:

Definition 3.3. Let M1 = (M,L1) and M2 = (M,L2) be, respectively, L1 and
L2-structures with the same universeM . Let A ⊂M , we say thatM1 is A-definable
in M2 if every A-definable subset in M1 is A-definable in M2, equivalently, if every
symbol in the language L1 is A-definable in M2. We say that M1 and M2 are A-
interdefinable if eachMi is A-definable in the other, equivalently, ifM1 andM2 have
the same A-definable subsets.

Proposition 3.4. Let K be the division ring of quasi-endomorphisms of G and let
S be any model of T1. Every quasi-endomorphism r of G induces an endomorphism
of S and S is ∅-interdefinable with theK-vector space structure SK := (S,+,−, 0, {r, :
r ∈ K}).

Proof. Let G′
S = G′ ⊕ S, where G′ is a countable elementary substructure of G

(take for G ′, G0 = acl(∅), if it is infinite) and S is any model of T1. Then G′
S is a

model of T, the theory ofG (2.13). Let φr(x, y) be a pp-formula which defines the
quasi-endomorphism r ∈ K , r 6= Id . By the axioms in T1, in S×S, φr(x, y) defines
a subgroup with first projection equal to S, which is strict and connected, hence
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which is a quasi-endomorphism of S. The kernel, {y ∈ S : S |= φr(y, 0)}, must be
trivial, as well as the co-kernel. So φr(x, y) defines a bijective endomorphism of S.
In particular,K is a subring of the ring of definable endomorphisms of S. Consider
the followingK-vector space structure on S: SK := (S,+,−, 0, {r : r ∈ K}), where
we define the action of r on S by letting r.x = y iff S |= φr(x, y).
As the structure SK is clearly definable in the L0-structure S, in order to prove
that S is definable in SK , it suffices to show that, in any model S of T1, if any two
tuples, a1, . . . , an and b1, . . . , bn in S have the same K-vector space type, then they
also have the same L0-type.

Claim. Let a, b, a1, . . . , an ∈ S be such that a is K-linearly independent from
a1, . . . , an and b is also K-linearly independent from a1, . . . , an, then there exist an
L0-automorphism of S which sends a to b and fixes a1, . . . , an.

Proof. In the structureG′
S , (0, a) /∈ acl((G

′⊕{0})∪{(0, a1), . . . , (0, an)}) (in the
language Lc): otherwise, there would be r1, . . . , rn ∈ K , (x1, y1), . . . , (xn , yn) ∈ G

′
S

and g ∈ G ′ such that

(0, a) = (x1, y1) + · · ·+ (xn, yn) + (g, 0) and G
′
S |= φri ((0, ai), (xi , yi )).

But then, a = y1+ · · ·+ yn = r1a1+ · · ·+ rnan. Similarly (0, b) /∈ acl((G ′ ⊕{0})∪
{(0, a1), . . . , (0, an)}).
SinceG′

S is stronglyminimal andG
′⊕{0} ≺ G′

S , there exists an automorphism ô of
G′
S which sends (0, a) to (0, b) and fixes pointwiseG

′ ⊕{0} and (0, a1), . . . , (0, an).
From ô we construct easily an L0-automorphism of S which sends a to b and fixes
a1, . . . , an: just let ó(s) := s ′ if ô(0, s) = (x, s ′). ⊣Claim

Let a1 . . . an and b1 . . . bn be two tuples of S which have the same K-vector space
type. Assume that a1 . . . ak are K-linearly independent and for every j > k, aj is
dependent on a1 . . . ak . By the previous claim, there is an L0-automorphism ó of S
which sends a1 . . . ak onto b1 . . . bk . Now, as Sk is definable in S, it follows that for
every j > k, ó(aj) = bj . ⊣

Remark. If G is such that G0 = acl(∅) = 0, then T = T (G) = T1 and G itself
has the structure of a K-vector space. In that case, it will follow directly that T is
finitely axiomatizable if and only if the theory of infinite K-vector spaces is finitely
axiomatizable, and hence if and only if (see Section 4.2.2) K is finitely presented as
a ring.

§4. Application to finite axiomatizability. In [18] Paljutin shows that “There ex-
ists a finitely axiomatizable, not locally finite categorical quasi-variety if and only if
one of the following conditions hold:

(1) there exists an infinite finitely presented ring which is a division ring;
(2) there exists an infinite finitely presented groupwith a finite number of elements
g1, . . . , gn such that every non trivial cyclic subgroup of G intersects one of
the conjugacy classes of the elements g1, . . . , gn.”

The proof proceeds by showing first that, if there is a such a finitely axiomatizable
quasi-variety (a quasi-variety is the class of models of a set of universal Horn
sentences), then there exists one which is “standard”, where the standard quasi-
varieties are either K-vector spaces for a division ring K , or the Cayley graph of
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a group. Then he shows that if the quasi-variety of K-vector spaces is finitely
axiomatizable and not ù-categorical, K must satisfy condition (1), and that if the
Cayley graph of G is finitely axiomatizable and not ù-categorical, then G must
satisfy (2) (a proof of this part, due to M. A. Taitslin and Yu. E. Shimarev had
already appeared in [1]).
The existence of such a ring and such a group are both still open. The existence
of an infinite finitely presented group with finitely many conjugacy classes is a
well-known long standing open question, but the existence of the a priori weaker
condition required in (2) is also open.
Concerning the existence of a ring satisfying (1), it seems that it is already un-
known whether there exists an infinite finitely generated ring which is a division
ring. One can only easily see that such a division ring cannot be commutative (see
Section 4.2.2 below).
Some years ago, A. Ivanov obtained some partial results on the conjecture that
the existence of any finitely axiomatizable strongly minimal trivial set must imply
the existence of a group satisfying (2) [12, 13]. The idea behind this conjecture is
that such a group should appear as a subgroup or a quotient of the automorphism
group of a connected component of the trivial strongly minimal set.
As explained in the introduction, Hrushovski showed in [10] that any finitely
axiomatizable ℵ1-categorical theory must be locally modular and suggested the
conjecture that if the theory has non trivial pregeometry, then the associated division
ring of quasi-endomorphisms must satisfy (1).
In order to be quite self-contained on the subject of finite axiomatizability, and
because sometimes a certain confusion arises on what exactly is meant by finite
axiomatizability (in the case of an infinite language, for example), we will present
in the next section precise definitions and basic transfer properties. For the same
reasons, in Section 4.2, we will present a detailed exposition of the two “standard”
cases.

