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.Let P be a polygonal line approximating a planar curve curve Γ, the discrete curvature
kd(P) at a vertex P ∈ P is (usually) defined to be the quotient of the angle between the
normals of the two segments with vertex P by the average length of these segments. In
this article we give an explicit upper bound of the difference |k(P)− kd(P)| between the
curvature k(P) at P of the curve and the discrete curvature in terms of the polygonal line’s
data, the supremums over Γ of the curvature function k and its derivative k′, and a new ge-
ometrical invariant, the return factor ΩΓ. One consequence of this upper bound is that it is
not needed to know precisely which curve is passing through the vertices of the polygonal
line P to have a pointwise information on its curvature.
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1. INTRODUCTION

1.1. Generalities. Curvature estimates are often needed in applications from computer vi-
sion, computer graphics, geometric modeling and computer aided design. Indeed, they are
of a fundamental importance for the intelligence of the geometry of meshes and there is, in
applied geometry, a vast literature devoted to their study ([2],[3],[5],[9],[10], for instance).
Nevertheless and as far as we know, this literature only focusses on the convergence issue:
given a sequence of meshes approximating a surface, do discrete curvatures converge to-
wards curvatures of the surface? Yet there is another question, at least as important, the
approximation issue: given one mesh approximating a surface, can we evaluate the error
between discrete curvatures and curvatures of the surface? The goal of this article is to
begin the study of this approximation issue in a one-dimensional setting, for curves.

1.2. Approximation Problem for Curves. There are many ways to tackle with the prob-
lem of pointwise approximation of curvature. The most natural one is probably to start
with a curve Γ and a sequence of polygonal lines (Pn)n∈N which interpolate the curve
more and more closely, then to define a discrete curvature kd(Pn

i ) on every vertex Pn
i ∈ Pn

such that the numbers {kd(Pn
i )}n∈N tend toward the curvature k(Pi) of Γ at Pi = limn→∞ Pn

i .
This approach turns out to be both, relatively easy and efficient: if Pi−1,Pi,Pi+1 are three
consecutive vertices of a polygonal line P then the following number

kd(Pi) =
π− γi

ηi
,

with γi = ∠(PiPi−1,PiPi+1) ∈ [0,π[

and ηi =
1
2
(|PiPi−1|+ |PiPi+1|)

does the work under very weak hypothesis on the polygonal sequence (see [2] for instance
or the proof of [8]). Nevertheless, although natural, this process is inadequate for concrete
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applications. Indeed, any experimental measurements produce only a finite number of data
which give one polygonal line rather than an infinite sequence. Moreover there is also an-
other problem: the curve Γ is unknown. In the ideal setting –when the data are supposed to
be infinitely precise– the curve is certainly going through every vertex but this is far from
being sufficient to say anything on the geometry of the curve.

Fig. 1. Curves passing through a given set of points.

In the figures above, the curve drawn on the left seems more “reasonable” than the two
others. It simply reflects that our mind is making extra implicit hypothesis on our curve.
In other words, we naturally restrict the problem on a smaller subspace of curves, a space
of “reasonable” curves. Suppose that we are able to give a precise definition of what is
a reasonable curve, the question will then turn to be: is the curvature of any reasonable
curve at a point P of a polygonal line has something to do with the discrete curvature kd(P)
defined above? In this article we shall investigate this question in the case of planar curves
passing through three given vertices of a polygonal line.

1.3. Notations and Definitions. We summarize the situation with the following defini-
tion.

Definition. – We call V-line a triple V = (P,P1,P2) of (R2)3. The geometric realization
V of V is the polygonal line formed by the two segments P1P and PP2. If Γ ⊂ R2 is any
compact connected oriented curve1 beginning at P1, passing through P and ending at P2,
we say that Γ is supported by V.

P
2

P1

η
1

η
2

P

Γ

1We call curve a smooth 1-dimensional submanifold of R2 with or without boundary. In particular, in the
definition, Γ has oriented boundary ∂Γ =−{P1}∪+{P2}.
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Fig. 2. A curve Γ supported by a V -line, the arrow denotes the orientation of Γ.

Let V = (P,P1,P2) be a V -line, we denote by η1 (resp. η2) the Euclidean distance between
P and P1 (resp. between P and P2) and we set

η̄ =
η1 +η2

2
, ηmax = max(η1,η2).

If Γ is supported by V, we denote by γ : [−L1,L2]→ Γ its arc-length parametrization such
that γ(−L1) = P1, γ(0) = P and γ(L2) = P2 (note that γ has positive tangent vector with
respect to the orientation of Γ). We also set

kmax = max
s∈[−L1,L2]

|k(s)|, k
′
max = max

s∈[−L1,L2]
|k′(s)|,

where s denotes, as usual, the arc-length, k the curvature2, k′ its derivative with respect to s.

