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∗Institut Camille Jordan, Université Lyon I, Villeurbanne, France,†CNRS, GIPSA-Lab, Université de Grenoble, France, and ‡Laboratoire Jean Kuntzmann, Université
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It is well-known that the curvature tensor is an isometric invari-
ant of C2 Riemannian manifolds. This invariant is at the origin of
the rigidity observed in Riemannian geometry. In the mid 1950s,
Nash amazed the world mathematical community by showing that
this rigidity breaks down in regularity C1. This unexpected flex-
ibility has many paradoxical consequences: one of them is the
existence of C1 isometric embeddings of flat tori into Euclidean
three-dimensional space. In the 70-80’s, M. Gromov, revisiting
Nash’s results introduced the Convex Integration Theory offering
a general framework to solve this type of geometric problems.
In this research announcement, we convert the Convex Integra-
tion Theory into an algorithm that produces isometric maps of
flat tori. We provide the first implementation of a convex inte-
gration process leading to the first images of an embedding of
a flat torus. The resulting surface reveals a C1 fractal structure:
while the tangent plane is defined everywhere, the normal vec-
tor exhibits a fractal behaviour. Isometric embeddings of flat tori
may thus appear as a first geometric occurrence of a structure
which is simultaneously C1 and fractal. Beyond these results,
our first implementation demonstrates that Convex Integration, a
theory still confined to specialists, can produce computationally
tractable solutions of partial differential relations.
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A geometric torus is a surface of revolution generated by revolv-
ing a circle in three dimensional space about an axis coplanar

with the circle. The standard parametrization of a geometric torus
maps horizontal and vertical lines of a unit square to latitudes and
meridians of the image surface. This unit square can also be seen as
a torus; the top line is abstractly identified with the bottom line and
so are the left and right sides. Because of its local Euclidean geome-
try, it is called a square flat torus. The standard parametrization now
appears as a map from a square flat torus into the three-dimensional
space with image a geometric torus. Although natural, this map dis-
torts the distances: the lengths of latitudes vary while the lengths of
the corresponding horizontal lines on the square remain constant.

It was a long-held belief that this defect could not be fixed. In
other words, it was presumed that no isometric embedding of the
square flat torus – a differentiable injective map that preserves dis-
tances – could exist into three-dimensional space. In the mid 1950s,
Nash [1] and Kuiper [2] amazed the world mathematical commu-
nity by showing that such an embedding actually exists. However,
their proof relies on an intricated construction that makes it difficult
to analyse the properties of the isometric embedding. In particular,
these atypical embeddings have never been visualized. One strong
motivation for such a visualization is the unusual regularity of the em-
bedding: a continuously differentiable map that cannot be enhanced
to be twice continuously differentiable. As a consequence, the im-
age surface is smooth enough to have a tangent plane everywhere but
not sufficiently to admit extrinsic curvatures. In particular, the Theo-
rema Egregium, one of the major tool of differential geometry, breaks
down on such a paradoxical surface.

In the 70-80’s, Gromov, revisiting the results of Nash and oth-
ers such as Phillips, Smale or Hirsch, extracted the underlying no-
tion of their works: the h-principle [3, 4]. This principle states that
many partial differential relation problems reduce to purely topolog-
ical questions. The raison d’être of this counterintuitive phenomenon

was later brought to light by Eliashberg and Mishachev [5]. In or-
der to prove that the h-principle holds in many situations, Gromov
introduced several powerful methods for solving partial differential
relations. One of which, the Convex Integration Theory [5, 6, 7],
provides a quasi-constructive way to build sequences of embeddings
converging towards isometric embeddings. Nevertheless, because of
its broad purpose, this theory remains far too generic to allow for a
precise description of the resulting map.

In this article, we convert the Convex Integration Theory into an
explicit algorithm. We then provide an implementation leading to the
first images of an embedded square flat torus in three dimensional
space. This visualization has led us in turn to discover a new geomet-
ric structure. This structure, described in the Corrugation Theorem
below, reveals a remarkable property: the normal vector exhibits a
fractal behaviour.

Fig. 1. The first four corrugations

General strategy
The general strategy [1] starts with a strictly short embedding, i.e.,
an embedding of the square torus that strictly shrinks distances. In
order to build an isometric embedding, this initial map is "corru-
gated" along the meridians in the purpose of increasing their length
(see Fig. 1). This corrugation is performed while keeping a strictly
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short map, achieving a smaller isometric default in the vertical di-
rection. The isometric perturbation in the horizontal direction is also
kept under control by choosing the number of oscillations sufficiently
large. Corrugations are then applied repeatedly in various directions
to produce a sequence of maps, reducing step by step the isometric
default. Most importantly, the sequence of oscillation numbers can
be chosen so that the limit map achieves a continuously differentiable
isometry onto its image.