4.1. Transferring finite axiomatizability. We are going to need to transfer the
property of being finitely axiomatizable through various changes of languages and
interpretations, and to be quite precise when we do it. We have unfortunately
not found a completely adequate reference for our purpose, which we could have
simply quoted or referred to. Most of what follows appears in various places under
slightly different forms, usually with the added assumption of ù-categoricity. The
closest references for bi-interpretability can be found in [2] or, more recently, in [20].
In both cases the notions were used in the context of quasi-finitely axiomatizable
ù-categorical theories, a context where one can replace syntactical arguments by
topological considerations about the automorphism groups of the structures.
First, recall that a theory T in a languageL is said to have a finite axiomatization
if there is a finite set F of sentences from L such that F ⊢ T . A classical result
states that if K is a class of L-structures, then K is the class of models of a finite
set of axioms if and only if both the class K and its complement are closed under
isomorphisms and ultraproducts. No class of structures in a genuinely infinite
language can satisfy these conditions. But one naturally comes across structures
in such infinite languages, for example modules over infinite rings, for which the
question of finite axiomatizability also makes sense.
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So we will begin by recalling the definition of finite axiomatizability which applies
to any language.

From now on, when we use the word theory, we mean a consistent set of axioms
which is closed under deduction.

Definition 4.1. Let L be a language and T a theory in L. We say that T is
finitely axiomatizable if there is a finite sub-language L0 of L such that any model
M of T is interdefinable (Definition 3.3) with its reduct to L0 and the theory TL0 ,
the restriction of T to the language L0, has a finite axiomatization in L0. We then
say that T is finitely axiomatizable in the finite languageL0.

Let us first fix some notation. Remark that, if the structure (M,L0) is defin-
able in the structure (M,L1), then functions symbols from L0 are replaced in the
“translation” by their graphs. One can hence without any loss of generality, and
in order to avoid extra cumbersome notation, when dealing with interdefinability,
or bi-interpretability further down below, replace functions by their graphs and
suppose that the languages involved contain only relation symbols and constants.
For every symbol s (relation or constant) in a language L let äs (x̄) denote the
atomic formula defining the symbol:

– if s is a relation symbol R, äR(x̄) := R(x̄),
– if s is a constant symbol, c, äc(x) := (x = c).

Let M0 = (M,L0) and M1 = (M,L1) be respectively L0 and L1-structures onM .
Then M0 is ∅-definable in M1 if and only if, for each s in L0, there is a formula
φ1[äs ](x̄) in L1, such that for all ā ⊂M ,

M0 |= äs (ā) iff M1 |= φ1[äs ](ā).

We then define by induction a “translation” for every formula of L0:
If è(x̄) is an atomic formula, i.e., è(x̄) = R(x̄, c1, . . . , cn), where R is a relation
symbol, and c1, . . . cn are constant symbols in L0, we let

φ1[è](x̄) := ∃y1 . . . ∃yn φ1[äR](x̄, y1, . . . , yn) ∧ φ1[äc1 ](y1) ∧ · · · ∧ φ1[äcn ](yn).

If è(x̄) = è1(x̄) ∧ è2(x̄) in L0, we let φ1[è](x̄) := (φ1[è1](x̄) ∧ φ1[è2](x̄)).
If è(x̄) = ¬ø(x̄), we let φ1[è](x̄) := ¬(φ1[ø](x̄)).
If è(x̄) = ∃y ø(x̄, y), we let φ1[è](x̄) := ∃y (φ1[ø](x̄, y)).
It follows that for all ā ⊂M , for all è(x̄) in L0,

M0 |= è(ā) iff M1 |= φ1[è](ā).

Using the following lemma and a compactness argument, one can check easily
that if the language L is finite, T is finitely axiomatizable in the sense above if and
only if it has a finite axiomatization in L.

Lemma 4.2. Let T be a theory in a language L, let L0 be a sub-language of L and
let Σ be a subset of sentences from T such that, for every symbol s in L, Σ includes a
sentence of the form:

(∀x̄ (äs (x̄) ↔ φs(x̄)),

where φs(x̄) is a formula in L0. Then T is axiomatized by Σ ∪ TL0 .
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Proof. As above, by induction, we see that the condition on Σ exactly says that
every L-structure M which is a model of Σ is definable in its restriction to L0, the
translation being uniform for all models of Σ, that is: for every formula è(x̄) in L
there exists a formula φ0[è](x̄) in L0 such that Σ ⊢ ∀x (φ0[è](x) ↔ è(x)). The
conclusion then follows directly. ⊣

Finite axiomatizability transfers through interdefinability:

Proposition 4.3. Let M0 = (M,L0) and M1 = (M,L1) be two structures on the
same domain M which are interdefinable. Then Th(M0) is finitely axiomatizable if
and only if Th(M1) is finitely axiomatizable.

Proof. Note first that we can assume that both L0 and L1 are finite: indeed,
suppose that Th(M1) is finitely axiomatizable. As interdefinability is transitive, we
can suppose thatL1 is finite. Then there is a finite sub-language ofL0, such that the
reduct of M0 to this finite sub-language is interdefinable with L1, hence also with
M0 in L0.
Using the notation described above, it follows from interdefinabilty that we have
translations φ0 and φ1 defined by induction, such that:

(i) for all ā ⊂M , for all è(x̄) in Li , i ∈ {0, 1},

Mi |= è(ā) iff M1−i |= φ1−i [è](ā).

One can also easily check the following:

(ii) for every formula è(x̄) in Li ,

Mi |= ∀x̄ (è(x̄)↔ φi [φ1−i [è]](x̄)).

Let Σ0 :=
∧
s∈L0
(∀x̄ (äs (x̄) ↔ φ0[φ1[äs ]](x̄)).

Consider now any L0-structure, N0, which is a model of Σ0. On N , the domain
of N0, define an L1-structure, N1, by interpreting the symbols of L1 according to
the translation φ0, that is: for every symbol s of L1, for every b̄ ⊂ N , N1 |= äs (b̄)
iffN0 |= φ0[äs ](b̄). Then

(iii) for every formula è(x̄) in L1, for all b̄ ⊂ N ,

N1 |= è(b̄) iff N0 |= φ0[è](b̄).

(iv) for every formula ø(x̄) in L0,

N0 |= (∀x̄ (ø(x̄) ↔ φ0[φ1[ø]](x̄)).

Suppose now thatTh(M1) is finitely axiomatizable, by a sentence è1 inL1. We claim
that Th(M0) is then axiomatized by φ0[è1] together with the sentence Σ0 defined
above. Let N0 be any L0-structure model of φ0[è1] and of Σ0. Consider N1 the
L1-structure on N associated to N0 as above. Then, by (iii), N1 is a model of è1,
and hence of Th(M1). Let ø be any sentence in L0, such that N0 |= ø. Then by
(iv), N0 |= φ0[φ1[ø]], and hence by (iii), N1 |= φ1[ø]. As N1 ≡ M1, M1 |= φ1[ø],
hence by (i),M0 |= ø. This shows thatN0 is a model of Th(M0). ⊣

Now some very basic remarks about expanding the language while keeping finite
axiomatizability:

Lemma 4.4. (i) Let M = (M,L) be a structure in a finite language L, let E be
an ∅-definable equivalence relation onM n and U ⊂ M n an ∅-definable subset.
Let ME be the following reduct of M eq , ME := (M,U/E,L,fE ), where fE
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is the restriction of the quotient map to U . Then the theory of M has a finite
axiomatization if and only if the theory ofME has a finite axiomatization.