Given two closed curves which can be smooth or piecewise linear, recall that the Length
Theorem of [6] produces an upper bound for the discrepancy |L2− L1| of their respec-
tive length. This upper bound only depends on the total curvature of the curves and their
Fréchet distance. In the spirit of the Length Theorem we are going to obtain an upper
bound of |k(P)−kd(P)| in terms of kmax, k′max and an other geometric invariant that will be
introduced soon, the return factor ΩΓ. In particular this last number will provide a control
of the Hausdorff distance between the V -line and the curve Γ, therefore it could be thought
as playing the role of the Fréchet distance. In fact, only the presence of k′max may sound
strange at a first glance, nevertheless it is essential to face up to the following phenomenon:
whatever the curve Γ1 passing through P1,P,P2 it is always possible to perform locally a
C0-small perturbation around P so that the resulting curve Γ2 is still supported by V but
has a vanishing curvature at P.

P
2

P1

P
2

P1

Γ
1

Γ
2

P P

Fig. 3. A flat point phenomenon.

Note that kmax remains almost the same, on the other hand the derivative of the curvature
function k′ dramatically changes, in general:

k
′
max(Γ2) = sup

Γ2

|k′(s2)| � k
′
max(Γ1) = sup

Γ1

|k′(s1)|.

This shows that if we want to state a non-trivial comparison result between kd(P) and k(P),
we need to take into account not only the curvature function but also its 1-jet.

2The word curvature is a somehow ambiguous since, for plane curves, it is possible to consider a signed ver-
sion of the curvature. Here, by curvature we mean the non-negative number which gives the proportion between
the derivative of the unit tangent vector and the principal normal, or equivalently, the norm of the derivative of
the unit tangent vector.
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Definition. – Let (P,Q) be a pair of points of Γ, we denote by αP(Q) ∈ [0, π

2 ] the angle
between the line (PQ) and the tangent line TQΓ. The return factor of Γ at P is the number

ΩΓ(P) = sup
Q∈Γ

1
cosαP(Q)

∈ [1,∞].

Here are some examples of curves with their return factor.

P

P

Γ3

2α

Γ

P

Γ Γ
1 2 4

P

Line Parabola Arc of circle Circle
ΩΓ1(P) = 1 ΩΓ2(P) = 3√

8
ΩΓ3(P) = 1

sinα
ΩΓ4(P) = ∞.

Fig. 4. Curves and their return factors.

If Γ is supported by V and γ is an arc-length parametrization as above, we put:

η̃ : [−L1,L2] −→ R+
s −→ sign(s).dist(P,γ(s))

where dist(.,.) is the Euclidean distance of R2. For s 6= 0 this function is smooth and a
standard computation shows that∣∣∣∣∂η̃

∂s
(s)
∣∣∣∣= cosαP(γ(s)).

Thus, away from P, critical points of η̃ correspond to points such that cosαP(γ(s)) = 0.
Such points exist if and only if ΩΓ(P) = ∞. In a neighborhood of s = 0, η̃ is increasing and
the condition ΩΓ(P) = ∞ is a necessary one to change the monotonicity of η̃. In an interval
where η̃ is decreasing, points γ(s) are getting closer to P, hence the name return factor for
ΩΓ(P).

Suppose that ΩΓ(P) < ∞, then s→ η̃(s) is an increasing function on the whole interval
[−L1,L2] and thus

max
s∈[−L1,L2]

|η̃(s)|= max{η1,η2}= ηmax.

In particular, Γ is contained in a disk of radius ηmax and centered at P.

1.4. Main Results. We can now state our main result which gives an upper bound of the
difference |k(P)− kd(P)| in terms of ΩΓ(P), ηmax, kmax and k′max.

Approximation Theorem. – Let V = (P,P1,P2) be a V -line, kd(P) =
(π− γ)

η̄
be its dis-

crete curvature at P and Γ be a smooth curve of R2 supported by V. We have:

|k(P)− kd(P)| ≤ 2ΩΓ(P)3
(

k3
max

8
ηmax +

k′max

3
ΩΓ(P)

)
ηmax.



ERROR TERM IN POINTWISE APPROXIMATION OF THE CURVATURE OF A CURVE 5

Remark 1. – The presence of ηmax as a factor implies that the above theorem is also a
convergence theorem. Indeed, if ΩΓ(P) < ∞ the upper bound

e(Γ,V ) = 2ΩΓ(P)3
(

k3
max

8
ηmax +

k′max

3
ΩΓ(P)

)
ηmax

tends toward zero when ηmax tends toward zero. Note that if ΩΓ(P) = ∞ then in a suffi-
ciently small neighborhood U of P, the curve Γ∩U has a finite return factor ΩΓ∩U(P).