One Dimensional Convex Integration
The above general strategy leaves a considerable latitude in gener-
ating the corrugations. This great flexibility is one of the surprises
of the Nash-Kuiper result since it produces a plethora of solutions
to the isometric embedding problem. It is a remarkable fact that the
Gromov Convex Integration Theory provides both the deep reason of
the presence of corrugations and the analytic recipe to produce them.
Nevertheless, this theory does not give preference to any particular
corrugation and is not constructive in that respect. Here we refine
the traditional analytic approach of corrugations, adding a geometric
point of view.

A corrugation is primarily a one-dimensional process. It aims to
produce, from an initial regular smooth curve f0 : [0, 1] −→ E3 (as
usual E3 denotes the three dimensional Euclidean space), a new curve
f whose speed is equal to a given function r : [0, 1] −→ R+ with
r > ‖f ′0‖E3 . In the general framework of convex integration [5, 7],
one starts with a one-parameter family of loops h : [0, 1] × R/Z →
E3 satisfying the isometric condition ‖h(t, u)‖E3 = r(t), for all
(t, u) ∈ [0, 1]× R/Z, and the barycentric condition

∀t ∈ [0, 1], f ′0(t) =

∫ 1

0

h(t, u) du. [1]

This last condition expresses the derivative f ′0(t) as the barycenter of
the loop h(t, ·). One then chooses the number N of oscillations of
the corrugated map f and set

f(t) := f0(0) +

∫ t

0

h(u,Nu)du. [2]

Here, Nu must be considered modulo Z. It appears that not only
‖f ′(t)‖E3 = ‖h(t,Nt)‖E3 = r(t) as desired, but f can also be
made arbitrarily close to the initial curve f0, see Fig. 2.
Lemma 1. We have

‖f − f0‖C0 ≤ 1

N

(
2‖h‖C0 + ‖∂h

∂t
‖C0

)
where ‖g‖C0 = supp∈D ‖g(p)‖E3 denotes the C0 norm of a func-
tion g : D → E3.

Proof. Let t ∈ [0, 1]. We put n := [Nt] (the integer part of
Nt) and set Ij = [ j

N
, j+1
N

] for 0 ≤ j ≤ n− 1 and In = [ n
N
, t]. We

write

f(t)− f(0) =

n∑
j=0

Sj and f0(t)− f0(0) =
n∑
j=0

sj

with Sj :=
∫
Ij
h(v,Nv)dv and sj :=

∫
Ij

∫ 1

0
h(x, u)dudx. By the

change of variables u = Nv − j, we get for each j ∈ [0, n− 1]

Sj =
1

N

∫ 1

0

h(
u+ j

N
, u)du =

∫
Ij

∫ 1

0

h(
u+ j

N
, u)dudx.

It ensues that ‖Sj − sj‖E3 ≤ 1
N2 ‖ ∂h∂t ‖C0 . The lemma then fol-

lows from the obvious inequalities ‖Sn − sn‖E3 ≤ 2
N
‖h‖C0 and

‖f(t)− f0(t)‖E3 ≤
∑n
j=0 ‖Sj − sj‖E3 .

Here we set

h(t, u) := r(t)eiα(t) cos 2πu [3]

where eiθ := cos θ t+sin θ n with t :=
f ′0

‖f ′0‖E3
, n : [0, 1] −→ E3 is

a smooth unit vector field normal to the initial curve and the function
α is determined by the barycentric condition [1]. We claim that our
convex integration formula captures the natural geometric notion of
a corrugation. Indeed, if the initial curve f0 is planar then the signed
curvature measure

µ := kds = k(t)‖f ′(t)‖E3dt

of the resulting curve is connected to the signed curvature measure
µ0 := k0ds of the initial curve by the following simple formula

µ := µ0 +
(
α′ cos(2πNt)− 2πNα sin(2πNt)

)
dt.

Our corrugation thus modifies the curvature in the simplest way by
sine and cosine terms with frequency N .

Fig. 2. The black curve is corrugated with 9 oscillations. Note that the right
endpoints of the curves do not coincide. The corrugated grey curve can be
made arbitrarily close to the black curve by increasing the number of oscilla-
tions.