(ii) LetM = (M,L) be a structure in a finite languageL. Let ā be a tuple ofM such
that the type of ā is isolated. Then the theory ofM has a finite axiomatization
if and only if the theory ofMā = (M,L, ā) has a finite axiomatization.

Proof. (ii) is clear, and for (i), one just needs to note that the theory ofME can
be axiomatized by the theory ofM in L together with the sentence φ:

(∀y ∈ U/E ∃x ∈ U fE(x) = y) ∧ (∀x1 ∈ U ∀x2 ∈ U (E(x1, x2)↔

(fE(x1) = fE(x2)))). ⊣

We now check that one can reduce questions of finite axiomatizability for ℵ1-
categorical one-based groups to the case of abelian structures.
Recall the fundamental properties of one-based groups (the reader can take
Property 1 as a definition for stable one-based groups).

Fact 4.5. [11]

1. A group G is stable and one-based if and only if, for every n ≥ 1, every definable
subset ofGn is a Boolean combination of definable cosets of definable subgroups
of Gn.

2. A stable one-based group is definably abelian by finite, that is, has a definable
normal abelian subgroup of finite index.

3. Let H be a stable one-based group. Let S ⊂ H n be a definable connected
subgroup. Then S is definable over acl eq(∅).

4. If G is ù-stable and one-based, then every definable subset of Gn is a Boolean
combination of definable cosets of connected definable subgroups of Gn.

Corollary 4.6. Let G be an ù-stable one-based group. Fix M0 a countable el-
ementary submodel of G . Let A ⊂ G ; any A-definable subset of Gn is a Boolean
combination of A-definable cosets of someM0-definable connected subgroups.

(Remark that in the above corollary G could be equal toM0.)
Now let G = (G,L) be a an ù-stable one-based connected group. Fix M0 some
countable elementary submodel of G . Let (Hi)i∈I be the family of all connected
M0-definable subgroups in

⋃
n≥1G

n. Let G be the following abelian structure:

G = (G,+,−, 0, (Hi )i∈I , (m)m∈M0).

It follows from Fact 4.5 and Corollary 4.6 that G and G areM0-interdefinable.

Corollary 4.7. Let G be an ù-stable one-based connected group such thatTh(G )
is finitely axiomatizable in a finite language L. Then there is a finitely axiomatizable
abelian structurewith constants,G, which is interdefinablewith a finitely axiomatizable
expansion of G by finitely many constants.

Proof. Consider M0 � G , the prime model of Th(G ), which exists by ù-
stability of Th(G ). Consider the abelian structure G described above which is
M0-interdefinable with G . As the languageL is finite, we can choose a finite family
H1, . . . ,Hk and a finite sequence m0, . . . , mn of elements from the prime model
M0, such that every symbol from the language L can be defined in the restriction,
denoted Gf , of G to the finite language

Lf := {+,−, 0, (Hi)1≤i≤k , {m0, . . . , mn}}
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and such that everyHi is definable in G over {m0, . . . , mn}. Now add {m0, . . . , mn}
as new constants to the language L of G . As M0 is atomic, the type of the tuple
(m0, . . . , mn) in L is isolated over ∅. By Lemma 4.4, the theory of the expansion
G ′ of G to L′ := L ∪ {m0, . . . , mn} remains finitely axiomatizable. The structures
G ′ and Gf are interdefinable (over ∅). Hence by Proposition 4.3 Th(Gf) is finitely
axiomatizable. ⊣

We will now check, using the fact that the connected component is a definable
subgroup of finite index, that anℵ1-categorical group is finitely axiomatizable if and
only if its connected component is. This is a particular case of the transfer of finite
axiomatizability by bi-interpretability.
Recall the definition of bi-interpretability from [2], or [20] (as remarked before,
we can suppose that functions are given by their graphs and that our languages
contain only relations and constants):

Definition 4.8. Let M = (M,L1) and N = (N,L2). We say that M is ∅-
interpretable inN if there is an ∅-definable subsetU ofN n , and a surjective map f,
from U ontoM such that:

– the equivalence relation Ef on U × U defined, for (a, b) ∈ U × U , by
f(a) = f(b) is ∅-definable inN ,
– for every k-ary relation symbol R in L1, the subset Rf of U

k , Rf :=
{(a1, . . . , ak) ∈ U

k ; M |= R(f(a1), . . . , f(ak))} is ∅-definable inN ,
– for every constant symbol c inL1, the subset cf := {a ∈ U :M |= f(a) = c}
is ∅-definable inN .

It follows thatf induces an isomorphism ofL1-structures betweenU/Ef (subset
of N eq) andM .
IfM is interpretable in N , via the surjective map f from U ⊂ Nk ontoM , and
N is interpretable in Q = (Q,L3), via the surjective map g from V ⊂ Qn onto N ,
letW := {(q1, . . . , qk) ∈ (Q

n)k : (g(q1), . . . , g(qk)) ∈ U}. We denote by f ◦ g the
obvious induced map fromW ⊂ Qnk ontoM . One checks easily that f ◦ g is an
interpretation ofM in Q .
If M is interpretable in N , via f, and N is interpretable in M via g, we say
that M and N are bi-interpretable if f ◦ g is an ∅-definable map in M and g ◦ f
an ∅-definable map in N . Interdefinablity corresponds to the trivial case where
f = g = Id .

Proposition 4.9. Let M be an L1-structure and N an L2-structure which are
bi-interpretable. Then Th(M ) is finitely axiomatizable if and only if Th(N ) is.

Proof. Suppose that M is interpretable in N , via the surjective map f from
U ⊂ Nk onto M , and N is interpretable in M , via the surjective map g from
V ⊂ M n onto N such that f ◦ g is an ∅-definable map in M (from g−1(U ) onto
M ) and g ◦f an ∅-definable map inN . Denote by ðg (resp. ðf) the quotient map
definable in M eq (resp. in N eq) from V ⊂ M n onto V/Eg (resp. from U ⊂ Nk

ontoU/Ef). We denote by f̄ the isomorphism of L1-structures induced by f from
U/Ef ontoM .
LetMg be the two sorted structure (living inM eq) consisting of (M,V/Eg , L1, ðg).

(a) We extend the isomorphism (f̄)−1 to an isomorphism h fromMg into M̃g :=
(U/Ef , N,L1, ð̃g), by letting:
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– onM , h = (f̄)−1 :M 7→ U/Ef ,
– on V/Eg , h = ḡ : V/Eg 7→ N .

