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FINITELY AXIOMATIZABLE STRONGLY MINIMAL GROUPS
THOMAS BLOSSIER AND ELISABETH BOUSCAREN

Abstract. We show that if G is a strongly minimal finitely axiomatizable group. the division ring of
quasi-endomorphisms of G must be an infinite finitely presented ring.

§1. Introduction. Questions about finite axiomatizability of first order theories
are nearly as old as model theory itself and seem at first glance to have a fairly
syntactical flavor. But it was in order to show that totally categorical theories cannot
be finitely axiomatized that, in the early eighties, Boris Zilber started developing
what is now known as “Geometric stability theory”. Indeed. as is often the case,
in order to answer such a question, one needs to develop a fine analysis of the
structure of models in the class involved and to understand exactly how each model
is constructed.

The casiest way to force a structure to be infinite by one first order sentence is
to impose an ordering without end points, or a dense ordering, thus making the
structure unstable. It was hence rather natural to wonder about theories at the other
extremity of the stability spectrum, and. in the early 60’s, to ask whether there existed
finitely axiomatizable totally categorical theories or simply uncountably categorical
theories [22, 17].

Each model of a totally categorical theory is prime over a strongly minimal
set. It is not too difficult to see that a totally categorical strongly minimal set
cannot be finitely axiomatizable [15]. Much more complicated, the proof of the non
finite axiomatizability for the whole class goes through a characterization of the
geometries associated to totally categorical strongly minimal sets (locally modular
and locally finite) and then an analysis of how any model is “built” around the
strongly minimal set ([23], [24] and [6] where the result is proved for all w-stable
w-categorical theories).

Around the same time as Zilber’s negative answer for the totally categorical
case, Peretjat’kin produced an example of a finitely axiomatized N;-categorical
theory [19]. This example was in the following years simplified by Baisalov (see [9,
§12.2, Example 5]). This final example has Morley Rank equal to 2, thus still leaving
open the question of the existence of a finitely axiomatizable strongly minimal set
(Morley rank and degree equal to 1). Furthermore all the known examples of finitely
axiomatizable N;-categorical theories are rather similar and constructed around
a strongly minimal set with trivial pregeometry, also leaving open the question
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of the existence of a finitely axiomatizable N;-categorical theory with non trivial
pregeometry.

In 1994, Hrushovski [10] showed that any finitely axiomatizable N;-categorical
theory must have locally modular pregeometry, thus reducing the remaining open
questions to two very different cases:

— the existence of a finitely axiomatizable trivial strongly minimal set
— the existence of any finitely axiomatizable R, -categorical theory which contains
a locally modular strongly minimal group.

The canonical example of a strongly minimal locally modular non trivial theory
is that of infinite K-vector spaces, for a fixed division ring K. It is open whether
there exists any finitely axiomatizable complete theory of R-modules, for R any
ring, but it is very easy to check that if K is an infinite division ring which is
finitely presented as a ring, then the theory of K-vector spaces can be finitely
axiomatized. Unfortunately, the existence of such a division ring is open (see
Section 4). Conversely, it was originally shown by Paljutin [18], in a paper where he
characterizes finitely axiomatizable uncountably categorical quasi-varieties, that, if
the theory of infinite K-vector spaces is finitely axiomatizable, then K is finitely
presented as a ring (see Section 4.2).

In the paper cited above, Hrushovski conjectures that, more generally, a finitely
axiomatizable N;-categorical non trivial theory exists if and only if such an infinite
finitely presented division ring exists. Any N-categorical non trivial locally modular
theory must contain a locally modular strongly minimal group G, and the geometry
associated to such a group is that of infinite K -vector spaces, where K is the division
ring of quasi-endomorphisms of G (see Section 3 for the definitions). The precise
conjecture in [10] is that, in any finitely axiomatizable N;-categorical non trivial
theory, the associated division ring of quasi-endomorphisms is infinite and finitely
presented as a ring.

One should remark that although every X, -categorical non trivial locally modular
theory must contain a definable strongly minimal group, one cannot use general
arguments to transfer down the finite axiomatizability to the strongly minimal
group. We will see in Section 4.1 some general assumptions under which finite
axiomatizability can be transferred (bi-interpretability, definable finite partition).
But, it is not even true in general that, if M is finitely axiomatizable and contained
in the algebraic closure of a strongly minimal set D (M is then said to be almost
strongly minimal), the strongly minimal set D, with the induced structure from M,
must be finitely axiomatizable. In the finitely axiomatized R;-categorical Morley
rank 2 theory which was mentioned above, for example, the whole structure M
is contained in the algebraic closure of a strongly minimal subset D C M x M
(the diagonal), whose induced structure is that of the integers with the successor
function, which is not finitely axiomatizable.

In past years, work around strongly minimal finitely axiomatizable trivial sets
has also centered around a conjecture relating their existence to the existence of an
infinite group with specific properties (see Section 4 for some further details).

In this paper we show that Hrushovski’s conjecture holds for strongly minimal
groups, and more generally for Morley Rank one groups: If G is a finitely axiom-
atizable strongly minimal group, then the division ring of quasi-endomorphisms of
G must be infinite and finitely presented (Theorem 4.19).
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By Hrushovski’s result, we know that such a group must be locally modular. This
enables us to reduce to the case when G is a strongly minimal abelian structure.
Then we show (Proposition 4.16) that if G is a finitely axiomatizable strongly
minimal abelian structure, the division ring K of quasi-endomorphisms of G must
be infinite and that the theory of K-vector spaces must also be finitely axiomatizable
(Lemma 4.15).

We begin in Section 2 by recalling or proving some general facts about abelian
structures, under the precise form they will be needed later. In particular, we de-
scribe, in Section 2.2, the theory which will end up being both finitely axiomatizable
and interdefinable with the theory of K-vector spaces. In Section 3 we recall the
basic facts about the ring of quasi-endomorphisms of a locally modular strongly
minimal group and we look at strongly minimal abelian structures. In Section 4,
we consider the question of finite axiomatization. We begin by a somewhat tech-
nical section (4.1) where we give precise definitions of finite axiomatizability in the
case of infinite languages and we show how this notion transfers when changing
languages or structures. In order to be as self-contained as possible on the subject
of finite axiomatizability, in Section 4.2, we recall very precisely the two classical ex-
amples (regular group actions and vector spaces). In the next section (Section 4.3),
we prove the main theorem, that if a strongly minimal abelian structure is finitely
axiomatizable, then its division ring of quasi-endomorphisms, K, must be infinite
and the theory of K-vector spaces must be finitely axiomatizable. Finally in the
last section (4.4) we conclude for strongly minimal groups and more generally for
groups of Morley Rank one.

We would like to thank the many people with whom we have had very helpful dis-
cussions since we started getting interested in questions of finite axiomatizability, in
particular, Ehud Hrushovski, Alexandre Ivanov, David Lippel, Dugald MacPher-
son, Mike Prest and Gabriel Sabbagh.

§2. Abelian structures.

2.1. Axiomatization and quantifier elimination. In this first section, we recall
the precise statements about axiomatization and p p-elimination of quantifiers for
abelian structures.

We define an abelian structure G, to be a commutative group

G=(G.4+.—.0,(H:)ier).

where each H; is a subgroup of some G"'. We denote by L the following language:
{+,—.0.(H,)ics}. We are going to consider expansions of abelian structures by
constants and we will denote by L. the language of an expansion of G by some
constants in a subset C, i.e., L. = LoU{c :c € C}.

Recall that the set of positive primitive formulas is the closure of the atomic
formulas by conjunction and existential quantifiers.

It has been well-known for years that in a complete theory of modules, every
formula is equivalent to a Boolean combination of p p-formulas and that a complete
theory of modules is axiomatized by so-called invariant statements describing the
index of pairs of positive primitive definable subgroups [3, 21].

The similar result for abelian structures has also been known for a long time
(abelian structures were originally introduced by E. Fisher in [7]) but was never
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published in any “official” form until it appeared as a special case in the general
treatment of theories given by cosets in [8]. As we are dealing with questions of
finite axiomatization, it is important for us to be precise about the form of the
axioms and the language we are working in. For this reason we will recall briefly
the precise definitions we need and state, mostly without proofs, the results under
the exact form we require. Some similar considerations appear also in [5].

LemMa 2.1. Let ¢(x1.....x,) be a consistent positive primitive formula in Ly in n
variables (n > 1) and without parameters. Then {a € G" : G = ¢(a)} is a subgroup
of G".

Note that the set of pp-definable subgroups in G corresponds to the closure of the
groups (H, : i € I), the trivial groups ({0} and G ). the diagonal of G? and the graph
of the addition, by cartesian product, permutation of coordinates, intersection and
projection.

LEMMA 2.2. Let ¢(%.0) be a pp-formula from Lo without parameters, which defines
a subgroup in G". Let d be a tuple from G. Then ¢(%.d) is empty or is a coset of the
pp-definable subgroup defined by $(x.0).

A pp-formula in the language L. is equivalent to ¢ (%, ¢) where ¢ is a p p-formula
from L( and ¢ is a tuple of constants. In particular a subgroup of G" which is definable
by a pp-formula from L. is in fact already p p-definable in Ly without parameters.