Remark 2. – The error term e(Γ,V ) involves three numbers which depend on the curve:
kmax, k′max and ΩΓ(P). It is tempting to try to eliminate one of them. In fact, it is easy
to find examples showing that a non-trivial upper bound of |k(P)− kd(P)| using only two
of these three numbers can not exist. The figure below illustrates one of these examples
which shows that the data of kmax and k′max is insufficient to produce a non-trivial bound.

P
1

P
2

Γ

P

Fig. 5. A large spiral.

The curve Γ is a large spiral so kmax and k′max are very small compared with 1/ηmax, yet
the discrepancy |k(P)− kd(P)| is large since it is approximately equal to |kd(P)| which is
of order 1/ηmax. Note that in this case ΩΓ(P) is infinite.

Remark 3. – The error term does not involve any distance between the curve and the
geometric realisation V of the V -line. In fact the Hausdorff distance δ(Γ,V ) between Γ

and the geometric realization V is under control.

Proposition. – We have: δ(Γ,V )≤ 1
8 ΩΓ(P)kmaxη2

max.

The proof of this proposition is given in §3. Coming back to our initial motivation, the
experimenter has to decide first which of the spaces

GK,K′,Ω(V ) = {Γ⊂ R2 | Γ is supported by V, kmax(Γ)≤ K,

k′max(Γ)≤ K′, ΩΓ(P)≤Ω}

is his space of “reasonable curves” to apply the theorem and obtain an upper bound of the
error. In particular, he does not need to know precisely which is the “real” curve passing
through P1,P,P2 to have a pointwise information on its curvature.

1.5. General Comments on the Approximation Theorem and its Proof. A way to
prove convergence results for a specific discrete curvature kd is simply to write the Taylor
expansion of the function that defines kd and to make apparent that the “constant“ term is
precisely the curvature k(P) of the curve. Here, once the curve Γ and a point P on it are
given, the discrete curvature kd reduces to a function of the two points P1, P2 that form the
V -line V = (P,P1,P2).
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Γ

Fig. 6. Smooth curve and inscribed V -line.

Denoting by (η1,π−θ1) and (η2,θ2) the polar coordinates of P1 and P2 (cf. Figure 6), we
then see that kd appears as a function of η1, η2, θ1 and θ2:

kd = Ψ(η1,η2,θ1,θ2).

Of course, at least locally, θ1 and θ2 are function of η1 and η2 respectively, hence kd is a
function of η1 and η2 only:

kd = Ψ(η1,η2,ϕ(η1),ϕ(η2)).

It then remains to show that kd → k(P) when (η1,η2)→ (0,0). This is straightforward
since Ψ is explicit and the behaviour of ϕ around η = 0 can be deduced by a direct appli-

cation of the Implicit Function Theorem. In particular, it is easy to see that ϕ(η) ∼ k(P)
2

η

which eventually leads to the following formula, near (0,0):

Ψ(η1,η2,ϕ(η1),ϕ(η2))∼ k(P).

The same procedure can be used to obtain an approximation result but then, it will be the
first order term of the Taylor expansion which will play the central role rather than the
constant term. In fact, if we set

Ψ̃(η1,η2) := Ψ(η1,η2,ϕ(η1),ϕ(η2))

then the difference kd − k(P) is simply Ψ̃(η1,η2)− Ψ̃(0,0) and so, if Ψ̃ is sufficiently
regular:

|kd− k(P)| ≤ ‖dΨ̃‖∞‖(η1,η2)‖.
Here appears a significant difference with what we have just done for the convergence
result: the infinity norm is a supremum and consequently we have to control the global be-
haviour of dΨ̃. Technically this will force us to apply a Global Implicit Function Theorem.
More, since we want an upper bound in terms of geometrical data, we also have to relate
dΨ̃ with one geometric invariant of the curve, the curvature for instance. This leads to a
non-linear differential equation on the function ϕ.

It is clear that this procedure will remain valid for every discrete curvature definition of the
form kd := Ψ(η1,η2,θ1,θ2), but for the discrete curvature:

kd := 2
π− γ

η1 +η2
= 2

θ1 +θ2

η1 +η2

it turns out that two small “miracles” occur. The first one is that the function Ψ̃ “nearly”
splits in two functions of one variable, precisely:

1
2
(η1 +η2)Ψ̃(η1,η2) = ϕ(η1)+ϕ(η2).
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The second is that the non-linear EDO linking ϕ and the curvature of the curve can be
explicitly solved (Lemma 1). This has two interesting consequences. First, since we have
an explicit expression for ϕ, we can easily derive an upper bound for ‖ϕ′′‖∞ (just as we
needed to know ϕ at the first order to show that Ψ̃(0,0) = k(P), we need to derive ϕ twice
to control the norm of the differential ‖dΨ̃‖∞) and therefore we can assert that the pro-
cedure described above for any discrete curvature of the form kd := Ψ(η1,η2,θ1,θ2) will
succeed in giving an upper bound (although it could be neither the best way to obtain it
nor the best conceivable upper bound). We give in §5 more details on how the procedure
works for another popular discrete curvature: the circle approximation.