Then for (b1, . . . , bn) ∈ h(V ) ⊂ (U/Ef)
n, bj = h(aj), we let ð̃g(b1, . . . , bn) :=

ḡ(ðg(a1, . . . , an).

We now identify, via this isomorphism, Mg and M̃g and can hence suppose that
the domain ofMg is equal to U/Ef ∪N .
(b)We claim that the structureMg is ∅-definable in the structureNf := (N,U/Ef ,
L2, ðf):

– the sorts are definable, asM = U/Ef , and V/Eg = N .
– For any symbol s in L1, using the notation introduced just before Lemma 4.2,
interpretability of M in N tells us that the set {(u1, . . . , um) ∈ U

m : M |=
äs (f(u1), . . . , f(um))} is definable in N , via a formula ès(x̄1, . . . , xm) in L2.
So, having identifiedM and U/Ef , via h, we see thatMg |= äs (b1, . . . , bm) iff
M |= äs (b1, . . . , bm) iff, inNf , there exist u1, . . . um inU , such that bi = ðf(ui),
1 ≤ i ≤ m, and ès(u1, . . . , um) holds. This is a formula inNf .
– There remains only to show that the map ðg is definable in Nf . The domain
of ðg is V ⊂ (U/Ef)

n , its image is N . For (b1, . . . , bn) ∈ V , we have that
ðg(b1, . . . , bn) = c iff bi = ðf(ui), 1 ≤ i ≤ n, and c = (g ◦ f)(u1, . . . , un),
and gof is, by the assumption of bi-interpretability, a definable map.

(c) Similarly, we show thatNg is ∅-definable inMf , using the fact that f ◦ g is a
definable map inM .
Now, assume that Th(M ) is finitely axiomatizable. We can assume that L1 is
finite and Th(M ) has a finite axiomatisation in L1. By Lemma 4.4, the theory of
Mg = (M,V/Eg , L1, ðg) also has a finite axiomatization. By transfer through inter-
definability (Proposition 4.3), it follows that the theory ofNf = (N,U/Ef , L2, ðf)
is finitely axiomatizable in a finite sub-language. Again by Lemma 4.4, it follows
thatN is finitely axiomatizable. ⊣

We now recall the definition of an induced structure on a definable subset:

Definition 4.10. Let M be an L-structure and D be an ∅-definable subset of
M n . The induced structure fromM onD is the structure (D, (Pφ){φ formula in L}),

where, for φ(x1, . . . , xk), |xj | = n, Pφ is a predicate of arity k which is interpreted
on D by the set Dk ∩ φ(M nk).

Lemma 4.11. Let M be an L-structure which is the union of a finite definable
partition, that is,M = M1 ∪ · · · ∪Mn, where, for 1 ≤ i < j ≤ n,Mi is ∅-definable
and Mi ∩Mj = ∅. Suppose furthermore that for each i > 1 there is a ∅-definable
bijection, fi fromM1 ontoMi and that L contains n constant symbols {c1, . . . , cn}
which are interpreted inM by distinct elements ofM1. ConsiderM1 together with its
induced structure fromM , denotedM1. ThenM andM1 are bi-interpretable.

Proof. Let U := M1 × {c1, . . . , cn} ⊂ M1
2 and let f : U 7→ M , f(x, ci) =

fi(x), where f1 is the identity on M1. Then f gives an (injective) interpretation
of M into M1. Indeed, as f is ∅-definable in M , for any k-ary predicate symbol
R from L, the set Rf = {(a1, . . . , ak) ∈ U : M |= R(f(a1), . . . , f(ak))} is a
basic predicate in the language of the induced structure, hence certainly definable.
Similarly, if d is a constant symbol, for the set df = {a ∈ U : M |= f(a) = d}.
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Let g : M1 ⊂ M 7→ M1 be the identity. Let W := {(x, y) ∈ U : f(x, y) ∈
M1} =M1×{c1}. Then g ◦f :W 7→M1 is an interpretation ofM1 into itself. For
(x, c1) ∈ U , g ◦ f(x, c1) = x is the first projection and is hence ∅-definable inM1.
Let W ′ := {(x, y) ∈ M1 × M1 : (g(x), g(y)) ∈ U}. Then W ′ = U =
M1 × {c1, . . . , cn}, and f ◦ g(x, ci ) = fi(x) is ∅-definable inM . ⊣

Proposition 4.12. Let G = (G,L) be an ù-stable group in a language L. There
is an expansion of the language L by a finite number of constants, L̃, such that, if

G̃ = (G, L̃) and G̃ 0 is the connected component of G , G0, with the induced structure

from G̃ , the following are equivalent:

– Th(G ) is finitely axiomatizable.

– Th(G̃ ) is finitely axiomatizable.

– Th(G̃ 0) is finitely axiomatizable.

Proof. By ù-stability, G0 is ∅-definable in G and has finite index in G . By
ù-stability again, there is a prime model G1, G1 � G , atomic over ∅. Choose
a1, . . . , an in this prime model such that G = a1G0 ∪ · · · ∪ anG0, with a1 = 1.
Choose c1, . . . cn distinct elements fromG1

0, the connected component ofG1. Then
the type of the tuple a1, . . . , an, c1, . . . , cn is isolated over the empty set. Let T
denote the complete theory of G in the language L̃ = L ∪ {a1, . . . , an, c1, . . . , cn}.

By 4.4, Th(G ) (in L) is finitely axiomatizable if and only if T is. Let T0 be Th(G̃ 0).
We are now in the situation of Lemma 4.11: G is the union of a finite ∅-definable
partition a1G0∪· · · ∪anG0, and for each i , there is an ∅-definable bijection fi from
a1G

0 = G0 onto aiG0, fi(g) = aig. The result then follows by 4.11 and 4.9. ⊣

4.2. The classical examples. Before we start on the description of the two em-
blematic examples, we would like to draw the reader’s attention to the following: if
T is a theory in L which is finitely axiomatizable in a finite sub-language L0 of L,
then it is certainly finitely axiomatizable in every finite sub-language L1 of L con-
taining L0 (Lemma 4.2), but one should be a little careful. For instance, suppose
thatT is a complete theory in an infinite languageL, which is finitely axiomatizable
in a finite sub-language L0 of L, i.e., such that there is a finite set of axioms, in L0,
for TL0 . Let Σ be an arbitrary infinite set of axioms in L for the complete theory
T . By compactness, some finite subset Σ1 of Σ will axiomatize TL0 . But if L1 is the
finite sub-language of L containing all symbols appearing in Σ1, there is no reason
that Σ1 ⊢ TL1 , or equivalently there is no reason for Σ1 to axiomatize a complete
theory in the language L1. This explains the care taken in identifying the right set
of axioms in the following proofs.