Let T(G) be the following set of sentences from Ly:

— G is a commutative group,

— for each original predicate H; from L, H; is a subgroup of G",

— the equivalence sentences: all sentences of the form Vx (¢ (%) < w(x)), for ¢
and y pp-formulas which define the same subgroup of G” (note that these sen-
tences give the following relations between p p-definable subgroups: inclusion,
intersection, projection and equality up to a permutation of variables),

— the dimension sentences: for each pair H C H' of pp-definable subgroups of
G. such that the index of H in H' is equal to n, the sentence “[H’ : H] = n”;
for each pair H C H’ of pp-definable subgroups of G, such that the index of
H in H' is infinite in G. the infinite scheme of sentences “[H’ : H] > k” . for
every k > 1.

Fact 2.3. The theory T(G) is complete in the language Ly and admits quantifier
elimination to the p p-formulas, that is, every formula is equivalent modulo T (G) to a
Boolean combination of p p-formulas.

Note that it follows directly that every abelian structure is stable and one-based (see
Fact 4.5).

COROLLARY 2.4. The theory of G in the language L. is given by T (G) together with
the p p-types of the constants (i.e., for each p p-definable group H , we have to describe
the H -congruences on the set of constants).

COROLLARY 2.5. Let a € G and B C G, then a is algebraic over B in the L.-
structure G if and only if a is in a B-definable coset of some finite pp-definable
subgroup of G.

Proor. By elimination to pp-formulas, the type of a over B is given by the set X of
B-definable cosets of p p-definable subgroups to which a belongs, and the set Y of B-
definable cosets of pp-definable subgroups to which a does not belong. Note that X
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is closed under finite intersections. By compactness, as a is algebraic over B, there is
some coset 4 in X and some cosets By, Bs. ..., B, from Y such that A\ (B;U---UB,)
is finite non empty. We can suppose that each B; is contained in A4, by taking its
intersection with 4. Then 4 = a+H = {a; }U- - -U{a, }U(d\+ H,)U- - -U(d,+ H,).
where {a;} is considered as a coset of the trivial group, d; + H; = B; and H; C H.
By Neumann’s Lemma, if some coset @ + H is covered by a finite number of cosets,
then it is covered by those cosets which correspond to subgroups of finite index in
H. Tt follows that A itself is finite (as 4 \ (B U--- U B,) is not empty, {0} must be
of finite index in A4). B

We finish with a remark that will be very useful in the sequel. As abelian structures
are stable and one-based, it follows by general results (see Fact 4.5) that any definable
connected subgroup is definable over ac/® (). But for abelian structures, one can
in fact show more:

PrOPOSITION 2.6. Let G be an abelian structurein L.. Let H C G" be any definable
connected subgroup (with parameters) in L.. Then H is p p-definable. In particular,
H is definable in L over ().

ProorF. Let H be a connected definable subgroup of G”. By pp-elimination,
there is a set 4 such that H is equivalent to a Boolean combination of pp-formulas
with parameters in 4. We can suppose that the unique generic type of H. ¢. is
defined and stationary over 4. As ¢ is a complete type over A, we can suppose
that there are ao. dy..... am € A and pp-definable (in Lo over ()) subgroups ¢y.

P15 ..., Pm of G" such that:

for each i > 0, ¢; is a subgroup of ¢y,

(a0+¢0)\(d1+¢1U"'Udn1+¢n1) CH,

every generic of H over A isin (ay + ¢o) \ (a1 + 1 U -+~ Uapm + dm).
foreach i > 0, each ¢; is of infinite index in ¢y: indeed if ¢; has finite index in
¢o. by enlarging 4 if necessary, we can suppose that do +¢o = |, < i<k €T i
with €; € A, and replace dp + ¢o with one of the &; + ¢;.

balb o

It follows that H = ¢y: the difference of two generics of H (over A4) is in ¢y, so
H C ¢y. Conversely, let & be a generic of H over 4. Take a generic x of ¢y over
Ah. Since for each i > 0, ¢; is a subgroup of ¢y of infinite index, x ¢ (@ — h) + ¢;.
Thus x + 4 € (@ + ¢o) \ (@1 +p1U---Uay + ¢m) and x € H. 4

2.2. Direct sums and pure injectives. In this section we consider an abelian struc-
ture G = (G, +, —,0, (H;);er. {¢c € C}) with constants, in the language L., and we
denote its complete theory by T.

The following direct sum construction plays an essential role in the paper.

Let S be an abelian structure in the language L. Let Gg := G & S, be the L,-
structure with universe the group Gs = G @ S and with the obvious interpretation
of the symbols in the language: each constant c is interpreted by (c,0); for H of
arity n ., we interpret H in Gs by H(G) ® H(S) where H(G) := {(h.0) € Gs" :
GEHMY}and H(S) := {(0,h) € Gs" : SE H(h)}. Ifg = (g1.....8,) € G"
and s = (s1.....s,), we will use both notations g + s or (g. s) to denote the element
(g1 +81,....80 +sn) € Gs".

The following lemmas (2.7 to 2.10) are well known for the case of modules (in
the usual language for modules, see [21]) and mostly folklore for abelian structures.
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The proofs are similar to the ones in the case of modules. We give here only the
ones that provide information which can be useful.

LemMa 2.7. For each pp-formula ¢(x) (x = (x1,....x,)) from Ly, ¢(Gs) =
6(G) ® ¢(S), ie., for hy € G", and hy € Gs", Gs |= ¢(hy + ho) if and only if
G ¢(h) andS |= ¢(ha).

Proor. By induction on pp-formulas. For atomic formulas, it follows from
the way Gg is defined as being the direct sum of G and S as Lg-structures. For
a conjunction of two pp-formulas, it follows easily from the fact that Gg is the
direct sum of G and S as groups. There remains to check the case of a projection.
Let ¢(x1,....x,) be a pp-formula such that ¢(Gs) = ¢(G) ® ¢(S) and consider
the pp-formula v := Jx;¢. We have trivially that w(G) @ w(S) C w(Gs). Let
(az.....a,) € w(Gs). Then there is a; € Gg such that (a;.....a,) € ¢(Gs) =
o(G)®d¢(S). So(ay.....an) = (b1.....by)+(c1,....cy). with (by.....b,) € ¢(G)
and (c1.....c,) € ¢(S). But then (a.....a,) = (b, ....b,) + (c2,...,c,) with
(by,....by) € w(G)and (c.....cy) € w(S). 4

REMARK. In particular, if ¢(x, y) is a pp-formula in Lo and ¢ = (c1.....c,) are
some constants from C, then Gs = ¢(g + s.¢) if and only if G = ¢(g.c) and
S = ¢(s.0).

DEerINITION. Let M be an abelian structure. We say that Ml is pure injective if every
set of pp-formulas with parameters in M (with possibly infinitely many variables)
which is finitely realized in M is realized in M.

PrOPOSITION 2.8. If Gy is an elementary substructure of G and is pure injective,
then there exists f, an L.-homomorphism from G to Gy, such that f is the identity
on Gy.

COROLLARY 2.9. If Gy is an elementary substructure of G and is pure injective,
then G = Gy @ Gy and for each pp-definable subgroup H C G" in Ly, H =
Hn(G")® Hn(G").

ProoOF. Let G; = ker f where f is given by the previous proposition. Then
a= f(a)+(a—f(a))anda— f(a) € Kerf foreacha € G: indeed f(a— f(a)) =
fla) = f(f(a)) = f(a) = f(a) = 0. Similarly. for any n > 2, G" = G} ® G,".
So we can suppose that H C G to simplify the notation. Since H is a pp-
definable subgroup and f is an Ly-homomorphism, f(H) C H N Gy and so
f(H)=HNGy. Thus H=HNGy®HNG: foreachh € H, f(h) € HN Gy
and (h — f(h)) cker f NH. 4

Let G = Gy @ Gj. as above in Corollary 2.9, where Gy is a pure injective ele-
mentary substructure of G for the language L., and where G, = ker /', f given by
Proposition 2.8. Let G be the following abelian structure on G in the language Ly:

Gi = (G1.+.—.0.(H; N G{")jer).

Then G = Gy @ G as abelian structures and by Lemma 2.7:

Lemma 2.10. For every subgroup H of G" definable by a p p-formula ¢ in G, the
group ¢(Gy) :={a € G" : G| = ¢(a)} is equal to H N G

We will now describe an axiomatization for the theory of G;.
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Let T1(G) be the following modification of the axioms 7' (G):

— the axioms for abelian groups,

— for each original predicate H from Ly, “H is a subgroup”,

— the equivalence sentences from 7'(G),

— “[¢ : w] is infinite” for every pair of pp-formulas such that in G, w(G) C
¢(G) C G and [¢(G) : w(G)] is infinite,

— [¢ : w] = 1 for every pair of pp-formulas such thatin G, w(G) C ¢(G) C G
and [¢(G) : w(G)] is finite.

PROPOSITION 2.11. If G is |Go| " -saturated, T1(G) axiomatizes the complete theory
of the abelian structure Gy, that is, T{(G) - T(Gy).

PrROOF. We show first that G is a model of Ty := T;(G). By Lemma 2.10, G,
satisfies the equivalence sentences from T(G). Let K C H be a pair of p p-definable
subgroups of G. If [H : K]is infinite then by |Gy |*-saturation of G, [H : K] > |Gy|.
Thus [H NG : KNGp]isinfinite. If[H : K]isequal to k, since Gy is an elementary
substructure, there are a;,...,a; € Gosuchthat H = a1 + KU ---Ua, + K. Let
x € HNGy. Then x = a; + b where b € K. Let f be as in Proposition 2.8,
then 0 = f(x) = f(a;) + f(b) = a; + f(b). But f(b) € K, so x € K and
HNG =KnNGa.