The second consequence is that the result stated in the Approximation Theorem is, in some
sense, “flexible”. Indeed, any upper bound of ‖ϕ′′‖∞ will give, up to a factor 2ηmax, an
upper bound of |kd − k(P)|. Since ϕ′′ is explicit it is possible to produce different upper
bounds according to the geometric data that we want to underline. At that step, we have
chosen to introduce the return factor ΩΓ, which is a geometrical invariant that also have a
significance in the analysis part of the problem: its finiteness is the necessary and sufficient
condition to the existence of a globally defined function θ = ϕ(η) (see Step 1 of §2).

2. PROOF OF THE THEOREM

STEP 0: GENERAL STRATEGY OF THE PROOF. – We assume ΩΓ(P) < ∞ otherwise the
theorem is trivial. The proof runs as follow. Let us parametrize Γ in “polar” coordinates

γ̃ : η 7→ (ηcosϕ(η),ηsinϕ(η))

such that 0 7→ P. We can always assume that ϕ(0) = 0, moreover the first derivative of ϕ at
η = 0 is half the curvature of Γ at P thus the Taylor-Lagrange expansion of ϕ leads to∣∣∣∣ϕ(η)− k(P)

2
η

∣∣∣∣≤ 1
2

η
2 sup

[0,η]
|ϕ′′(t)|.

Since ϕ(−η1) = θ1, ϕ(η2) = θ2 (see the figure above) and π− γ = θ1 +θ2, applying twice
the above inequality we obtain

|π− γ− k(P)η̄| ≤ 1
2

η
2
1 sup

[−η1,0]
|ϕ′′(η)|+ 1

2
η

2
2 sup

[0,η2]
|ϕ′′(η)|

≤ η
2
max sup

[−η1,η2]
|ϕ′′(η)|

thus
|kd− k(P)| ≤ 2ηmax sup

[−η1,η2]
|ϕ′′(η)|

since η̄≥ ηmax

2
. It remains to obtain an upper bound of the supremum of |ϕ′′(η)| involving

kmax, k′max and ΩΓ(P). This is done by solving the ODE that gives the signed curvature3

function η 7→ k̃sgn(η) in term of ϕ.

STEP 1: EXISTENCE OF THE ANGULAR FUNCTION η 7→ ϕ(η). – We take an orthonor-
mal frame with P as origin and the tangent at P of Γ as horizontal line. Since Γ is a smooth

3Recall that the signed curvature ksgn of an oriented curve is the number which gives the proportion between
the derivative of the unit tangent vector and its algebraic normal, this last normal being the one obtained by a
quarter counterclockwise turn of the unit tangent vector.
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curve, there exists a smooth function F : R2 → R such that Γ ⊂ F−1(0) and with a non-
vanishing gradient (Fx,Fy) on Γ.

P1

θ = φ η )(

P2

P

y

η
Γ

x

Q

Fig. 7. Polar coordinates.

Our goal in this step is to use the Implicit Function Theorem as in [2] so that we can locally
parametrize the curve Γ in a polar form

η 7→ (ηcosϕ(η),ηsinϕ(η))

with an angular function η 7→ ϕ(η). Note that, since the tangent at P of Γ is the horizontal
line this function must satisfy ϕ(0) = 0 modulo 2π. If such a function exists we thus can
assume that ϕ(0) = 0.

Unfortunately a direct application of the Implicit Function Theorem using function F fails,
indeed if

Φ(η,θ) = F(ηcosθ,ηsinθ) = 0
then

∂Φ

∂θ
(η,θ) = ηcosθFy−ηsinθFx =<

(
x
y

)
,

(
Fy
−Fx

)
>

and
∂Φ

∂θ
(η = 0,θ = 0) = 0. It is possible to overcome this problem by considering the new

implicit relation
Φ̃(η,θ) = 0

where Φ̃ : [−η1,η2]×R→ R is defined by

Φ̃(η,θ) =


F(ηcosθ,ηsinθ)

η
if η 6= 0

cosθFx(0,0)+ sinθFy(0,0) if η = 0.