4.2.1. The trivial example. First, recall that for any non trivial group G , the
theory TG which describes G acting semi-regularly (the stabilizer of every element
is trivial) on an infinite set, in the language LG := {g : g ∈ G}, where each g is
a unary function symbol, is strongly minimal, eliminates quantifiers and has trivial
geometry. The theory TG is ù-categorical if and only if G is finite. If G is infinite,
the Cayley graph ofG (that is the regular action ofG on itself by left multiplication)
is a model of TG . The theory TG can be axiomatized by the following set of axioms,
ΣG , if G is infinite:

– ∀x 1(x) = x;
– ∀x g(x) 6= x, for every g 6= 1 ∈ G ;
– ∀x g(h(x)) = r(x), for every g, h, r ∈ G such that gh = r.
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IfG is finite, thenTG can be axiomatized by ΣG together with the scheme for infinity.
Note that, for any modelM of TG , for any a ∈ M , the definable closure of {a}
inM in the language LG is the G-orbit of a.
Now suppose that we have a presentation of G : G is isomorphic to the quotient
of the free group on S = {si ; i ∈ I } by a normal subgroupP. Then the theoryTG is
clearly interdefinable with the following theory in the language LS = {s : s ∈ S},
which we denote by ΣS : letW be the set of words on S,

– ∀x w(x) = x for every w ∈ P,
– ∀x w(x) 6= x for every w ∈W \ P.

Suppose thatG is an infinite finitely presented groupG , that is, both the free group
S and the normal subgroupP are finitely generated. Furthermore suppose that inG
there is a finite number of conjugation classes C1, . . . , Ck such that every non trivial
cyclic subgroup ofG intersects one of theCi ’s. Then TG is finitely axiomatizable (in
the sense of Definition 4.1). Indeed, choose F = {g1, . . . , gn} ⊂ G such that: for
every j, gj 6= 1, F generatesG , there is a finite setP0 of words on F which generates
P, the presentation of G , F is closed under inverse and for every g ∈ G \ {1}, there
is somem > 0 such that gm is conjugate to one of the gj ’s. Let ΣF be the (complete)
set of axioms described above, in the finite language LF := {g1, . . . , gn}, which is
interdefinable with TG . Consider Σ0, the following finite subset of ΣF :

– ∀x gj(x) 6= x, for every j, 1 ≤ j ≤ n,
– ∀x w(x) = x, for every w ∈ P0.

We must check that Σ0 is an axiomatization for ΣF . If w ∈ P, then, for all x,
w(x) = x as P is the normal subgroup generated by P0. If g is any word on F ,
and g 6∈ P, we must check that for all x, g(x) 6= x. By assumption, there are
m > 0, gj ∈ F and h ∈ G , such that gm = h−1gjh. If g(x) = x for some x, then
gm(x) = x = h−1(gj(h(x)), hence h(x) = gj(h(x)). But this contradicts Σ0.
Conversely, suppose that G is infinite and that the theory TG is finitely axiom-
atizable. Let F ⊂ G , be finite such that T := TG is finitely axiomatizable in the
sub-languageLF := {f;f ∈ F }, that is, such that anymodel ofTG is interdefinable
with its reduct to LF , and the (complete) theory TG |LF is finitely axiomatizable.
LetH be the subgroup of G generated by F . Then TG |LH contains the theory TH ,
which is complete, hence it is equal to TH . In the languageLG , G which is a model
of TG , is equal to the definable closure of the identity element 1. Similarly, H is, in
LH the definable closure of 1. By interdefinability of LG with LF , G is also equal
to the definable closure of 1 in LF , hence also in LH . It follows that G = H .
So we know that G is finitely generated, hence isomorphic to a quotient of the free
group on a finite set of generators S, which we suppose closed under inverse, by
some normal subgroup P. LetW be the set of all words on F . Pass to the theory
TS (axiomatized by ΣS) in the finite language {s : s ∈ S}, which is interdefinable
with TG . By finite axiomatizability, there is a finite subset W0 of W (the set of
words on S) such that ΣS can be axiomatized by ΣW0 :

– ∀x w(x) = x for every w ∈W0 ∩ P,
– ∀x w(x) 6= x for every w ∈W0 \ P.

We can suppose that, for every s ∈ S, ss−1 ∈W0.
Let N be the normal subgroup generated byW0 ∩ P in D, the free group on S.
By construction N ⊂ P. The Cayley graph of D/N , in the language LS is a model
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of ΣW0 , hence is interdefinable with a model of ΣS . It follows that N = P and
G ∼= D/N .
Let h ∈ G, h 6= 1, let H denote the subgroup generated by h in G , and G/H the
set of left cosets, equipped with an LG structure by the left action of G . As the
action of G is not semi-regular on G/H , G/H is not a model of ΣS , hence by finite
axiomatizability, it is not a model of ΣW0 . So there is some g ∈ W0 \ N and some
coset aH such that g(aH ) = aH , that is, such that a−1ga = hn for some integer n.
So any non trivial element h has a power which is conjugate to one of the g ′s inW0.

4.2.2. Vector spaces. Let K be any countable division ring. Let LK be the usual
language forK-vector spaces,LK := {+,−, 0, (k)k∈K}, where k is a unary function
interpreted as scalar multiplication by the element k. Consider TK the theory of
all infinite K-vector spaces in LK . The theory TK is ℵ1-categorical and is totally
categorical if and only if K is finite.
Suppose that K is an infinite division ring which is finitely presented as a ring.
Then the complete theory ofK-vector spaces is finitely axiomatizable in the follow-
ing way: letF be a finite subset ofK , which generatesK as a ring and such that there
is a finite set of terms in F , P, which generates the presentation of K (a two-sided
ideal J , such that K is isomorphic to the quotient of the free ring generated by F
by the ideal J ). Then TK is finitely axiomatized in LF := {+,−, 0, 1, (f)f∈F } by

– axioms for abelian groups
– ∀x 1(x) = x,
– ∀x ∀y f(x + y) = f(x) + f(y), for every f ∈ F ,
– ∀x w(x) = 0, for every w ∈ P.

For the converse, we now suppose that the theory of infinite K-vector spaces is
finitely axiomatizable. This forces K to be infinite. This follows by the classical
results on the non finite axiomatizability of totally categorical theories, but one
can also check directly that if A is any finite ring, the theory of infinite A-modules
cannot be finitely axiomatized.

Proposition 4.13. Let K be an infinite division ring. If the theory of K-vector
spaces in the language LK is finitely axiomatizable, then K is finitely presented as a
ring.

Proof. LetTK be the theory of non trivialK-vector spaces, in the usual language
LK = {0,+,−, k : k ∈ K}.
Let X be a finite subset of K such that TK is finitely axiomatizable in the finite
language LX := {0,+,−, k : k ∈ X}.

Claim. K is generated as a skew field by X .