Now we show that T(G;) is a consequence of T;. Let ¢ and y be a pair of
pp-formulas from Ly which define subgroups H and K of G” such that H N G|’ =
K N G}'. We have to show that the sentence Vx (¢(¥) < w(X)) is a consequence
of Ty. Note first that if K C H and [H : K] is finite, this follows from the last
axioms by an easy induction on n. But we can consider the pair K "N H C H
and remark that [H : K N H] is finite: indeed, if [H : K N H] was infinite, then
[HNG} : KNHNG{] would be infinite. For the dimension sentences, suppose now
that H and K are pp-definable subgroups of G such that K N G; C H N G;. Then
the sentence for the index of [H N G| : K N Gq] is a consequence of the sentence
from T corresponding to the pair of pp-formulas v N ¢ and ¢. -

REMARK 2.12. Note that G| contains no non trivial finite p p-definable subgroup.
So, in Gy, the algebraic closure of the empty set is reduced to 0 and algebraic closure
corresponds to definable closure.

The assumption that G is saturated is essential in the previous proposition in
order to obtain that G is a model of the right theory. But if one considers abelian
structures which are models of Ty, saturation is no longer relevant:

PROPOSITION 2.13. If S is a model of Ti and G is a model of T, then Gg (the
abelian structure G @ S) is a model of T and the map i from G into Gs,i(g) = (g.0)
is an L.-elementary isomorphism (i.e., G @ {0} is an L.-elementary substructure
Of Gs).

ProOOF. Let ¢ and w be two pp-formulas such that ¢(G) C w(G). Then ¢(S) C
w(S) (by equivalence sentences). If [w(G) : ¢(G)] = k then w(S) = ¢(S) (by
T1). so [y (Gs) : $(Gs)] = k. If [y(G) : $(G)] = oo then [y(Gs) : ¢(Gs)] = oo
Moreover, by definition of Gg, the pp-types of the constants are preserved. Hence
Gs is amodel of T, so G ® {0} and Gy are elementarily equivalent, and it follows
by pp-elimination in T and Lemma 2.7 that G & {0} < Gg. =
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The above construction will be particularly relevant when the theory T is totally
transcendental.

Recall that in a totally transcendental group, there is no infinite strictly decreasing
sequence of definable subgroups. It follows easily that the same is true for cosets
and that exactly as for modules (see [21]):

PROPOSITION 2.14. If T is totally transcendental then every model of T is pure
injective.

83. The strongly minimal case. We remind the reader that a definable set D in
a structure M (defined by a formula ¢(x) with parameters from M) is said to be
strongly minimal if, in every elementary extension N of M, every relatively definable
subset of D is finite or co-finite (i.e., for every formula w(x) with parameters from
N. ¢(%) A w(X) is finite or ¢(X) A —~w(¥) is finite). A structure M is said to be
strongly minimal if the formula (x = x) is strongly minimal. If M is strongly
minimal, model theoretic algebraic closure (denoted ac/) defines a pregeometry on
M . In particular, forany X C M, the dimension of X (the cardinality of a maximal
algebraically free subset in X) is well defined. We say that M is trivial, or has trivial
pregeometry if. for all 4 ¢ M. acl(A4) =, , acl({a}). We say that M is locally
modular if for all algebraically closed X, Y C M. such that dim(X NY) > 0.
dim(X UY) = dim(X) +dim(Y) — dim(X N'Y). We will explicitly state the results
we use about locally modular strongly minimal groups. For proofs and details we
refer to [20], [4] or [16].

By a strongly minimal group, we mean, as usual, a group G with possibly extra
structure in a language L. which is strongly minimal as an L-structure.

Let £ = (G.L) be a strongly minimal group in a language L. Let Gy :=
GnNacl(D). A quasi-endomorphism of Z is a connected subgroup H of G2, definable
over acl®(()), different from G x G and such that the first projection of H is equal
to G. It follows that H is strongly minimal. We define the kernel of H and the
cokernel of H to be respectively:

KerH :={a € G : (a.0) € H}, Coker(H):={a € G:(0,a) € H}.

The cokernel of H is always finite, and if H is not trivial, that is, if H # G x {0},
the kernel of H is finite. We denote by OS(%) the set of quasi-endomorphisms
of &.

Remark: By strong minimality, if Gy is infinite, Gy is an elementary substructure
of @ and in that case, all quasi-endomorphisms of & are actually definable over
Gy. In any case, if # is a prime model for Th(%), all quasi-endomorphisms are
definable over M.

A quasi-endomorphism induces an endomorphism of G/Gy: if H € QS(%),
then {(a + Go.b + Gy) : (a,b) € H} is the graph of an endomorphism f' 5 of G/G.
Furthermore the map which to every H € QS(%) assigns the endomorphism /7 is
a bijection from OS(Z) onto the ring of the “quasi-definable” endomorphisms of
G/Gy. The ring of endomorphisms of G/Gy induces the structure of a division ring
on 0S(%).

In the case of a locally modular group, the pregeometry on & defined by the
relation of algebraic closure corresponds to the geometry of OS(Z)-vector spaces.
More precisely:
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Fact 3.1. Let @ be alocally modular strongly minimal group,let b, a, ... ,a, € G.
Thenb € acl(ay, . ... a,) if and only if there are quasi-endomorphisms S\. . ... S, and
elements hy, ..., h, € G such that foreachi,1 <i <n,

(a,»,h,») eS; and b — (h] + - +hn) € Gy.

Any strongly minimal abelian structure A is locally modular and by 2.6 all quasi-
endomorphisms of A are definable over ().

By general results about one-based groups (see Section 4.4), any locally modular
strongly minimal group is “almost interdefinable” with a strongly minimal abelian
structure. This will enable us at the end to reduce to the case of finitely axiomatizable
abelian structures.

Fromnow on in this section, G is a strongly minimal abelian structure with constants,
in the language L., and T denotes its theory in L.

Consider, T(G), the axiomatization of the theory of G in L given in the previous
sections, and T, = T(G), the associated theory.

Note that one can see directly from the axiomatizations of the form 7'(G) when an
abelian structure is strongly minimal: by pp-elimination G will be strongly minimal
if and only if G is infinite and for any pp-definable subgroup H of G, H is finite or
equal to G.

LEmMMA 3.2. The theory Ty is strongly minimal.

ProOF. First a model of T; must be infinite (the formula x = x is a pp-formula).
Let ¢ be a pp-definable subgroup of G. By strong minimality of G, either ¢ is
finite, or ¢ is equal to G. Hence in any model H of Ty, ¢ is trivial or ¢ = H. By
pp-elimination, T is also strongly minimal. -

We also know (see Remark 2.12) that in any model of T, ac/()) = {0} and
acl = dcl. Tt follows easily that, if G; is a model of T and if K is the division
ring of quasi-endomorphisms of Gy, the structure on G is exactly the K;-vector
space structure. But we want to check that K; = K, where K is the division ring of
quasi-endomorphisms of G.

Let us recall the definition of interdefinability:

DErFINITION 3.3. Let 4 = (M. L) and #, = (M, L;) be, respectively, L, and
L,-structures with the same universe M. Let 4 C M, we say that .Z; is A-definable
in A, if every A-definable subset in ./ is A-definable in .#,, equivalently, if every
symbol in the language L, is A-definable in .#,. We say that ., and 4, are A-
interdefinable if each 4; is A-definable in the other, equivalently, if .Z; and .#, have
the same A-definable subsets.

PROPOSITION 3.4. Let K be the division ring of quasi-endomorphisms of G and let
S be any model of T,. Every quasi-endomorphism r of G induces an endomorphism
of S ands is Q-interdefinable with the K -vector space structure Sg := (S, +, —, 0, {r,:
rekK}).

Proor. Let G5 = G’ @ S, where G’ is a countable elementary substructure of G
(take for G’. Gy = acl(0), if it is infinite) and S is any model of T;. Then G is a
model of T, the theory of G (2.13). Let ¢,(x. y) be a pp-formula which defines the
quasi-endomorphism r € K, r # Id. By the axiomsin Ty, in S x S, ¢,(x, y) defines
a subgroup with first projection equal to S, which is strict and connected, hence
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which is a quasi-endomorphism of S. The kernel, {y € S : S = ¢,(».0)}, must be
trivial, as well as the co-kernel. So ¢, (x, y) defines a bijective endomorphism of S.
In particular, K is a subring of the ring of definable endomorphisms of S. Consider
the following K -vector space structure on S: Sg := (S, +, —,0,{r : r € K}), where
we define the action of r on S by letting r.x = y iff S = ¢, (x, y).

As the structure Sk is clearly definable in the Ly-structure S, in order to prove
that S is definable in Sk, it suffices to show that, in any model S of T}, if any two
tuples, ai,...,a, and by, ..., b, in S have the same K-vector space type, then they

also have the same L-type.

Cram. Let a,b,ay,...,a, € S be such that a is K-linearly independent from
ai,...,a, and b is also K-linearly independent from «j. ..., a,, then there exist an
Ly-automorphism of S which sends « to b and fixes ay., ..., a,.

PrROOE. In thestructure Gy, (0,a) ¢ acl((G'®{0})U{(0,a;),....(0,a,)}) (in the
language L. ): otherwise, there would be ry.....r, € K, (x1,31)..... (Xn. yu) € G§
and g € G’ such that

(0.a) = (xr.p1) + -+ + (xu. ) + (¢.0) and G = ¢,((0. ;). (xi. y1)).