Note that Φ̃−1(0) contains an infinite number of components since

Φ̃(η,θ) = Φ̃(−η,θ+(2k +1)π) = Φ̃(−η,θ+2kπ)

for k ∈ Z. Let ψ : (η,θ) 7→ (ηcosθ,ηsinθ). From the discussion at the end of §1.3, the
component G containing (0,0) is such that ψ(G) = Γ. Using the same arguments than in [2]

Appendix A, it is easy to check that Φ̃ is C2. Moreover
∂Φ̃

∂θ
(0,0) = Fy(P) = |gradPF | 6= 0

and we can apply the Implicit Function Theorem to obtain an angular function ϕ which
turns out to be defined in the connected component I of

{0}∪{η ∈ R | ∃(x,y) ∈ Γ, η = sign(x)
√

x2 + y2 and <

(
x
y

)
,

(
Fy
−Fx

)
>6= 0}

containing 0. Indeed
∂Φ̃

∂θ
(η,θ) = cosθFy− sinθFx and if η > 0 the vanishing of

∂Φ̃

∂θ
(η,θ)

is equivalent to xFy−yFx = 0. Thus the Implicit Function Theorem precisely fails at points
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Q where the tangent TQΓ is orthogonal to the line (PQ) i. e. when αP(Q) = π

2 , but this is
equivalent to the fact that ΩΓ(P) = ∞ and we have assume ΩΓ(P) < ∞. A refined version of
the Implicit Function Theorem asserts that ϕ is defined on the whole interval I = [−η1,η2]
(see the exercizes of [7], pp. 275-280 or [1], appendix D).

We denote by γ̃ : [−η1,η2]→ Γ⊂ R2 the parametrization

γ̃(η) = (ηcosϕ(η),ηsinϕ(η)).

We have ∣∣∣∣ ∂γ̃

∂η
(η)
∣∣∣∣2 = 1+η

2
ϕ
′2(η)

and so the arc-length function is given by

s̃(η) =−L1 +
Z

η

−η1

(1+ t2
ϕ
′2(t))

1
2 dt

and the arc-length parametrization γ is related to γ̃ via s̃ by γ̃ = γ◦ s̃.

STEP 2: EXPLICIT EXPRESSION FOR ϕ.

Lemma 1. – For every η ∈ I, we have

ϕ
′
(η) =

Z 1

0
tk̃sgn(ηt)dt√

1−η2

(Z 1

0
tk̃sgn(ηt)dt

)2

where k̃sgn(η) = ksgn(s̃(η)) is the signed curvature of Γ at the point γ̃(η) = γ◦ s̃(η).

Proof of Lemma 1. – The computation of the signed curvature leads to the following
ODE:

k̃sgn(η)(1+η
2
ϕ
′2(η))

3
2 = 2ϕ

′(η)+η
2
ϕ
′3(η)+ηϕ

′′(η).

Initial conditions are ϕ(0) = 0 and ϕ′(0) =
ksgn(P)

2
(this last condition derives from the

Implicit Function Theorem). Due to the term ηϕ′′(η), Cauchy-Lipschitz Theorem only
gives uniqueness of solutions over ]0,η2] and [−η1,0[. Nevertheless it is readily seen
using the formal change of variables

u =
ηϕ′

(1+η2ϕ′2)
1
2

that this ODE admits a unique C2-solution (satisfying ϕ(0) = 0 and ϕ′(0) =
ksgn(P)

2
) given

by

ϕ(η) =
Z

η

0
ϕ
′(t)dt

and

ϕ
′
(η) =

Z 1

0
tk̃sgn(ηt)dt√

1−η2

(Z 1

0
tk̃sgn(ηt)dt

)2
.
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This solution is well-defined on the subinterval (−ε1,ε2) ⊂ [−η1,η2] where the denom-
inator of ϕ′(η) is non vanishing. It turns out that this subinterval is the whole interval
[−η1,η2]. Indeed

cosαP(̃γ(η)) = 〈 γ̃(η)
|̃γ(η)|

,
γ̃′(η)
|̃γ′(η)|

〉= 1√
1+η2ϕ′2(η)

and thus
lim

η
>→−ε1

|ϕ′(η)|= ∞ or lim
η

<→ε2

|ϕ′(η)|= ∞

implies
ΩΓ(P) = ∞.

�
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STEP 3: UPPER BOUND FOR THE SUPREMUM OF |ϕ′′|. –

Lemma 2. – We have: |ϕ′(η)| ≤ 1
2

ΩΓ(P)kmax and:

|ϕ′′(η)| ≤ΩΓ(P)3
(

k3
max

8
ηmax +

k′max

3
ΩΓ(P)

)
.

Proof of Lemma 2. – Note that

cosαP(̃γ(η)) =
1√

1+η2ϕ′2(η)
=

√
1−η2

(Z 1

0
tk̃sgn(ηt)dt

)2

thus

ϕ
′(η) =

1
cosαP(̃γ(η))

Z 1

0
tk̃sgn(ηt)dt.

