Superrigidity and the classification problem for the torsion-free abelian groups of finite rank

Simon Thomas

Definition 1 $G \leq \mathbb{Q}^n$ has rank *n* iff *G* contains *n* linearly independent elements.

Some History:

1937 Baer gave a satisfactory classification of the rank 1 groups.

1938 Kurosh and Malcev independently gave an unsatisfactory classification of the higher rank groups.

Suppose that G is a torsion-free abelian group and that $0 \neq x \in G$. For each prime $p \in \mathbb{P}$, the *p*-height of x is defined to be the supremum

$$h_x(p) \in \mathbb{N} \cup \{\infty\}$$

of the natural numbers n such that

$$(\exists y \in G)p^n y = x$$

and the *characteristic* $\chi(x)$ of x is defined to be the function

$$\langle h_x(p) \mid p \in \mathbb{P} \rangle \in (\mathbb{N} \cup \{\infty\})^{\mathbb{P}}.$$

Two functions χ_1 , $\chi_2 \in (\mathbb{N} \cup \{\infty\})^{\mathbb{P}}$ are said to be *similar* or to *belong to the same type*, written $\chi_1 \equiv \chi_2$, iff

(a) $\chi_1(p) = \chi_2(p)$ for almost all primes p; and

(b) if $\chi_1(p) \neq \chi_2(p)$, then both $\chi_1(p)$ and $\chi_2(p)$ are finite.

The type $\tau(x)$ of x is the \equiv -class containing $\chi(x)$.

If $0 \neq G \leq \mathbb{Q}$, then $\tau(G) = \tau(x)$, where x is an arbitrary nonzero element of G.

Theorem 2 (Baer 1937) If $0 \neq G, H \leq \mathbb{Q}$, then $G \cong H$ iff $\tau(G) = \tau(H)$. Fix $n \ge 2$. Kurosh and Malcev independently found *unsatisfactory* complete invariants of the form

$$\langle M_p \mid p \in \mathbb{P} \rangle \qquad M_p \in GL_n(\mathbb{Q}_p)$$

Why unsatisfactory? Because the problem of deciding whether two sequences are equivalent is as difficult as deciding whether the corresponding groups are isomorphic!

Definition 3 $R(\mathbb{Q}^n)$ is the set of all subgroups $G \leq \mathbb{Q}^n$ of rank n.

The classification problem for $R(\mathbb{Q}^n)$ can be reduced to that for $R(\mathbb{Q}^{n+1})$ by the explicit map

$$R(\mathbb{Q}^n) \to R(\mathbb{Q}^{n+1})$$
$$A \mapsto A \oplus \mathbb{Q}$$

Question 4 Does there exist an explicit map $f: R(\mathbb{Q}^{n+1}) \to R(\mathbb{Q}^n)$ such that

 $A \cong B$ iff $f(A) \cong f(B)$?

Question 5 Which functions $f : \mathbb{R} \to \mathbb{R}$ are explicit?

An analogue of Church's Thesis:

$\mathsf{EXPLICIT} \subseteq \mathsf{BOREL}$

BOREL = MEASURABLE modulo null

X is a standard Borel space; i.e. a complete separable metric space equipped with its σ -algebra of Borel subsets.

e.g. \mathbb{R} , [0,1], \mathbb{Q}_p , ...

Some less obvious examples:

•
$$\mathcal{P}(\mathbb{Q}^n) = 2^{\mathbb{Q}^n}$$

- The space $R(\mathbb{Q}^n)$ of rank n groups
- The space of finitely generated groups
- The space of countable groups

Theorem 6 There exists a unique uncountable standard Borel space up to isomorphism. **Definition 7** Let E, F be equivalence relations on X, Y.

(a) $E \leq_B F$ iff there exists a Borel function $f: X \to Y$ such that

 $xEy \iff f(x)Ff(y).$

f is called a Borel reduction from E to F.

(b) $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.

(c) $E <_B F$ iff both $E \leq_B F$ and $E \nsim_B F$.

Let \cong_n denote the isomorphism relation on $R(\mathbb{Q}^n)$. Then:

$$(\cong_1) \leq_B (\cong_2) \leq_B (\cong_3) \leq_B (\cong_4) \leq_B \cdots$$

Hard ?