But then,a = y| +---+y, = rja; + - - - + rya,. Similarly (0,5) ¢ acl((G' ® {0}) U
{0.a)).....(0.a,)}).
Since G% is strongly minimal and G’ © {0} < G¥%, there exists an automorphism 7 of
G’ which sends (0, ) to (0,5) and fixes pointwise G’ @ {0} and (0, ay). ..., (0. ay).
From 7 we construct easily an Ly-automorphism of S which sends « to b and fixes
ay.....a,: justleto(s) = s"if 7(0.5) = (x.s'). A Cram
Leta;...a,and b;...b, be two tuples of S which have the same K-vector space
type. Assume that a; ...a; are K-linearly independent and for every j > k. a; is
dependent on a; ... ay. By the previous claim, there is an Ly-automorphism g of S
which sends a; ...a; onto by ...b;. Now, as Sy, is definable in S, it follows that for
every j > k.o(a;) =b;. 4

REMARK. If G is such that Gy = acl()) = 0, then T = T(G) = T, and G itself
has the structure of a K-vector space. In that case, it will follow directly that T is
finitely axiomatizable if and only if the theory of infinite K-vector spaces is finitely
axiomatizable, and hence if and only if (see Section 4.2.2) K is finitely presented as
aring.

84. Application to finite axiomatizability. In [18] Paljutin shows that “There ex-
ists a finitely axiomatizable, not locally finite categorical quasi-variety if and only if
one of the following conditions hold:

(1) there exists an infinite finitely presented ring which is a division ring;

(2) there exists an infinite finitely presented group with a finite number of elements
g1....,gn such that every non trivial cyclic subgroup of G intersects one of
the conjugacy classes of the elements gy,....g,.”

The proof proceeds by showing first that, if there is a such a finitely axiomatizable
quasi-variety (a quasi-variety is the class of models of a set of universal Horn
sentences), then there exists one which is “standard”, where the standard quasi-
varieties are either K-vector spaces for a division ring K, or the Cayley graph of
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a group. Then he shows that if the quasi-variety of K-vector spaces is finitely
axiomatizable and not w-categorical, K must satisfy condition (1), and that if the
Cayley graph of G is finitely axiomatizable and not w-categorical, then G must
satisfy (2) (a proof of this part. due to M. A. Taitslin and Yu. E. Shimarev had
already appeared in [1]).

The existence of such a ring and such a group are both still open. The existence
of an infinite finitely presented group with finitely many conjugacy classes is a
well-known long standing open question, but the existence of the a priori weaker
condition required in (2) is also open.

Concerning the existence of a ring satisfying (1), it seems that it is already un-
known whether there exists an infinite finitely generated ring which is a division
ring. One can only easily see that such a division ring cannot be commutative (see
Section 4.2.2 below).

Some years ago, A. Ivanov obtained some partial results on the conjecture that
the existence of any finitely axiomatizable strongly minimal trivial set must imply
the existence of a group satisfying (2) [12, 13]. The idea behind this conjecture is
that such a group should appear as a subgroup or a quotient of the automorphism
group of a connected component of the trivial strongly minimal set.

As explained in the introduction, Hrushovski showed in [10] that any finitely
axiomatizable Nj-categorical theory must be locally modular and suggested the
conjecture that if the theory has non trivial pregeometry, then the associated division
ring of quasi-endomorphisms must satisfy (1).

In order to be quite self-contained on the subject of finite axiomatizability, and
because sometimes a certain confusion arises on what exactly is meant by finite
axiomatizability (in the case of an infinite language, for example), we will present
in the next section precise definitions and basic transfer properties. For the same
reasons, in Section 4.2, we will present a detailed exposition of the two “standard”
cases.

4.1. Transferring finite axiomatizability. We are going to need to transfer the
property of being finitely axiomatizable through various changes of languages and
interpretations, and to be quite precise when we do it. We have unfortunately
not found a completely adequate reference for our purpose, which we could have
simply quoted or referred to. Most of what follows appears in various places under
slightly different forms, usually with the added assumption of w-categoricity. The
closest references for bi-interpretability can be found in [2] or, more recently, in [20].
In both cases the notions were used in the context of quasi-finitely axiomatizable
w-categorical theories, a context where one can replace syntactical arguments by
topological considerations about the automorphism groups of the structures.

First, recall that a theory 7" in a language L is said to have a finite axiomatization
if there is a finite set F' of sentences from L such that F + T. A classical result
states that if % is a class of L-structures, then % is the class of models of a finite
set of axioms if and only if both the class # and its complement are closed under
isomorphisms and ultraproducts. No class of structures in a genuinely infinite
language can satisfy these conditions. But one naturally comes across structures
in such infinite languages, for example modules over infinite rings, for which the
question of finite axiomatizability also makes sense.
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So we will begin by recalling the definition of finite axiomatizability which applies
to any language.

From now on, when we use the word theory, we mean a consistent set of axioms
which is closed under deduction.

DEerINITION 4.1. Let L be a language and 7' a theory in L. We say that 7T is
finitely axiomatizable if there is a finite sub-language Ly of L such that any model
M of T is interdefinable (Definition 3.3) with its reduct to Ly and the theory T7,.
the restriction of 7 to the language L, has a finite axiomatization in Ly. We then
say that T is finitely axiomatizable in the finite language Ly.

Let us first fix some notation. Remark that, if the structure (M, Ly) is defin-
able in the structure (M, L), then functions symbols from Lg are replaced in the
“translation” by their graphs. One can hence without any loss of generality, and
in order to avoid extra cumbersome notation, when dealing with interdefinability,
or bi-interpretability further down below, replace functions by their graphs and
suppose that the languages involved contain only relation symbols and constants.

For every symbol s (relation or constant) in a language L let J,(%) denote the
atomic formula defining the symbol:

— if s is a relation symbol R, 5z (%) := R(X),
— if s is a constant symbol, ¢, 6.(x) := (x = ¢).
Let #y = (M, Ly) and #; = (M, L) be respectively Ly and Li-structures on M.

Then .4 is (-definable in .2, if and only if, for each s in Ly, there is a formula
¢1[051(X) in Ly, such that foralla c M,

/%0 ):55(5) iff /%1 ': (}51[55](67)

We then define by induction a “translation” for every formula of Ly:
If 0(x) is an atomic formula, i.e., (%) = R(X.c1.....c,), where R is a relation
symbol, and ¢y, ... ¢, are constant symbols in L, we let

¢1[9](2) = EIyl Elyn ¢1[5R]()27y1»---’yn)/\¢1[5(?1](y1) A A ¢1[5(?,,](yn)-

If (%) = 61(X) A 62(%) in Lo, we let ¢1[0](%) := (¢1[011(X) A ¢1[02](X)).
If 0(%) = ~y(X). welet ¢1[0](%) := —(d1[y](X)).

If 0(x) = 3y w(X.p). welet ¢1[0](%) := Ty (d1[w](X. »)).

It follows that for alla C M, for all 6(X) in L.

My = 0(a) iff 4, = ¢1[01(a).

Using the following lemma and a compactness argument, one can check easily
that if the language L is finite, T is finitely axiomatizable in the sense above if and
only if it has a finite axiomatization in L.

LemMmA 4.2, Let T be a theory in a language L, let Ly be a sub-language of L and
let X be a subset of sentences from T such that, for every symbol s in L, ¥ includes a
sentence of the form:

(V)E (55()_5) A ¢s(i))

where ¢5(X) is a formula in Ly. Then T is axiomatized by XU T7,,.
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PrOOF. As above, by induction, we see that the condition on X exactly says that
every L-structure .# which is a model of X is definable in its restriction to L, the
translation being uniform for all models of X, that is: for every formula 0 (%) in L
there exists a formula ¢o[0](X) in Lo such that £ - Vx (¢o[0](x) < 0(x)). The
conclusion then follows directly. -

Finite axiomatizability transfers through interdefinability:

PRrROPOSITION 4.3. Let My = (M, Ly) and #1 = (M, L) be two structures on the
same domain M which are interdefinable. Then Th(#,) is finitely axiomatizable if
and only if Th(A") is finitely axiomatizable.

ProoF. Note first that we can assume that both L, and L; are finite: indeed,
suppose that T/(.#,) is finitely axiomatizable. As interdefinability is transitive, we
can suppose that L is finite. Then there is a finite sub-language of L, such that the
reduct of .#, to this finite sub-language is interdefinable with L, hence also with
/ﬂo in Lo.

Using the notation described above, it follows from interdefinabilty that we have
translations ¢y and ¢; defined by induction, such that:

(i) foralla c M, forall@(x)in L;,i € {0,1},
Mi = 0(a) iff 4 = ¢1-i[0](a).
One can also easily check the following:
(i) for every formula (%) in L;.

Mi =% (0(X) < dildp1-i[011(%)).

Let 2o := A\ ey, (VE (65(X) < do[p1[6,]](X)).

Consider now any Lg-structure, .4y, which is a model of ;. On N, the domain
of A}, define an L;-structure, .#7, by interpreting the symbols of L according to
the translation ¢y, that is: for every symbol s of Li, for every b € N. 47 = d5(b)

iff///() ): (;50[53](1)) Then
(iii) for every formula 6(%)in L;. forallb C N,

M 0(b) iff Ay = gol01(D).
(iv) for every formula w (%) in Lo,

Mo | (VE (w(X) < ol [w]l(5)).