It ensues that

|ϕ′(η)| ≤ΩΓ(P)kmax

Z 1

0
tdt

and finally

|ϕ′(η)| ≤ 1
2

ΩΓ(P)kmax.

It remains to deal with the second derivative of ϕ.

ϕ
′′
(η) =

1
cos3 αP(̃γ(η))

[Z 1

0
t2 ∂k̃sgn

∂η
(ηt)dt +η

(Z 1

0
tk̃sgn(ηt)dt

)3
]

.

Since
∂k̃sgn

∂η
(η) =

∂s̃
∂η

(η) ·
∂ksgn

∂s
(s̃(η)) =

1
cosαP(̃γ(η))

·
∂ksgn

∂s
(s̃(η))

we obtain

ϕ
′′
(η) =

1
cos3 αP(̃γ(η))

η

[Z 1

0
tk̃sgn(ηt)dt

]3

+
1

cos4 αP(̃γ(η))

[Z 1

0
t2 ∂ksgn

∂s
(s̃(ηt))dt

]
.

Thus

|ϕ′′(η)| ≤Ω
3
Γ(P)ηmax

1
8

k3
max +Ω

4
Γ(P)

1
3

k′max.

�

3. RELATIONSHIP BETWEEN ΩΓ(P) AND THE HAUSDORFF DISTANCE

The goal of this section is to prove the proposition stated in §1.4, namely that:

δ(Γ,V )≤ 1
8

ΩΓ(P)kmaxη
2
max

where δ(Γ,V ) is the Hausdorff distance between the curve Γ and the V -line V . Here again
we assume ΩΓ(P) < ∞ since otherwise the result is trivial.

Let Q = γ(η̃(s)) be a point of Γ where we assume s > 0. Obviously

dist(Q, [PP2])≤ dist(Q,Q′)

where Q′ is the intersection point of the segment [PP2] with the circle of radius η = η̃(s)
centered at P. (This intersection point exists since s 7→ η̃(s) is an increasing function with
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η̃(0) = 0 and η̃(L2) = η2).

P2

TP Γ

Γ

P

Q’ 

Q 

Fig. 8. The arc QQ′.

We have

dist(Q,Q′)≤ (ϕ(η2)−ϕ(η))η

and since

0≤ ϕ(η2)−ϕ(η)≤ (η2−η) sup
t∈[η,η2]

ϕ
′(t)

we obtain by Lemma 1

dist(Q, [PP2])≤
1
2

ΩΓ(P)kmax(η2−η)η.

But (η2−η)η≤ 1
4

η
2
max, therefore

dist(Q, [PP2])≤
1
8

ΩΓ(P)kmaxη
2
max

and the directed Hausdorff distance from V to Γ satisfies

δdir(V ,Γ) = sup
Q∈Γ

dist(Q,V )≤ 1
8

ΩΓ(P)kmaxη
2
max.

We now give an upper bound of δdir(Γ,V ) = supQ′∈V dist(Q′,Γ). Let Q′ be any point of
[PP2], C be the circle centered at P and of radius PQ′ and Γ+ be the sub-arc {γ(s) | s > 0}.
Since s 7→ η̃(s) is a strictly increasing function with η̃(0) = 0, η̃(L2) = η2, the intersection
C ∩Γ+ is a single point denoted by Q. We have

dist(Q′,Γ)≤ dist(Q,Q′).

A similar argument than above then shows:

dist(Q′,Γ)≤ 1
8

ΩΓ(P)kmaxη
2
max

and thus

δdir(Γ,V )≤ 1
8

ΩΓ(P)kmaxη
2
max.

It is well known that the Hausdorff distance is δ(V ,Γ) the maximum between the two
directed Hausdorff distances (see [4], p. 252 for instance) hence the proposition.
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4. ILLUSTRATIONS

This section discusses two families of examples illustrating the theorem: circles and parabo-
las supported by same symmetric V -lines (a V -line (P,P1,P2) is symmetric if η1 = η2 =
ηmax, up to rigid motions such a V -line is completely determined by its length ηmax and its
angle at P). It turns out that the majoration of the discrepancy |k(P)− kd(P)| by

e(Γ,V ) = 2ΩΓ(P)3
(

k3
max

8
ηmax +

k′max

3
ΩΓ(P)

)
ηmax

is in the right order of magnitude if the angle at P is large, approximately greater than π/2.
The study of the various relative errors

εr =
|k(P)− kd(P)|

kd(P)
, er =

e(Γ,V )
kd(P)

and δ =
e(Γ)

|k(P)− kd(P)|
shows that they do not depend on ηmax, hence only depend on the angle at P and are not
affected by homotheties of figures. The comparison between circles and parabolas also
reveals that for large angles the number δ is better for circles than for parabolas while it is
the converse for medium angles.