Proof. Let K0 be the subfield of K generated by X . Then the theory TK0 of
infinite K0-vector spaces is a subset of T|LK0 and since TK0 is complete, they are

equal. Now, consider K as a K-vector space. Then K = dclLK (1K) = dclLX (1K) =
dclLK0 (1K) = K0. ⊣Claim

Denote by SK the classical axiomatization of TK :

1. ∃x x 6= 0;
2. axioms for abelian groups;
3. ∀x 1K(x) = x;
4. ∀x∀y k(x + y) = k(x) + k(y), (k ∈ K);
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5. ∀x k(x) + k′(x) = k′′(x), (k, k′, k′′ ∈ K, k′′ = k + k′);
6. ∀x k(k′(x)) = k′′(x), (k, k′, k′′ ∈ K, k′′ = kk′).

If A is a subset of K we will denote by SA the subset of sentences of SK in the
language LA := {0,+,−, k : k ∈ A}. A priori, SX does not give an axiomatization
of the complete theory TLX , but since there is some finite axiomatization of TLX by
assumption, there exists by compactness a finite subset Y containing X such that
SY implies TLX .
We are going to enlargeY in order thatSY implies the complete theoryTLY . First
we define the depth of elements of K relatively to X . We assume that 1K , 0K ∈ X
and we define by induction a sequence (Wi)i∈ù of subsets of K such thatW0 := X
and

Wi+1 :={k ∈ K : k = −k1 or k = k
−1
1 or k = k1+k2 or k = k1k2 for k1, k2 ∈Wi}.

Then K = ∪i∈ùWi since X generates K as a skew field. We define the depth of
k ∈ K as the smallest integer n such that k ∈ Wn. Now by an easy induction, we
can enlarge Y so that it remains finite and for each k ∈ Y , if the depth of k is n+1
then there exists k1, k2 ∈ Y of depths at most n such that k = −k1, or k = k

−1
1 , or

k = k1 + k2 or k = k1k2.

Claim. Then TLY is axiomatized by SY .

Proof. We choose, by induction on the depth of elements of Y , for each k ∈ Y ,
a formula φk(x, y) ∈ LX such that SY ⊢ ∀x∀y (kx = y) ↔ φk(x, y) (we know by
assumption that there is such a formula for which T ⊢ ∀x∀y (kx = y)↔ φk(x, y),
but we want one such that the equivalence can be deduced from SY ). If k ∈ Y
has depth 0 (i.e., k ∈ X ), then we let φk(x, y) := (kx = y). Assume that we have
chosen a formula φk for each k ∈ Y of depth less or equal to n. Let k ∈ Y have
depth n + 1. Then there exist k1, k2 ∈ Y , of depth at most n, such that at least one
of the following cases occur:

• k = −k1; in this case we let φk(x, y) := φk1(x,−y),
• or k = k−11 ; in this case we let φk(x, y) := φk1(y, x),
• or k = k1 + k2; in this case we let

φk(x, y) := ∃t1∃t2
(
φk1(x, t1) ∧ φk2(x, t2) ∧ (y = t1 + t2)) ,

• or k = k1k2; in this case we let

φk(x, y) := ∃t
(
φk2(x, t) ∧ φk1(t, y)) .

Since TK is finitely axiomatizable in the language LX and for each k ∈ Y , TLY ⊢
∀x∀y (kx = y)↔ φk(x, y), the complete theory TLY is axiomatized by

TLX ∪ {∀x∀y (kx = y)↔ φk(x, y) : k ∈ Y}.

It follows that SY is an axiomatization of TLY . ⊣Claim

Now, we are going to prove thatK is isomorphic to the finitely presented ring A,
given by the set of generators {k : k ∈ Y} and the presentation:

{1K − 1} ∪ {k1 + k2 − k3 : k1, k2, k3 ∈ Y ;k3 = k1 + k2} ∪

{k1k2 − k3 : k1, k2, k3 ∈ Y ;k3 = k1k2}.
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Remark that every non trivialA-module is a model of SY as anLY -structure, hence
any two non trivial A-modules are elementarily equivalent in the language LY .
Furthermore, any non trivial A-module has a canonical expansion to a K-vector
space: by assumption, for each k ∈ K , there is a formula èk ∈ LX ⊂ LY , such
that T ⊢ ∀x∀y (kx = y) ↔ èk(x, y). Define, for k ∈ K , m, n ∈ M , km = n iff
M |= èk(m, n).
Let ø be the canonical morphism fromA toK which sends each generator k ∈ Y
to k ∈ K . The morphism ø is injective: consider the A-module structure on K
given via ø, i.e., define ax := ø(a)x. As A-modules, K and A are elementarily
equivalent. In A, if a 6= 0, then for some x, ax 6= 0, hence this is also true in K ,
which implies that ø(a) 6= 0.
Hence A has no zero divisors. Again by completeness of the theory of non trivial
A-modules, this implies that in all non trivial A-modules, if a 6= 0 ∈ A, if x 6= 0,
then ax 6= 0. This implies that A is a division ring: if a ∈ A \ {0} was not left
invertible, A/Aa would be a non-trivial A-module satisfying that ax = 0 for some
x 6= 0 (x = 1 + Aa). Since X ⊂ ø(A), X generates K as a skew field and ø(A) is
a skew field, we obtain that ø(A) = K . ⊣

Remark. As we have mentioned above, it seems to be an open question whether
there exists an infinite division ring which is finitely generated as a ring. It is easily
seen, though, that there is no such commutative division ring. LetK be a field which
is finitely generated as a ring, and let k denote its prime field (k = Fp or k = Q).
As K is finitely generated as a ring over k, K is contained in kalg , the algebraic
closure of k (see for example [14], Chapter IX.1, or argue by modelcompleteness
of the theory of algebraically closed fields). If K has characteristic p > 0, then
K = Fp[a1, . . . , an] is finite. Otherwise k = Q, and there are a1, . . . , an ∈ Qalg , such
that K = Z[a1, . . . , an]. In that case, for some integer m > 0, the ai ’s are entire
over A := Z[1/m] andK is finitely generated as an A-module. As A is Noetherian,
K is Noetherian as an A-module, and Q, as an A-submodule, must also be finitely
generated, which is impossible.

4.3. Finitely axiomatizable strongly minimal abelian structures. We suppose that
G is a strongly minimal abelian structure in a finite language Lc = L0 ∪ {c ∈ C}
such that its theory T is finitely axiomatizable. Recall from corollary 2.4 that T is
axiomatized by the set of sentencesT (G) together with the pp-type of the constants.
Let B be a finite axiomatization of T which consists of a finite subset A of T (G)
together with a finite subset of the pp-type of the constants. Denote by A1 the
following finite subset of T1 (as defined in Section 2.2):

– the axioms for abelian groups,
– for each original predicateH from L0,H is a subgroup,
– the equivalence sentences in A,
– [φ : ø] ≥ k for every k and for every pair of pp-formulas such that in G,
ø(G) ⊂ φ(G) ⊂ G , [φ(G) : ø(G)] is infinite and the sentence [φ : ø] ≥ k is
in A,
– [φ : ø] = 1 for every pair of pp-formulas such that in G, ø(G) ⊂ φ(G) ⊂ G
and for some integer k, the sentence [φ(G) : ø(G)] = k is in A,
– ∃x x 6= 0.
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Lemma 4.14. For every model G of T and every model S of A1, the Lc-structure
GS (= G ⊕ S as in Section 2.2) is a model of B and so, of T. Moreover, G ⊕ {0} is
an elementary submodel of GS .