Suppose now that Th(.#)) is finitely axiomatizable, by a sentence 0, in L. We claim
that Th(4,) is then axiomatized by ¢[0;] together with the sentence Xy defined
above. Let /) be any Lg-structure model of ¢y[#;] and of Xy. Consider .#] the
Li-structure on N associated to .#j as above. Then, by (iii), .#7 is a model of 6,
and hence of Th(#;). Let w be any sentence in Lo, such that #{ = w. Then by
(iv). #o = ¢ol¢1[w]]. and hence by (iii). /1 = ¢1[y]. As S = 41, 41 = $ily].
hence by (i), #y = w. This shows that .4} is a model of Th(.#). -
Now some very basic remarks about expanding the language while keeping finite
axiomatizability:
LemMa 4.4. (1) Let #/ = (M, L) be a structure in a finite language L, let E be
an (-definable equivalence relation on M" and U C M" an (-definable subset.
Let My be the following reduct of #°1, My := (M,U/E, L, f). where fg
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is the restriction of the quotient map to U. Then the theory of # has a finite
axiomatization if and only if the theory of Mg has a finite axiomatization.

(i) Let # = (M, L) be a structure in a finite language L. Let a be a tuple of M such
that the type of a is isolated. Then the theory of A has a finite axiomatization
if and only if the theory of #; = (M, L, a) has a finite axiomatization.

Proor. (ii) is clear, and for (i), one just needs to note that the theory of ./#x can
be axiomatized by the theory of .Z in L together with the sentence ¢:

(Vy e UE IxeU fr(x) =y) A (Vx; € UVxy € U (E(x1.x2) <
(fe(x1) = fE(x2)))). 4

We now check that one can reduce questions of finite axiomatizability for N;-
categorical one-based groups to the case of abelian structures.

Recall the fundamental properties of one-based groups (the reader can take
Property 1 as a definition for stable one-based groups).

Fact 4.5.[11]

1. A group @ is stable and one-based if and only if, for every n > 1, every definable
subset of G" is a Boolean combination of definable cosets of definable subgroups
of G".

2. A stable one-based group is definably abelian by finite, that is, has a definable
normal abelian subgroup of finite index.

3. Let Z be a stable one-based group. Let S C H" be a definable connected
subgroup. Then S is definable over acl®(()).

4. If G is w-stable and one-based, then every definable subset of G" is a Boolean
combination of definable cosets of connected definable subgroups of G".

COROLLARY 4.6. Let & be an w-stable one-based group. Fix M, a countable el-
ementary submodel of . Let A C G; any A-definable subset of G" is a Boolean
combination of A-definable cosets of some My-definable connected subgroups.

(Remark that in the above corollary & could be equal to .#;.)

Now let € = (G, L) be a an w-stable one-based connected group. Fix .Z, some
countable elementary submodel of &. Let (H;);c; be the family of all connected
My-definable subgroupsin  J,~.; G". Let G be the following abelian structure:

G= (G +,—, O» (Hi)iel» (m)MGMo)'
It follows from Fact 4.5 and Corollary 4.6 that € and G are My-interdefinable.

COROLLARY 4.7. Let @ be an w-stable one-based connected group such that Th(Z)
is finitely axiomatizable in a finite language L. Then there is a finitely axiomatizable
abelian structure with constants, G, which is interdefinable with a finitely axiomatizable
expansion of & by finitely many constants.

Proor. Consider .#y = %, the prime model of Th(¥%), which exists by w-
stability of Th(%). Consider the abelian structure G described above which is
My-interdefinable with . As the language L is finite, we can choose a finite family
Hi,...,H, and a finite sequence my,...,m, of elements from the prime model

M, such that every symbol from the language L can be defined in the restriction,
denoted G, of G to the finite language
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and such that every H; is definable in & over {my. ..., m,}. Now add {my, ..., m,}
as new constants to the language L of &. As M, is atomic, the type of the tuple
(my,...,my) in L is isolated over (). By Lemma 4.4, the theory of the expansion
g of&to L := LU {my,...,m,} remains finitely axiomatizable. The structures
%' and G are interdefinable (over 0)). Hence by Proposition 4.3 Th(G /) is finitely
axiomatizable. 4

We will now check, using the fact that the connected component is a definable
subgroup of finite index, that an N;-categorical group is finitely axiomatizable if and
only if its connected component is. This is a particular case of the transfer of finite
axiomatizability by bi-interpretability.

Recall the definition of bi-interpretability from [2]. or [20] (as remarked before.,
we can suppose that functions are given by their graphs and that our languages
contain only relations and constants):

DEerINITION 4.8. Let #/ = (M, Ly) and # = (N, L,). We say that ./Z is -
interpretable in " if there is an (}-definable subset U of N”, and a surjective map £,
from U onto M such that:

— the equivalence relation E; on U x U defined. for (a.b) € U x U, by
f(a) = f(b)is O-definable in ./,

— for every k-ary relation symbol R in L;, the subset Ry of Uk, R o=
{(ay.....ax) e U : = R(f(ay)..... f(ar))} is D-definable in .7,

— forevery constant symbol ¢ in Ly, thesubsetc; :={a € U : £ = f(a) = ¢}
is P-definable in /.

It follows that /" induces an isomorphism of L;-structures between U/E ; (subset
of N¢) and /.

If . is interpretable in ./, via the surjective map f from U C N* onto M, and
A is interpretable in @ = (Q, L3), via the surjective map g from V' C Q" onto N,
let W= {(q1.....qx) € (O : (g(q1).....g(qx)) € U}. We denote by f o g the
obvious induced map from W C Q"% onto M. One checks easily that f o g is an
interpretation of /Z in &.

If # is interpretable in ./, via f, and ./ is interpretable in ./ via g, we say
that ./ and " are bi-interpretable if f o g is an (}-definable map in # and g o [
an ()-definable map in .#". Interdefinablity corresponds to the trivial case where
f=g=1d.

PROPOSITION 4.9. Let M be an Li-structure and N an Lj-structure which are
bi-interpretable. Then Th( M) is finitely axiomatizable if and only if Th(WV') is.

PrOOF. Suppose that . is interpretable in /", via the surjective map f from
U C NF onto M. and ./ is interpretable in .#. via the surjective map g from
V' C M" onto N such that f o g is an ()-definable map in .Z (from g—'(U) onto
M) and g o f an (-definable map in .#". Denote by 7, (resp. ;) the quotient map
definable in .#¢ (resp. in #¢?) from V' C M" onto V/E, (resp. from U C N*
onto U/E ). We denote by £ the isomorphism of L;-structures induced by f from
U/Es onto M.

Let .#, be the two sorted structure (living in .2 “?) consisting of (M, V/E,., L. 7).

(a) We extend the isomorphism ( /)~! to an isomorphism 4 from My Into My =
(U/Es.N. L. 7). by letting:
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~onM,h=(f)"": M~ UE,.

—onV/E,, h=g:V/E; — N.

Then for (by.....b,) € (V) C (U/E;)". b; = h(a;). we let my(by.....b,) =
Z(ne(ar,....an). -

We now identify, via this isomorphism, .#, and .#, and can hence suppose that

the domain of .Z, is equal to U/E; UN.

(b) We claim that the structure ., is (-definable in the structure /s := (N, U/Ey.

Lz, 7[/')2

— the sorts are definable, as M = U/E;, and V/E, = N.

— For any symbol s in L, using the notation introduced just before Lemma 4.2,
interpretability of . in ./ tells us that the set {(uy.....u,) € U™ : M
Os(f(wr),.... f(up))} is definable in ./, via a formula 0,(%;,....,x,,) in L.
So. having identified M and U/E . via h. we see that #, = J,(b1.....by) iff
M = 6,(by. ... by)iff.in A thereexistui, ... u,, in U, suchthatb; = 7, (u;).
1 <i<m,and0(uy.....u,) holds. This is a formula in Nr.

— There remains only to show that the map 7, is definable in .#/s. The domain
of my is V' C (U/E,)". its image is N. For (by.....b,) € V. we have that
mg(br,....by) = ciff b = np(u;). 1 <i <m and ¢ = (go f)(ur.....un).
and go f is, by the assumption of bi-interpretability, a definable map.

(c) Similarly, we show that ./} is (-definable in .# . using the fact that f o g isa
definable map in ./ .

Now, assume that Th(.#) is finitely axiomatizable. We can assume that L is
finite and Th(.) has a finite axiomatisation in L;. By Lemma 4.4, the theory of
My = (M, V/E,. L. 7g) also has a finite axiomatization. By transfer through inter-
definability (Proposition 4.3). it follows that the theory of /'y = (N, U/Es. Ly.7y)
is finitely axiomatizable in a finite sub-language. Again by Lemma 4.4, it follows
that ./ is finitely axiomatizable. -

‘We now recall the definition of an induced structure on a definable subset:
DEFINITION 4.10. Let .# be an L-structure and D be an ()-definable subset of
M". The induced structure from .# on D is the structure (D, (P,) (4 formula in L}),

where, for ¢(xi.....xx). |x;| = n. Py is a predicate of arity k which is interpreted
on D by the set DX N ¢(M"™).