Using the theory of Borel equivalence relations

- \cong_1 is the $<_B$ -least nontrivial classification problem.
- Let E_{∞} denote the isomorphism relation on the space of finitely generated groups. Then $(\cong_n) \leq_B E_{\infty}$ for all $n \geq 1$.

Conjecture 8 (Hjorth-Kechris) $(\cong_2) \sim_B (E_\infty)$

Note that if $A, B \in R(\mathbb{Q}^n)$, then $A \cong B$ iff $\exists g \in GL_n(\mathbb{Q}) \quad g(A) = B.$

We want to show that there doesn't exist a Borel map

$$f: R(\mathbb{Q}^{n+1}) \to R(\mathbb{Q}^n)$$

A, B lie in the same $GL_{n+1}(\mathbb{Q})$ -orbit iff f(A), f(B) lie in the same $GL_n(\mathbb{Q})$ -orbit.

Lattices in Lie Groups:

Let G be a connected simple Lie group with \mathbb{R} -rank $(G) \geq 2$.

e.g. $SL_m(\mathbb{R})$ for $m \geq 3$.

Let ν be a fixed Haar measure on G. Then $\Delta \leqslant G$ is a *lattice* iff

• Δ is a discrete subgroup

• $\nu(G/\Delta) < \infty$.

e.g. $SL_m(\mathbb{Z})$ is a lattice in $SL_m(\mathbb{R})$.

A suggestive non-example: Let $G = \mathbb{R} \oplus \mathbb{R}$ and $\Delta = \mathbb{Z} \oplus \mathbb{Z}$. Then G/Δ is the torus.

The Measure Context (Zimmer):

Let G be a connected centreless simple Lie group with \mathbb{R} -rank $(G) \ge 2$ and let Δ be a lattice in G. Suppose that

- X is a standard Borel Δ -space.
- Δ acts freely on X.
- μ is a Δ -invariant ergodic probability measure on X.
- E^X_{Δ} is the orbit equivalence relation on X.

Question 9 To what extent does the data (X, E_{Δ}^X, μ)

"remember" the group Δ and its action on X?

Definition 10 (X_0, Δ_0, μ_0) and (X_1, Δ_1, μ_1) are orbit equivalent *iff there exist*

- Δ_i -invariant Borel subsets $Y_i \subseteq X_i$ with $\mu_i(Y_i) = 1$
- a measure preserving Borel bijection $f: Y_0 \rightarrow Y_1$

such that for all $a, b \in Y_0$,

$$\Delta_0 \cdot a = \Delta_0 \cdot b \Longleftrightarrow \Delta_1 \cdot f(a) = \Delta_1 \cdot f(b).$$

Superrigidity for optimists:

Does orbit equivalence imply isomorphism?

Unfortunately, not ...

Theorem 11 (Connes-Feldman-Weiss) If H_0 , H_1 are amenable, then (X_0, H_0, μ_0) and (X_1, H_1, μ_1) are orbit equivalent.

However ...

Theorem 12 (Zimmer Superrigidity) With the above hypotheses, if (X_0, Δ_0, μ_0) and (X_1, Δ_1, μ_1) are orbit equivalent, then $G_0 \cong G_1$. A reminder ...

We want to show that there doesn't exist a Borel map

$$f: R(\mathbb{Q}^{n+1}) \to R(\mathbb{Q}^n)$$

A, B lie in the same $GL_{n+1}(\mathbb{Q})$ -orbit iff f(A), f(B) lie in the same $GL_n(\mathbb{Q})$ -orbit.

Unfortunately ...

- $GL_n(\mathbb{Q})$ is not a lattice.
- There does not exist a $GL_n(\mathbb{Q})$ -invariant probability measure on $R(\mathbb{Q}^n)$.
- $GL_n(\mathbb{Q})$ does not act freely on $R(\mathbb{Q}^n)$.

But we can recover ...

Suppose that $f : R(\mathbb{Q}^{n+1}) \to R(\mathbb{Q}^n)$ is such a Borel map.