Proof. The proof that GS is a model of B is exactly similar to the proof of 2.13.
One needs to check the dimensions only for the pp-subgroups φ, ø such that a
dimension sentence of the form [φ : ø] ≥ n (if it is infinite) or [φ : ø] = n (if it is
finite) appears in A. ⊣

We are going to show that A1 gives an axiomatization for the complete theory T1.
It suffices to show that every model of A1 is infinite:

Lemma 4.15. If all models ofA1 are infinite thenA1 is a finite axiomatization ofT1.

Proof. We show that any two models of A1 of cardinality ℵ1 are isomorphic,
then if A1 has no finite models, it is complete and hence axiomatizes T1. Let G

be a countable model of T. (One can choose acl(∅) if it is infinite.) Let S1 and S2
be two models of A1 of cardinality ℵ1. Then by strong minimality, as G ⊕ {0} is
algebraically closed in GSi , there is an isomorphism between GS1 and GS2 which is
the identity onG⊕{0}. From this isomorphism one induces easily an isomorphism
between S1 and S2. ⊣

Proposition 4.16. The ring of quasi-endomorphisms of G is infinite.

Proof. Suppose not. Let K denote the ring of quasi-endomorphisms, then
K = Fq and G has bounded exponent. In particular every finitely generated
subgroup of G is finite. We are going to construct a finitely generated subgroup of
G which is a model of T, contradicting the completeness of T.
First, we add the quasi-endomorphisms as predicates to the language: for each
α ∈ Fq , denote byHα the corresponding quasi-endomorphism, which is a strongly
minimal subgroupofG2, definable over ∅byLemma 2.6, such that its first projection
is equal toG . We add toLc a predicate Ĥα for each α ∈ Fq . This preserves the finite
axiomatizability of G. So we can assume that the language Lc already contains the
quasi-endomorphisms as predicates. Now, we also, if necessary, add finitely many
new predicates for somepp-definable subgroupswhich appear in the axiomatization
B, so that T has a finite axiomatization containing only sentences of the following
type where X , Y and Z are amongst the predicates Ĥi of Lc :

1. G is a group;
2. the Ĥi ’s are subgroups;
3. the projection of X on the first k − 1 coordinates is equal to Y (where X is
k-ary);

4. the cartesian product of X and Y is equal to Z;
5. the intersection of X and Y is equal to Z;
6. X is equal to the group Y up to a fixed permutation of coordinates;
7. the index of X in Y is equal to k;
8. the index of X in Y is greater or equal to k;
9. the tuple c is in X ;

Remark that the sentences of types 3, 4, 5 and 6 correspond to the equivalence
sentences which occur in A.
Note that every subgroup G0 of G which contains all the constants, satisfies the
axioms of types 2, 4, 5, 6, and 9. For each sentenceΨX,Y,k of types 7 or 8, a subgroup
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G0 satisfies ΨX,Y,k if and only if it contains at least k elements of Y which are in
different cosets moduloX . Thus there exist finitely generated subgroups ofG which
satisfy the finite set of axioms of types 1, 2, 4, 5, 6, 7, 8 and 9.
To deal with axioms of type 3, we need to find finitely generated subgroups which
are also “closed under projection” in the adequate sense. This is done in the two
following claims. We say that a subset X of G is stable under quasi-endomorphisms
if for each x ∈ X and each α ∈ Fq , the set {y ∈ G : (x, y) ∈ Hα} is a subset
of X .

Claim. Let X be a definable subgroup of Gk . Then there exists a finite subset
DX of G such that, if G0 is any subgroup stable under quasi-endomorphisms which
contains DX , if ð denotes the projection from Gk onto the first k − 1 coordinates,
then ð(X ) ∩Gk−10 = ð(X ∩Gk0 ).

Proof. Let l be the dimension (algebraic dimension = Morley rank) of X and
(a1, . . . , ak) a generic point of X , that is a point of dimension l . Then, there are
two cases.
Either, ak is independent of a1, . . . , ak−1. It follows easily in this case that
X = Y ×G where Y = {(x1, . . . , xk−1) : (x1, . . . , xk−1, 0) ∈ X} and then for every

subgroup G0, ð(X ) ∩G
k−1
0 = ð(X ∩Gk0 ).

Otherwise, by a permutation of coordinates we can assume that al+1, ..., ak are
algebraic over a1, . . . , al . (Note that then every generic of X satisfies this prop-
erty.) For each j, l < j ≤ k, aj ∈ acl(a1, . . . , al ); so (see Fact 3.1), there exist
αj,1, . . . , αj,l ∈ Fq and bj,1, . . . , bj,l ∈ G such that a

′
j = aj −

∑
1≤i≤l bj,i ∈ acl(∅)

and for every i ≤ l , (ai , bj,i) ∈ Hαj,i .

Let T be the subgroup of Gk of elements (x1, . . . , xk) such that there exist
yl+1, . . . , yk with (x1, . . . , xl , yl+1, . . . , yk) ∈ X and for each j, l < j ≤ k, there
exist yj,1, . . . , yj,l with xj = yj −

∑
i yj,i and i ≤ l , (xi , yj,i ) ∈ Hαj,i . Then

(a1, . . . , al , a
′
l+1, . . . , a

′
k) ∈ T . Now let T

′ := {(xl+1, . . . , xk) : (0, . . . , 0, xl+1, . . . ,
xk) ∈ T}.
We claim that T ′ is finite and that T = G l × T ′. Since X is of dimension l ,
the group X ′ := {(xl+1, . . . , xk) : (0, . . . , 0, xl+1, . . . , xk) ∈ X} is finite. It follows
that T ′ is finite because the cokernels of the quasi-endomorphisms are finite. Let
(x1, . . . , xl ) be a generic of G

l over (a1, . . . , al ). By strong minimality, (x1, . . . , xl )
and (a1, . . . , al ) have the same type over acl(∅). Since (a

′
l+1, . . . , a

′
k) ∈ acl(∅), we

have (x1, . . . , xl , a
′
l+1, . . . , a

′
k) ∈ T and so (x1 − a1, . . . , xl − al , 0, . . . , 0) ∈ T . But

(x1 − a1, . . . , xl − al ) is generic, so G
l × {0}k−l ⊂ T and thus T = G l × T ′.