LemMA 4.11. Let A4 be an L-structure which is the union of a finite definable
partition, that is, M = My U ---U M, where, for 1 < i< j < n, M; is O-definable
and M; " M; = 0. Suppose furthermore that for each i > 1 there is a O-definable
bijection, f; from M\ onto M; and that L contains n constant symbols {ci,....cy}
which are interpreted in M by distinct elements of M. Consider M| together with its
induced structure from M , denoted M. Then M and M, are bi-interpretable.

Proor. Let U := M) x {cj,...,cy} C MP?andlet f: U — M, f(x.¢c;)) =
fi(x), where f is the identity on M. Then f gives an (injective) interpretation
of # into ;. Indeed, as f is ()-definable in .#, for any k-ary predicate symbol
R from L, the set Ry = {(a1.....ax) € U : M = R(f(a1).....f(ar))} is a
basic predicate in the language of the induced structure, hence certainly definable.
Similarly, if d is a constant symbol. for thesetd, = {a € U : # = f(a) =d}.
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Let g : My C M — M, be the identity. Let W = {(x,y) € U : f(x,y) €
M} = M) x{c;}. Thengo f : W — M, is an interpretation of ./ into itself. For
(x.c1) € U, go f(x.c1) = x is the first projection and is hence ()-definable in .#;.

Let W' = {(x,y) € My x My : (g(x).g(y)) € U}. Then W' = U =
My x{c1,...,cn},and fog(x,¢;) = fi(x)is P-definable in .Z. -

PROPOSITION 4.12. Let & = (G, L) be an w-stable group in a language L. There
is an expansion of the language L by a finite number of constants. L. such that, if

Z = (NG., L) and Z° is the connected component of G, G°, with the induced structure
from &, the following are equivalent:
— Th(Z) is finitely axiomatizable.

— Th (@ is finitely axiomatizable.

— Th(Z9) is finitely axiomatizable.

PrOOF. By w-stability, G° is ()-definable in & and has finite index in G. By
w-stability again, there is a prime model G;. G; < &, atomic over (). Choose
ai.....a, in this prime model such that G = ¢;G° U --- U 4, G°, with a; = 1.
Choose ¢y, . . . ¢, distinct elements from G,°, the connected component of G;. Then
the type of the tuple aj,...,ay,.c1,...,c, is isolated over the empty set. Let T

denote the complete theory of & in the language L = L U {aj,....ap.c1 ..., cn}.

By 4.4, Th(%) (in L) is finitely axiomatizable if and only if T is. Let Ty be Th(Z?9).
We are now in the situation of Lemma 4.11: G is the union of a finite (-definable
partition a;G°U---Ua, G, and for each i. there is an ()-definable bijection f; from
a1G® = G onto ¢;G°. f;(g) = a;g. The result then follows by 4.11 and 4.9. 4

4.2. The classical examples. Before we start on the description of the two em-
blematic examples, we would like to draw the reader’s attention to the following: if
T is a theory in L which is finitely axiomatizable in a finite sub-language Ly of L,
then it is certainly finitely axiomatizable in every finite sub-language L; of L con-
taining Ly (Lemma 4.2), but one should be a little careful. For instance, suppose
that 7" is a complete theory in an infinite language L, which is finitely axiomatizable
in a finite sub-language L of L, i.e., such that there is a finite set of axioms, in Ly,
for Tr,. Let X be an arbitrary infinite set of axioms in L for the complete theory
T. By compactness, some finite subset X of £ will axiomatize T;,. Butif L, is the
finite sub-language of L containing all symbols appearing in X, there is no reason
that ¥ = T7,, or equivalently there is no reason for Z; to axiomatize a complete
theory in the language L,. This explains the care taken in identifying the right set
of axioms in the following proofs.

4.2.1. The trivial example. First, recall that for any non trivial group G, the
theory T¢ which describes G acting semi-regularly (the stabilizer of every element
is trivial) on an infinite set, in the language L := {g : g € G}, where each g is
a unary function symbol, is strongly minimal, eliminates quantifiers and has trivial
geometry. The theory T is w-categorical if and only if G is finite. If G is infinite,
the Cayley graph of G (thatis the regular action of G on itself by left multiplication)
is a model of T;. The theory T can be axiomatized by the following set of axioms,
Y. if G 1is infinite:

- Vx 1(x) = x;

— Vxg(x) # x,foreveryg #1 € G;

— Vx g(h(x)) = r(x), forevery g, h,r € G such that gh = r.
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If G isfinite, then T can be axiomatized by X together with the scheme for infinity.

Note that, for any model M of Tg, for any ¢ € M, the definable closure of {a}
in M in the language L is the G-orbit of a.

Now suppose that we have a presentation of G: G is isomorphic to the quotient
of the free group on S = {s;;i € I} by anormal subgroup P. Then the theory T is
clearly interdefinable with the following theory in the language Ls = {s : s € S},
which we denote by Xg: let W be the set of words on S,

— Vxw(x) = x forevery w € P,

— Vxw(x) # x foreveryw € W \ P.

Suppose that G is an infinite finitely presented group G, thatis, both the free group
S and the normal subgroup P are finitely generated. Furthermore suppose thatin G
there is a finite number of conjugation classes Cj, ..., C; such that every non trivial
cyclic subgroup of G intersects one of the C;’s. Then T is finitely axiomatizable (in
the sense of Definition 4.1). Indeed, choose F = {g.....g,} C G such that: for
every j,g; # 1. F generates G, there is a finite set Py of words on F which generates
P, the presentation of G, F is closed under inverse and for every g € G \ {1}, there
is some m > 0 such that g” is conjugate to one of the g;’s. Let Zr be the (complete)
set of axioms described above, in the finite language Ly := {gi....,g,}. which is
interdefinable with Tz. Consider Xy, the following finite subset of X:

- Vxgj(x) # x.forevery j, 1 < j <n,

— Vxw(x) = x, for every w € Py.

We must check that X is an axiomatization for Xr. If w € P. then, for all x,
w(x) = x as P is the normal subgroup generated by Py. If g is any word on F,
and g ¢ P, we must check that for all x, g(x) # x. By assumption, there are
m>0,g; € Fandh € G, such that g" = h~!g;h. If g(x) = x for some x, then
g"(x) =x=h""(g;(h(x)). hence h(x) = g;(h(x)). But this contradicts Zo.

Conversely, suppose that G is infinite and that the theory 7Ty is finitely axiom-

atizable. Let F' C G. be finite such that T := T is finitely axiomatizable in the
sub-language Ly := {f; f € F}, thatis, such that any model of T is interdefinable
with its reduct to Lr, and the (complete) theory T¢|Lp is finitely axiomatizable.
Let H be the subgroup of G generated by F. Then T¢|Ly contains the theory Ty,
which is complete, hence it is equal to T . In the language L, G which is a model
of T, is equal to the definable closure of the identity element 1. Similarly, H is, in
Ly the definable closure of 1. By interdefinability of Lg with Lg, G is also equal
to the definable closure of 1 in L. hence also in Ly . It follows that G = H.
So we know that G is finitely generated, hence isomorphic to a quotient of the free
group on a finite set of generators S, which we suppose closed under inverse, by
some normal subgroup P. Let I be the set of all words on F'. Pass to the theory
Ts (axiomatized by Xg) in the finite language {s : s € S}, which is interdefinable
with Ts. By finite axiomatizability, there is a finite subset Wy of W (the set of
words on S) such that X5 can be axiomatized by Xy, :

— Vxw(x) = x foreveryw € WyN P,

— Vxw(x) # x forevery w € Wy \ P.

We can suppose that, for every s € S, ss~' € W.

Let N be the normal subgroup generated by W, N P in D, the free group on S.

By construction N C P. The Cayley graph of D/N, in the language Ly is a model
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of Zy,. hence is interdefinable with a model of X5. It follows that N = P and
G = D/N.

Let h € G, h # 1, let H denote the subgroup generated by 4 in G, and G/H the
set of left cosets, equipped with an Lg structure by the left action of G. As the
action of G is not semi-regular on G/H, G/H is not a model of Xg, hence by finite
axiomatizability, it is not a model of Xy,. So there is some g € W, \ N and some
coset aH such that g(aH ) = aH , that is, such that a ~'ga = h" for some integer n.
So any non trivial element 4 has a power which is conjugate to one of the g’s in ;.

4.2.2. Vector spaces. Let K be any countable division ring. Let Lg be the usual
language for K -vector spaces. Lx := {+. —,0, (k)rex }, where k is a unary function
interpreted as scalar multiplication by the element k. Consider T the theory of
all infinite K-vector spaces in Lg. The theory Tk is Wj-categorical and is totally
categorical if and only if K is finite.

Suppose that K is an infinite division ring which is finitely presented as a ring.
Then the complete theory of K-vector spaces is finitely axiomatizable in the follow-
ing way: let F be a finite subset of K, which generates K as a ring and such that there
is a finite set of terms in F, P, which generates the presentation of K (a two-sided
ideal J, such that K is isomorphic to the quotient of the free ring generated by F
by the ideal J). Then Tk is finitely axiomatized in Ly := {+,—.0.1.(f)secr} by

— axioms for abelian groups

— V¥x1(x) = x,

- VxVy f(x+y)=f(x)+ f(y). forevery f € F,

— Vxw(x) =0, for every w € P.

For the converse, we now suppose that the theory of infinite K-vector spaces is
finitely axiomatizable. This forces K to be infinite. This follows by the classical
results on the non finite axiomatizability of totally categorical theories, but one
can also check directly that if A4 is any finite ring, the theory of infinite A-modules
cannot be finitely axiomatized.

