Devoir 1 à retourner le 14 novembre

Exercice 1 (Extrait examen de DEA du 16/01/2002). Soit $(\phi \downarrow \psi)$ une abbréviation pour $\neg(\phi \lor \psi)$. Démontrer que toute formule dans un langage L est équivalente à une formule qui n'utilise que \downarrow et \exists comme symboles logiques.

Exercice 2. Un anneau $\mathcal{A} = \langle A, 0, 1, +, -, \cdot \rangle$ est dit inductif si pour toute formule $\phi(x)$ de L_{ann} à paranètres dans A,

$$\mathcal{A} \models (\phi(0) \land \forall x(\phi(x) \to \phi(x+1))) \to \forall x \phi(x).$$

- (a) Montrer qu'un anneau inductif est commutatif.
- (b) Soit \mathcal{A} un anneau tel qu'il existe n > 0 tel que n.1 = 0. Montrer que \mathcal{A} est inductif si et seulement s'il est isomorphe à l'anneau $\mathbb{Z}/m\mathbb{Z}$ pour un entier m > 0.
- (c) Montrer que le corps \mathbb{R} n'est pas inductif.
- (d) Montrer que l'anneau Z n'est pas inductif. (On admettra que tout entier positif est somme de quatres carrés.)
- (e) Montrer qu'un corps algébriquement clos de caractéristique 0 est inductif. (On admettra que dans un corps algébriquement clos, toute formule est équivalente à une combinaison booléenne d'équations algébriques (voir chapitre 3 élimination des quanteurs).)

Exercice 3 (Inspiré de l'examen de DEA du 29/01/2003).

Soit $T = \text{Th}(\langle \mathbb{N}, < \rangle)$ dans le langage $L = \{<\}$.

(a) Montrer que

$$T \vdash \begin{array}{l} \exists x \forall y (((x < y) \lor (x = y)) \land \\ ((x < y) \rightarrow \exists z ((z < y) \land \forall t ((t < y) \rightarrow ((t = z) \lor (t < z))))) \end{array}$$

et

$$T \vdash \forall x \exists y ((x < y) \land \forall z ((x < z) \rightarrow ((y < z) \lor (y = z)))).$$

- (b) Trouver une sous-structure de $\langle \mathbb{N}, < \rangle$) élémentairement équivalente à $\langle \mathbb{N}, < \rangle$) sans en être une sous-structure élémentaire.
- (c) Montrer que l'ensemble $\{0,1\} \times \mathbb{N}$ ordonné par la relation suivante n'est pas un modèle de T: pour $(i,m), (j,n) \in \{0,1\} \times \mathbb{N}, (i,m) < (j,n)$ si et seulement si i < j ou (i = j et m < n).
- (d) Montrer par un argument de compacité que $(\mathbb{N}, <)$ possède une extension élémentaire \mathcal{M} contenant un élément α plus grand que tous les éléments de \mathbb{N} . Montrer que α est contenu dans une sous-structure de \mathcal{M} isomorphe à $(\mathbb{Z}, <)$.
- (e) Pour $\langle X, < \rangle$ un ordre total, dénotons \mathcal{M}_X la structure $\langle \mathbb{N} \cup (X \times \mathbb{Z}), < \rangle$ telle que sur \mathbb{N} , < est l'ordre usuel et pour tous $n \in \mathbb{N}$, $(x_1, m_1), (x_2, m_2) \in X \times Z$, $n < (x_1, m_1)$ et $(x_1, m_1) < (x_2, m_2)$ ssi $x_1 < x_2$ ou $(x_1 = x_2 \text{ et } m_1 < m_2)$.
 - -i- Montrer que si \mathcal{M} est modèle de T alors il existe un ordre total $\langle X, < \rangle$ tel que $\mathcal{M} \simeq \mathcal{M}_X$.
 - -ii- Montrer par un argument de compacité que pour tout ordre total $\langle X, < \rangle$ il existe un ordre total dense sans extrémité $\langle Y, < \rangle$ prolongeant X tel que $\mathcal{M}_X \prec \mathcal{M}_Y$.
 - -iii- Montrer que si $\langle Y_1, < \rangle$ et $\langle Y_2, < \rangle$ sont deux ordres totaux denses sans extrémité alors $\mathcal{M}_{Y_1} \equiv \mathcal{M}_{Y_2}$.
 - -iv- En déduire que si $\langle X, \langle \rangle$ est un ordre total alors $\mathcal{M}_X \models T$.
 - -v- Donner une axiomatisation de T.

Exercices 2.3, 2.6, 2.22 et 2.23 du chapitre 2.