4.1. Circles. We denote by 2α the angle of V = (P,P1,P2) at P and by Γ the arc of circle
joining P1, P and P2 (see the figure below, on the left). It is immediate that

ΩΓ(P) =
1

sinα
, kmax =

2cosα

ηmax
= k(P) and kd(P) =

π−2α

ηmax
.

This yields to the following expressions for the relative errors

εr(α) =
|π−2α−2cosα|

π−2α
and er(α) =

cot3 α

π

2 −α
.

Of course the relative error εr(α) is bounded from above by er(α), the figure below (on the
right) shows the graphs of these two functions.

α2

P
21

P

P

Γ

α

Fig. 9. An arc of circle supported Fig. 10. The relative errors εr(α) and er(α)
by a symmetric V -line. (thin curve and thick curve respectively).

If α is near π/2 the behaviour is the expected one but for small α, er(α) goes to infinity
while the relative error εr(α) remains bounded. Note however that the discrete curvature
itself kd also has a “wrong” behaviour for small α. Indeed kd tends toward the finite value
π/ηmax when α goes to zero...

The discrete curvature gives the correct value of the curvature up to a maximal error of
εr(α)× 100 percent. We say that the majoration of the discrepancy by e(Γ,V ) is in the
right order of magnitude if er(α) ≤ 1, in other words, when the upper bound allows to
state that the error is no more than 100%. For the circle it happens when α ≥ 0.836863...
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corresponds an angle at P greater than 1.67372... Of course the condition er(α) ≤ 1 is
arbitrary, the table below gives for more restrictive conditions on er(α) the corresponding
angles α.

er(α) 1 0.1 0.01 0.001 0.0001 0.00001 0.000001
α 0.836... 1.268... 1.471... 1.539... 1.560... 1.567... 1.569...

The flatter the angle at P is, the sharper is upper bound.

4.2. Parabolas. Let V = (P,P1,P2) be a symmetric V -line and Γ be an arc of parabola sup-
ported by V and having P as vertex (see the figure below). Straightforward computations
lead to

ΩΓ(P) =

 3/
√

8 if α≤ α0

1
sinα

√
1+4cot2 α

1+2cot2 α
if α≥ α0

where α0 = arctan(
√

2) = 0.95531... We also have kmax = k(P) = 2
cosα

sin2
α

1
ηmax

and

k′max =


125cos2 α

18
√

5sin4
α

1
η2

max
if α≤ α1

24sinαcos3 α

(1+3cos2 α)3
1

η2
max

if α≥ α1

where α1 = arctan(2
√

5) = 1.350808... It is easy from these expressions to derive the
expressions of εr(α), er(α) and δ(α). The figure below (on the right) shows the graphs of
εr and er. The behaviour is the expected one, the difference between εr(α) and er(α) is
small when the angle at the vertex P is near from being flat.

α2

2
P

1
P

P

Γ

α

Fig. 11. A portion of parabola supported Fig. 12. The relative errors εr(α) and er(α)
by a symmetric V -line. (thin curve and thick curve respectively).

The upper bound e(Γ,V ) is in the right order of magnitude for α ≥ 1.15789..., the table
below gives the values of α for other conditions on er(α).

er(α) 1 0.1 0.01 0.001 0.0001 0.00001 0.000001
α 1.157... 1.461... 1.537... 1.560... 1.567... 1.569... 1.5704...

Here again precision increases as soon as the angle at P becomes flat.

4.3. Circles versus parabolas. Up to now we do not study the number δ = e(Γ,V )
|k(P)−kd(P)|

which precisely measures the sharpness of the upperbound. The figure below shows the
graphs of δ(α) for both the circle and the parabola.
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α

Fig. 13. Functions δ for the circle (thin curve) and the parabola (thick curve).

In both cases, circle and parabola, the number δ is small (≤ 20) for angles α aproximatively
greater than 0.6 while it is huge for small angles; this is not surprising according to our
previous results. The function δ(α) converges when α tends to π/2, the limit value is 6
for the circle and 54/5 for the parabola. For 0.48909... ≤ α ≤ 1.25732... the upper bound
e(Γ,V ) of the discrepancy is better for the parabola than for the circle. Indeed in this range
of α, the return factor of the parabola is small enough to compensate the presence of the
term involving k′max in e(Γ,V ).

5. CIRCLE APPROXIMATION

We give here some details on how to apply the procedure described in §1.5 to obtain an
Approximation Theorem for another discrete curvature: the inverse value of the radius of
the circle passing through the three vertices of a given V -line. To avoid confusion with the
discrete curvature we have considered up to now, we will denote this new one by k∗d .