ProposITION 4.13. Let K be an infinite division ring. If the theory of K-vector
spaces in the language L is finitely axiomatizable, then K is finitely presented as a
ring.

PrOOF. Let Tk be the theory of non trivial K -vector spaces, in the usual language
Lg = {0,—|—,—,k 1k € K}

Let X be a finite subset of K such that Tk is finitely axiomatizable in the finite
language Ly := {0,+,—.k : k € X}.

CrLamM. K is generated as a skew field by X'.

Proor. Let Ky be the subfield of K generated by X. Then the theory Tk, of
infinite Ko-vector spaces is a subset of T Lk, and since Tk, is complete, they are
equal. Now, consider K as a K-vector space. Then K = dcly (1g) = delg, (1x) =
dClLK(J (IK) = K. A cram
Denote by Sk the classical axiomatization of Tk :

1. 3xx #£0;

2. axioms for abelian groups;

3. ¥x Ig(x) = x;

4. VxVy k(x +y) =k(x) +k(y). (k € K);
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5.Vx k(x)+k'(x) =k"(x)., (k.K'. k" ¢ K, k" =k +k');

6. Vx k(k'(x)) = k"(x). (k.k'. k" € K, k" = kk').

If A is a subset of K we will denote by S4 the subset of sentences of Sk in the
language L4 :={0,4+,—.k : k € A}. A priori, Sy does not give an axiomatization
of the complete theory 77, . but since there is some finite axiomatization of 77, by
assumption, there exists by compactness a finite subset Y containing X such that
Sy implies 77, .

We are going to enlarge Y in order that Sy implies the complete theory 77, . First
we define the depth of elements of K relatively to X. We assume that 1.0 € X
and we define by induction a sequence (W;);c., of subsets of K such that W := X
and

Wini={k €K : k=—-k ork:kflorkzkl—i-kz ork = kiky forky, ky € W;}.

Then K = U;e, Wi since X generates K as a skew field. We define the depth of
k € K as the smallest integer n such that k € 7,. Now by an easy induction, we
can enlarge Y so that it remains finite and for each k € Y, if the depth of k is n + 1
then there exists k1, k, € Y of depths at most n such that k = —k;, or k = kfl, or
k=ki +kyork =kks.

Cram. Then T}, is axiomatized by Sy.

PrOOF. We choose, by induction on the depth of elements of Y, foreach k € Y,
a formula ¢ (x. y) € Ly such that Sy - VxVy (kx = y) < ¢i(x.y) (we know by
assumption that there is such a formula for which T - VxVy (kx = y) < ¢r(x. y).
but we want one such that the equivalence can be deduced from Sy). If k € Y
has depth 0 (i.e.. k € X). then we let ¢4 (x.y) := (kx = y). Assume that we have
chosen a formula ¢y for each k € Y of depth less or equal to n. Let k € Y have
depth n + 1. Then there exist k. k; € Y, of depth at most #, such that at least one
of the following cases occur:

k = —ky; in this case we let @i (x, y) := ¢, (x. —p).
or k = k;'; in this case we let ¢ (x. y) := ¢, (. x),
or k = ki + k»; in this case we let

dr(x.p) := 330 (¢, (x.11) A, (x. ) Ay =11 + 12)) .
e or k = kik,; in this case we let

G (x.p) =3t (¢r,(x. 1) A gy (£.9)) .

Since Tk is finitely axiomatizable in the language Ly and foreach k € Y. T, +
VxVy (kx = y) < ¢ (x,y), the complete theory T}, is axiomatized by

Tr, U{VxVy (kx = p) < ¢p(x.y) 1k € Y},

It follows that Sy is an axiomatization of 7y, .  Cram

Now, we are going to prove that K is isomorphic to the finitely presented ring A4,
given by the set of generators {k : k € Y} and the presentation:

{11(— 1}U{k1+k2—k32k1,k2,k3 S Y;k3=k1+k2}U
{klkz — k3 ki ky ks € Yik; Zklkz}.



FINITELY AXIOMATIZABLE STRONGLY MINIMAL GROUPS 45

Remark that every non trivial A-module is a model of Sy as an L y-structure, hence
any two non trivial A-modules are elementarily equivalent in the language Ly.
Furthermore, any non trivial 4-module has a canonical expansion to a K-vector
space: by assumption, for each k € K, there is a formula 6, € Ly C Ly, such
that T - VxVy (kx = y) « 0i(x.y). Define, fork € K. m.n € M, km = n iff
M ': Hk (m, I’l)

Let y be the canonical morphism from 4 to K which sends each generatork € Y
to k € K. The morphism y is injective: consider the 4-module structure on K
given via vy, i.e., define ax := w(a)x. As A-modules, K and A4 are elementarily
equivalent. In A4, if @ # 0, then for some x, ax # 0, hence this is also true in K,
which implies that w(a) # 0.

Hence A4 has no zero divisors. Again by completeness of the theory of non trivial
A-modules, this implies that in all non trivial 4-modules, if a # 0 € 4, if x # 0,
then ax # 0. This implies that A is a division ring: if @ € 4 \ {0} was not left
invertible, 4/4a would be a non-trivial 4-module satisfying that ax = 0 for some
x#0(x =1+ Aa). Since X C w(A), X generates K as a skew field and y(A4) is
a skew field, we obtain that w(4) = K. 4

REMARK. As we have mentioned above, it seems to be an open question whether
there exists an infinite division ring which is finitely generated as a ring. It is easily
seen, though, that there is no such commutative division ring. Let K be a field which
is finitely generated as a ring, and let k denote its prime field (k = F, or k = Q).
As K is finitely generated as a ring over k, K is contained in k%2, the algebraic
closure of k (see for example [14], Chapter IX.1, or argue by modelcompleteness
of the theory of algebraically closed fields). If K has characteristic p > 0, then
K =Fpla....,a,]isfinite. Otherwise k = Q, and thereare a;.....a, € Q¢ such
that K = Zlay,....a,]. In that case, for some integer m > 0, the g;’s are entire
over A :=Z[1/m] and K is finitely generated as an A-module. As A is Noetherian,
K is Noetherian as an 4-module, and Q, as an 4-submodule, must also be finitely
generated, which is impossible.

4.3. Finitely axiomatizable strongly minimal abelian structures. We suppose that
G is a strongly minimal abelian structure in a finite language L, = Lo U {c € C}
such that its theory T is finitely axiomatizable. Recall from corollary 2.4 that T is
axiomatized by the set of sentences T (G) together with the pp-type of the constants.
Let B be a finite axiomatization of T which consists of a finite subset A of 7(G)
together with a finite subset of the pp-type of the constants. Denote by A; the
following finite subset of T (as defined in Section 2.2):

— the axioms for abelian groups,

— for each original predicate H from Ly, H is a subgroup,

— the equivalence sentences in A,

— [¢ : w] > k for every k and for every pair of pp-formulas such that in G,
w(G) C ¢(G) C G, [¢p(G) : w(G)] is infinite and the sentence [¢ : ] > k is
in A,

— [¢ : w] = 1 for every pair of pp-formulas such thatin G, w(G) C ¢(G) C G
and for some integer k. the sentence [¢(G) : w(G)] = k isin A,

— dx x #0.
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LeEMMA 4.14. For every model G of T and every model S of A, the L -structure
Gs (= G @ S as in Section 2.2) is a model of B and so, of T. Moreover, G & {0} is
an elementary submodel of Gg.

ProorF. The proof that Gy is a model of B is exactly similar to the proof of 2.13.
One needs to check the dimensions only for the pp-subgroups ¢, v such that a
dimension sentence of the form [¢ : w] > n (if it is infinite) or [¢ : w] = n (if it is
finite) appears in A. +

We are going to show that A gives an axiomatization for the complete theory T;.
It suffices to show that every model of A; is infinite:

LemMA 4.15. If all models of A are infinite then A is a finite axiomatization of T|.

ProOF. We show that any two models of A of cardinality X; are isomorphic,
then if A; has no finite models, it is complete and hence axiomatizes T;. Let G
be a countable model of T. (One can choose acl(@) if it is infinite.) Let S; and S,
be two models of A; of cardinality X;. Then by strong minimality, as G ® {0} is
algebraically closed in Gg,. there is an isomorphism between Gg, and G, which is
the identity on G @ {0}. From this isomorphism one induces easily an isomorphism
between S; and S,. =

PROPOSITION 4.16. The ring of quasi-endomorphisms of G is infinite.

PrOOF. Suppose not. Let K denote the ring of quasi-endomorphisms, then
K = F, and G has bounded exponent. In particular every finitely generated
subgroup of G is finite. We are going to construct a finitely generated subgroup of
G which is a model of T, contradicting the completeness of T.

First, we add the quasi-endomorphisms as predicates to the language: for each
a € IF,, denote by H, the corresponding quasi-endomorphism, which is a strongly
minimal subgroup of G2, definable over () by Lemma 2.6, such that its first projection
isequal to G. We add to L. a predicate H, foreacha € F,. This preserves the finite
axiomatizability of G. So we can assume that the language L. already contains the
quasi-endomorphisms as predicates. Now, we also, if necessary, add finitely many
new predicates for some p p-definable subgroups which appear in the axiomatization
B, so that T has a finite axiomatization containing only sentences of the following
type where X, Y and Z are amongst the predicates H; of L.:

1. G is a group;

2. the H; ’s are subgroups:

3. the projection of X on the first k — 1 coordinates is equal to Y (where X is
k-ary):
the cartesian product of X and Y is equal to Z;
the intersection of X and Y is equal to Z;

X is equal to the group Y up to a fixed permutation of coordinates;
the index of X in Y is equal to k;

the index of X in Y is greater or equal to k;

the tuple ¢ isin X;

A e

Remark that the sentences of types 3, 4, 5 and 6 correspond to the equivalence
sentences which occur in A.