Now, let G0 be any subgroup of G stable under quasi-endomorphisms such that
Gk−l0 containsT ′. Then ð(X )∩Gk−10 = ð(X ∩Gk0 ): indeed let (x1, . . . , xl , yl+1, . . . ,
yk) ∈ X be such that x1, . . . , xl ∈ G0, we are going to show that yk ∈ G0. For each
j, l < j ≤ k, take yj,1, . . . , yj,l such that for each i ≤ l , (xi , yj,i) ∈ Hαj,i . Then, by
stability of G0 under quasi-endomorphisms, yj,i ∈ G0 for each j, l < j ≤ k, and
each i ≤ l . For each j, l < j ≤ k, let zj = yj,1 + · · ·+ yj,l and xj = yj − zj . Then

(x1, . . . , xl , xl+1, . . . , xk) ∈ T and as T = G
l × T ′, (xl+1, . . . , xk) ∈ T

′ ⊂ Gk−l0 .
So, in particular, xk ∈ G0 and thus yk = xk + zk ∈ G0. ⊣Claim

Claim. For every finite subset A ⊂ G , there is a finite subgroup G0 of G , con-
taining A, which is stable under quasi-endomorphisms.
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Proof. Let A be a finite subset of G . For a subset X of G denote by X the set
∪(x,α)∈X×Fq

{y ∈ G : (x, y) ∈ Hα}. Note that X is not necessarily stable under

quasi-endomorphisms (i.e., X is not necessarily equal to X ).
For each (α, â) ∈ Fq

2, let Hα ◦ Hâ denote the subgroup of G
2 defined by the

formula
∃z ((x, z) ∈ Hâ ∧ (z, y) ∈ Hα).

The quasi-endomorphism Hαâ is equal to the connected component of Hα ◦ Hâ .

Let X0 := {y ∈ G : (0, y) ∈ Hα ◦ Hâ for some (α, â) ∈ Fq
2} and let A0 be the

finite subgroup generated by A and X0. Let B be the set A0. We prove that B
is stable under quasi-endomorphisms: let α ∈ Fq , x ∈ B and y ∈ G be such
that (x, y) ∈ Hα . By definition of B, there exists â ∈ Fq and z ∈ A0 such that
(z, x) ∈ Hâ . So (z, y) ∈ Hα ◦Hâ . Let y

′ ∈ G be such that (z, y′) ∈ Hαâ . Then
y − y′ ∈ X0 since (0, y − y′) ∈ Hα ◦ Hâ . Remark that if α = 0 then y = 0
and if â = 0 then y ∈ X0. So assume that αâ 6= 0. Let t ∈ G be such that
(y − y′, t) ∈ H(αâ)−1 . Then t ∈ A0 since y − y

′ ∈ X0 and X0 ⊆ A0. Thus y ∈ B
since (z + t, y′ + (y − y′)) ∈ Hαâ and z + t ∈ A0. Now consider G0 the subgroup
generated by B. Then G0 is also stable under quasi-endomorphisms since for each
x1, x2 ∈ G and each α ∈ Fq ,

{y∈G : (x1 + x2, y)∈Hα}={y1∈G : (x1, y1)∈Hα}+ {y2∈G : (x2, y2)∈Hα}.

⊣Claim
Now by the previous claims we can find a finite subgroup of G , which contains
sufficiently many elements in different cosets for the axioms of type 7 or 8 to be
satisfied, which is stable under quasi-endomorphisms and contains each DHi . Such
a finite group is a model of T. ⊣

Corollary 4.17. A1 is a finite axiomatization of the complete theory T1.

Proof. By lemma 4.15, it suffices to show that every model of A1 is infinite.
Let S be a model of A1. We work in the structure GS which is a model of T

by 4.14. For r ∈ K , let φr denote the corresponding pp-formula (over ∅). In
GS , the kernel and cokernel of φr are finite, hence, by Lemma 4.14, they must be
contained in G ⊕ {0} This means that φr restricted to {0} ⊕ S is a well-defined
map. Let s ∈ S \ {0}. For each r ∈ K , consider the unique (xr , yr) ∈ GS such that
((0, s), (xr , yr)) ∈ φr. Then, if r 6= r′, yr 6= yr′ : indeed, if for r 6= r′, yr = yr′ then
((0, s), (xr − xr′ , 0)) ∈ (φr − φr′), ((xr − xr′ , 0), (0, s)) ∈ (φr − φr′)−1 and hence
s = 0. ⊣

By Proposition 3.4, T1 is interdefinable with the theory of non trivial K-vector
spaces, where K is the ring of quasi-endomorphisms of G. By Corollary 4.17 and
Lemma 4.2, the theory of K-vector spaces is finitely axiomatizable. By Proposi-
tion 4.13 we derive immediately:

Corollary 4.18. The division ring K of quasi-endomorphisms of G is finitely pre-
sented as a ring.

4.4. Finitely axiomatizable strongly minimal groups.

Theorem 4.19. Let G be a strongly minimal group. If Th(G ) is finitely axiomati-
zable in a finite language L, then the ring of quasi-endomorphisms of G is an infinite
division ring which is finitely presented as a ring.
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Proof. By [10], a finitely axiomatizable strongly minimal group must be locally
modular, hence one-based.

Claim. If G ′ is an expansion of G by a set C of constants, then G and G ′ have
the same ring of quasi-endomorphisms.

Proof. This uses only the fact that G is stable one-based. For A ⊂ G , let S
be any connected A-definable subgroup of G × G in G ′. Then S is also definable
in G , over A ∪ C . As G is one-based, by Fact 4.5, S is definable over acl eq(∅) in
G . Conversely, any definable connected subgroup H in G remains connected in
G ′. ⊣Claim
Recall the construction from Corollary 4.7: we add finitely many constants from
M0, the prime model of Th(G ). Let G ′ denote the expansion of G to the new lan-
guage L′ = L ∪ {m0, . . . , mn}. Then G ′ is interdefinable with some finitely axiom-
atizable abelian structure G =< G,+,−, 0,H1, . . . ,Hk , m0, . . . , mn >. It follows
thatG and G have the same quasi-endomorphisms ring, as a quasi-endomorphism
is a definable connected subgroup ofG×G . (Note that, as inG every definable con-
nected subgroup is defined over ∅ (Proposition 2.6), the same is true in G ′. Hence
in G every definable connected subgroup was already definable over {m0, . . . , mn}.)
By Corollary 4.18, the division ring of quasi-endomorphisms of G is finitely
presented as a ring. As remarked above, this is also the division ring of quasi-
endomorphisms of G . ⊣

By Proposition 4.12, we derive immediately:

Corollary 4.20. Let G be aMorley Rank one group. IfG is finitely axiomatizable
then the quasi-endomorphism ring of its connected component is an infinite division
ring which is finitely presented as a ring
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