P
2

P
1

T
P

Γ

P
2

P
1

2
θ

1θ

η
2

η
1

P P

Γ

P

γ

Fig. 14. The circle passing through a V -line

A direct application of the Sine Rule yields to the following formula for k∗d (see Figure 14
for the notations):

k∗d = 2
sinγ

‖P1P2‖
and a mere computation gives an expression of the form k∗d = Ψ̃(η1,η2) with

Ψ̃(η1,η2) =
2sin(ϕ(η1)+ϕ(η2))√

η2
1 +η2

2 +2η1η2 cos(ϕ(η1)+ϕ(η2))
.

It is easy, but tedious, to show that Ψ̃ can be continuously extended at (0,0) by Ψ̃(0,0) = k(P)
and that it is C1 at that point. Thus

|k∗d− k(P)| ≤ ‖dΨ̃‖∞

√
η2

1 +η2
2.
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It remains to obtain an upper bound for ‖dΨ̃‖∞ and this is easy since Lemma 2 gives us
a control on ϕ′ and ϕ′′. We just set out the outline of the computations. Let δ denotes the
denominator of Ψ̃, we have

δ3 ∂Ψ̃

∂η1
(η1,η2) = 2ϕ′(η1)cos(ϕ(η1)+ϕ(η2))

(
η2

1 +η2
2 +2η1η2 cos(ϕ(η1)+ϕ(η2))

)
−sin(ϕ(η1)+ϕ(η2))(η1 +η2 cos(ϕ(η1)+ϕ(η2)))
+2ϕ′(η1)η1η2 sin2(ϕ(η1)+ϕ(η2)).

The denominator δ3 of
∂Ψ̃

∂η1
(η1,η2) is of order 3, therefore lines 1 and 2 must be combined

so that it appears only terms of order ≥ 3. This can be done by replacing, ϕ′(η1) by
1
2 k(P)+ ϕ′′(c′1)η1, c′1 ∈]0,η1[, ϕ(η1) by 1

2 k(P)η1 + 1
2 ϕ′′(c1)η2

1, c1 ∈]0,η1[, etc. It is then
easy to produce an explicit constant C such that Cη3

max is an upper bound of the right hand
of the equality. For instance

C = 12C′′+
(

5
2

+ΩΓ(P)
)

ΩΓ(P)2k3
maxηmax

where C′′ denotes the upper bound of |ϕ′′| given in Lemma 2, will work. It remains to
divide by δ3 but, due to the presence of the term 2η1η2 cos(ϕ(η1)+ ϕ(η2)), this denom-
inator could be arbitrarily small (note that this technical difficulty does not occur for kd).
This forces us to add an a priori upper bound on the sum θ1 + θ2, or equivalently, on
the minimal value4 allowed for γ. For example, we can ask γ to be greater than π

2 , then

δ−1 ≤ (η2
1 +η2

2)
− 1

2 and we have:

|k∗d− k(P)| ≤
√

2Cη3
max

(η2
1 +η2

2)
3
2

√
η2

1 +η2
2 ≤
√

2Cηmax.

6. CONCLUSION

This paper establishes an upper bound of the discrepancy between the pointwise curvature
of a curve Γ and the discrete curvature of a polygonal approximation of Γ. This upper
bound involves data of the polygonal line but also data of the curve, precisely it needs the
supremum of curvature kmax, the supremum of derivative of the curvature k′max and an an-
other geometrical number, the return factor ΩΓ.

In concrete applications only the polygonal line is known, an a priori estimate of the three
numbers kmax, k′max and ΩΓ is thus needed to obtain an upper bound of the error between
the measure (discrete curvature) and the “true” curvature of Γ. Experimental results sug-
gest that this error is even smaller since the angles of the polygonal line are near to be flat.
In an other hand –and this is certainly not a coincidence– discrete curvature behaves badly
when the angle tends toward zero. Intuitively the expected limit should be infinite, but
nevertheless discrete curvature converges to a finite value. As far as we are interested in
convergence processes this unpleasant behaviour has no effect, but it becomes a problem
regarding the pointwise approximation question.

From a theoretical perspective our result is half the way toward a similar result for meshes
and surfaces. Indeed, the definition of the discrete Gaussian curvature at a vertex of a mesh
is very analogous to the one for a polygonal line: it is again a quotient of an angular defect

4Such a minimal value is, up to a sinus, what is usually called the fatness of a polygonal line.
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and an area. It is possible, from the Approximation Theorem to derive an upper bound of
the error between the discrete curvature and the Gaussian curvature of the surface. One
important consequence of such an upper bound will concern the convergence issue which
is, in the surfaces setting, far from being solved. In fact, in a subsequent article, we shall
enlarge the convergence results obtained in [2] by controlling the behaviour of this upper
bound.
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