Note that every subgroup Gy of G which contains all the constants, satisfies the
axioms of types 2, 4, 5, 6, and 9. For each sentence Wy y; of types 7 or 8, a subgroup
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G satisfies Wy yx if and only if it contains at least k& elements of Y which are in
different cosets modulo X'. Thus there exist finitely generated subgroups of G which
satisfy the finite set of axioms of types 1,2, 4, 5,6, 7, 8 and 9.

To deal with axioms of type 3, we need to find finitely generated subgroups which
are also “closed under projection” in the adequate sense. This is done in the two
following claims. We say that a subset X of G is stable under quasi-endomorphisms
if for each x € X and each a € F,. the set {y € G : (x.y) € H,} is a subset
of X.

CramM. Let X be a definable subgroup of G¥. Then there exists a finite subset
Dy of G such that. if Gy is any subgroup stable under quasi-endomorphisms which
contains Dy, if 7 denotes the projection from G* onto the first k — 1 coordinates,
then 7(X) N Gy ~! = n(X N Gf).

PrOOF. Let / be the dimension (algebraic dimension = Morley rank) of X and

(a1.....ay) a generic point of X, that is a point of dimension /. Then, there are
two cases.
Either, a; is independent of ay,...,a;_;. It follows easily in this case that

X =Y xGwhere Y = {(x1,....,x,_1) : (x1....,x,_1.0) € X} and then for every
subgroup Gy, 7(X) N G¢ ' = n(X N GY).

Otherwise, by a permutation of coordinates we can assume that @, 1. ..., a; are
algebraic over aj....,a;. (Note that then every generic of X satisfies this prop-
erty.) Foreach j. I < j < k,a; € acl(a.....a;): so (see Fact 3.1), there exist
@j1.....a; € Fgand bjy.....b;; € G such thata} = a; — 37, b;; € acl(l)
and forevery i < /. (a;.b;;) € H,,,.

Let T be the subgroup of G* of elements (xi.....x;) such that there exist
Viels-o. Y with (x1.....x/, ¥/41..... V%) € X and for each j. [ < j < k, there
exist DJACERRER A with Xj = Yj— Ziyj,i and i < [, (X,‘,yj.,‘) € Haj_f- Then
(ar.....a1.aj.....ap) € T. Nowlet T" := {(x/41.....x%) = (0.....0.x/41.....
xk) S T}.

We claim that 7" is finite and that 7 = G' x T’. Since X is of dimension /,
the group X’ := {(x;1.....xk) : (0,...,0,x/41,...,xx) € X} is finite. It follows
that 7" is finite because the cokernels of the quasi-endomorphisms are finite. Let

(x1.....x;) be a generic of G’ over (ay.....a;). By strong minimality, (xi,....x;)
and (ay.....a;) have the same type over acl(0). Since (a/,,.....q;) € acl(0), we
have (xi.....x;.a/,,.....a;) € Tandso (x; —aj.....x; —a;.0.....0) € T. But

(x1 —ai.....x; — a;) is generic, so G' x {0}~/ c T and thus T = G/ x T".
Now, let Gy be any subgroup of G stable under quasi-endomorphisms such that
Gé‘_l contains 7”. Thenﬂ(X)ﬂG(])‘_1 =n(XNGEK): indeed let (x1,.... x5 yig1.. ...
k) € X besuch that x|,....x; € Gy. we are going to show that y, € Gy. For each
J.1<j <k, take y;i.....y;; such that for each i </, (x;.y;;) € Hq,,. Then, by
stability of Gy under quasi-endomorphisms, y;; € Gy for each j,/ < j < k., and
eachi </. Foreachj, /< j<kletz;=y;1+---+y;;andx; = y; —z;. Then
(xl,...,xl,le,...,xk) cTandasT = G! x T, (X[+1,...,xk) eT C Gécil.
So, in particular, x; € Gy and thus y; = xx + zx € Gy. — Cram

Cram. For every finite subset 4 C G, there is a finite subgroup Gy of G, con-
taining A, which is stable under quasi-endomorphisms.
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PrOOF. Let A be a finite subset of G. For a subset X" of G denote by X the set
Ura)exxr, 1Y € G : (x,y) € Ha}. Note that X is not necessarily stable under

quasi-endomorphisms (i.e.. X is not necessarily equal to X).

For each (o, ) € qu, let H, o Hy denote the subgroup of G? defined by the
formula

3z ((x.z) € Hg A (z.y) € Hy).

The quasi-endomorphism H,g is equal to the connected component of H, o Hg.
Let Xo := {y € G : (0,y) € H, o Hy for some (o, f) € F,*} and let 4y be the
finite subgroup generated by 4 and X,. Let B be the set 4g. We prove that B
is stable under quasi-endomorphisms: let « € F,, x € B and y € G be such
that (x,y) € H,. By definition of B, there exists f§ € F, and z € A4, such that
(z.x) € Hp. So (z.y) € Hy 0 Hg. Let y' € G be such that (z.)’) € H,g. Then
y — ' € Xy since (0.y —y') € H, o Hp. Remark that if @« = 0 then y = 0
and if § = 0 then y € Xp. So assume that aff # 0. Let ¢t € G be such that
(v —y'.1) € Higp—1. Thent € Agsince y — ' € Xpand Xo C Ao. Thus y € B
since (z + 1.y + (y — ') € Hyp and z + ¢ € 4. Now consider Gy the subgroup
generated by B. Then G is also stable under quasi-endomorphisms since for each
X1,x2 € G and each o € I,

{yeG:(xi+x2.y)eH}={y1€G : (x1.1)€Ha} +{12€G : (x2. ) €H, }.

- Cramm

Now by the previous claims we can find a finite subgroup of G, which contains
sufficiently many elements in different cosets for the axioms of type 7 or 8 to be
satisfied, which is stable under quasi-endomorphisms and contains each Dy,. Such
a finite group is a model of T. -

COROLLARY 4.17. A\ is a finite axiomatization of the complete theory T.

ProofF. By lemma 4.15, it suffices to show that every model of A; is infinite.
Let S be a model of A;. We work in the structure Gg which is a model of T
by 4.14. For r € K, let ¢, denote the corresponding pp-formula (over ). In
Gg, the kernel and cokernel of ¢, are finite, hence, by Lemma 4.14, they must be
contained in G @ {0} This means that ¢, restricted to {0} @ S is a well-defined
map. Let s € S\ {0}. For each r € K, consider the unique (x,, y,) € Gs such that
((0,5), (x,.¥,)) € ¢,. Then, if r # ¥', y, # y.: indeed, if for r # ', y, = y,» then
((0.5). (xr — x,4.0)) € (¢ — pr). ((xr — x,,.0).(0.5)) € (¢, — ¢r’)_1 and hence
s =0. -

By Proposition 3.4, T is interdefinable with the theory of non trivial K-vector
spaces, where K is the ring of quasi-endomorphisms of G. By Corollary 4.17 and
Lemma 4.2, the theory of K-vector spaces is finitely axiomatizable. By Proposi-
tion 4.13 we derive immediately:

COROLLARY 4.18. The division ring K of quasi-endomorphisms of G is finitely pre-
sented as a ring.

4.4. Finitely axiomatizable strongly minimal groups.

THEOREM 4.19. Let & be a strongly minimal group. If Th(Z) is finitely axiomati-
zable in a finite language L, then the ring of quasi-endomorphisms of & is an infinite
division ring which is finitely presented as a ring.
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ProoOF. By [10], a finitely axiomatizable strongly minimal group must be locally
modular, hence one-based.

Cram. If &’ is an expansion of & by a set C of constants, then & and &’ have
the same ring of quasi-endomorphisms.

Proor. This uses only the fact that € is stable one-based. For 4 C G, let S
be any connected A-definable subgroup of G x G in &’. Then S is also definable
in &, over AU C. As Z is one-based, by Fact 4.5, S is definable over ac/®(0) in
Z. Conversely, any definable connected subgroup H in & remains connected in
g = CLAIM

Recall the construction from Corollary 4.7: we add finitely many constants from
My, the prime model of Th(%). Let €’ denote the expansion of & to the new lan-
guage L' = LU {my,...,m,}. Then &’ is interdefinable with some finitely axiom-
atizable abelian structure G =< G,+,—,0, Hy, ..., Hy,my,....m, >. It follows
that G and & have the same quasi-endomorphisms ring, as a quasi-endomorphism
is a definable connected subgroup of G x G. (Note that, as in G every definable con-
nected subgroup is defined over () (Proposition 2.6), the same is true in &’. Hence
in & every definable connected subgroup was already definable over {my, ..., m,}.)

By Corollary 4.18, the division ring of quasi-endomorphisms of G is finitely
presented as a ring. As remarked above, this is also the division ring of quasi-
endomorphisms of &. -

By Proposition 4.12, we derive immediately:

COROLLARY 4.20. Let & be a Morley Rank one group. If @ is finitely axiomatizable
then the quasi-endomorphism ring of its connected component is an infinite division
ring which is finitely presented as a ring
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