- Consider the action of $SL_{n+1}(\mathbb{Z})$ on $R(\mathbb{Q}^{n+1})$.
- There exists an ergodic $SL_{n+1}(\mathbb{Z})$ -invariant probability measure μ on $R(\mathbb{Q}^{n+1})$. In fact, there exists a class of *p*-local groups $R^*(\mathbb{Q}^{n+1}) \subseteq R(\mathbb{Q}^{n+1})$ such that

$$(R^*(\mathbb{Q}^{n+1}), GL_{n+1}(\mathbb{Q}))$$

is essentially the same as

$$(PG(n,\mathbb{Q}_p),GL_{n+1}(\mathbb{Q})).$$

• Slightly oversimplifying ... reduce to the case when the stabiliser of each f(A) is a *fixed* group L. Then we obtain a free action of N(L)/L.

Borel analogue of Zimmer superrigidity:

Suppose that there is a Borel reduction

$$f: R(\mathbb{Q}^{n+1}) \to R(\mathbb{Q}^n).$$

Then $PSL_{n+1}(\mathbb{R})$ is involved in $PSL_n(\mathbb{R})$; i.e. there exist Lie subgroups

$$N \trianglelefteq H \leqslant PSL_n(\mathbb{R})$$

such that

$$H/N \cong PSL_{n+1}(\mathbb{R}),$$

which is a contradiction!

Theorem 13 (S.T. 2000) The complexity of the classification problem for the torsion-free abelian groups of rank nincreases strictly with n.

Actually we also need ...

Theorem 14 (Hjorth 1998) Rank 1 groups are strictly easier than rank 2 groups.

The essential point ...

 $GL_1(\mathbb{Q}) = \mathbb{Q}^*$ is amenable.

 $GL_2(\mathbb{Q})$ is nonamenable.

Question 15 Is the classification problem for $R(\mathbb{Q}^2)$ "genuinely difficult"?

Question 16 Does there exist a Borel equivalence relation E such that

$$(\cong_1) <_B E <_B (\cong_2)?$$

Definition 17 An abelian group A is said to be p-local iff A is q-divisible for every prime $q \neq p$.

Definition 18 $R^{(p)}(\mathbb{Q}^n)$ is the standard Borel space of all *p*-local subgroups $G \leq \mathbb{Q}^n$ of rank *n*.

Definition 19 The isomorphism relation on $R^{(p)}(\mathbb{Q}^n)$ is denoted by $\cong_n^{(p)}$.

Conjecture 20 (S.T. 2000) If $p \neq q$ are distinct primes, then $\cong_2^{(p)}$ and $\cong_2^{(p)}$ are incomparable with respect to Borel reducibility. Hence

$$(\cong_1) <_B (\cong_2^{(p)}) <_B (\cong_2).$$

Theorem 21 For each prime p, let E^p be the orbit equivalence relation arising from the natural action of $GL_2(\mathbb{Q})$ on the projective line $\mathbb{Q}_p \cup \{\infty\}$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$

Then $\cong_2^{(p)} \sim_B E^p$.

Theorem 22 (S.T. 2002) Fix some $n \ge 3$. If $p \ne q$ are distinct primes, then the classification problems for *p*-local and *q*-local torsion-free abelian groups of rank *n* are incomparable with respect to Borel reducibility.

Makes use of

- Zimmer superrigidity for $SL_n(\mathbb{R})$.
- The Ratner measure classification theorem for real Lie groups.
- The Kazhdan property for $SL_n(\mathbb{Z})$.

Theorem 23 (Hjorth-S.T. 2004) If $p \neq q$ are distinct primes, then $\cong_2^{(p)}$ and $\cong_2^{(p)}$ are incomparable with respect to Borel reducibility. Hence

$$(\cong_1) <_B (\cong_2^{(p)}) <_B (\cong_2).$$

Makes use of

- Zimmer superrigidity for $SL_2(\mathbb{R}) \times SL_2(\mathbb{Q}_p).$
- The Margulis-Tomanov measure classification theorem for products of real and *p*-adic Lie groups.
- Property (τ) for $SL_2(\mathbb{Z}[1/p])$.