Two Dimensional Convex Integration
The classical extension of Convex Integration to the two dimensional
case consists in applying the one dimensional process to a one param-
eter family of curves that foliates a two dimensional domain. Given
a strictly short smooth embedding f0 : E2/Z2 → E3 of the square
flat torus, a nowhere vanishing vector field W : E2/Z2 → E2 and
a function r : E2/Z2 → R+, the aim is to produce a smooth map
f : E2/Z2 → E3 whose derivative in the direction W has the target
norm r. The natural generalization of our one-dimensional process
leads to the formula:

f(ϕ(t, s)) := f0(tV ) +

∫ s

0

r(ϕ(t, u))eiθ(ϕ(t,u),u)du, [4]

where ϕ(t, s) denotes the point reached at time s by the flow of W
issuing from tV . The vector V is chosen so that the line of initial
conditions RV ⊂ E2/Z2 is a simple closed curve transverse to the
flow. We also use the notation eiθ = cos θ t + sin θ n where t is
the normalized derivative of f0 along W and n is a unit normal to
the embedding f0. Similarly as above, θ(q, u) := α(q) cos 2πNu, α
is determined by the barycentric condition [1] and q ∈ E2/Z2. The
resulting map f is formally defined over a cylinder. In general f does
not descend to the flat square torus E2/Z2. This defect is rectified by
adding a term that smoothly spreads out the gap preventing the map
to be doubly periodic.

Basis of the Embeddings Sequence
The iterated process leading to an isometric embedding requires to
start with a strictly short embedding of the square flat torus

finit : E2/Z2 −→ E3.
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The metric distortion induced by finit is measured by a field of bi-
linear forms ∆ : E2/Z2 −→ (E2 ⊗ E2)∗ obtained as the pointwise
difference:

∆(·, ·) := 〈·, ·〉E2 − f∗init〈·, ·〉E3 .

As usual, f∗init〈·, ·〉E3 = 〈dfinit(·), dfinit(·)〉E3 denotes the pull-
back of the Euclidean inner product by finit. Notice that finit is
strictly short if and only if the isometric default ∆ is a metric, i. e.,
a map from the square flat torus into the positive cone of inner prod-
ucts of the plane. The convexity of this cone implies the existence of
linear forms of the plane `1, ..., `S , S ≥ 3, such that

∆ =

S∑
j=1

ρj`j ⊗ `j

for non-negative functions ρj . By a convenient choice of the ini-
tial map finit and of the `j’s, the number S can be set to three. In
practice we set the linear forms `j(·) := 〈U(j)/‖U(j)‖, ·〉E2 to the
normalized duals of the following constant vector fields:

U(1) := e1, U(2) :=
1

5
(e1 + 2e2), U(3) :=

1

5
(e1 − 2e2)

where (e1, e2) is the canonical basis of E2. For later use, we set

V (1) := e2, V (2) := −2e1 + e2, V (3) := 2e1 + e2.

Note that the parallelogram spanned by U(j) and V (j) is a funda-
mental domain for the Z2 action over E2. As an initial map we choose
the standard parametrization of a geometric torus. It is easy to check
that the range of the isometric default ∆ lies inside the positive cone

C = {
3∑
j=1

ρj`j ⊗ `j | ρ1 > 0, ρ2 > 0, ρ3 > 0}

spanned by the `j ⊗ `j’s, j ∈ {1, 2, 3}, whenever the sum of the
minor and major radii of this geometric torus is strictly less than one.
See Fig. 3.

Fig. 3. The space of symmetric bilinear forms is identified with R3 via the
basis (e∗1 ⊗ e∗2 + e∗2 ⊗ e∗1, e∗2 ⊗ e∗2, e∗1 ⊗ e∗1). The cone C (grey-white) lies
inside the cone of inner products (purple).

We define a sequence of metrics (gk)k∈N∗ converging toward the
Euclidean inner product:

gk := f∗init〈·, ·〉E3 + δk∆ [5]

with δk = 1 − e−γk for some fixed γ > 0. We then construct a
sequence of maps (fk)k∈N∗ such that every fk is quasi-isometric for
gk, i.e., f∗k 〈·, ·〉E3 ≈ gk. In other words, each fk, seen as a map from
the square flat torus to Euclidean three space, has an isometric default
approximately equal to e−γk∆.

The map fk is obtained from fk−1 by a succession of corruga-
tions. Precisely, if Sk linear forms `k,1, . . . `k,Sk are needed for the
convex decomposition of the difference

gk − f∗k−1〈·, ·〉E3 =

Sk∑
j=1

ρk,j`k,j ⊗ `k,j

then Sk convex integrations will also be needed to (approximately)
cancel every coefficient ρk,j , j ∈ {1, ..., Sk}. As a key point of our
implementation, we manage to set each number Sk to three and to
keep unchanged our initial set of linear forms {`k,1, `k,2, `k,3} =
{`1, `2, `3}. We therefore generate a sequence

finit ; f1,1, f1,2, f1,3 ; f2,1, f2,2, f2,3 ; f3,1, . . .

with an infinite succession of three terms blocks. Each map is the
result of a two dimensional convex integration process applied to the
preceding term of the sequence. We eventually obtain the desired
sequence of maps, setting fk := fk,3 for k ∈ N∗.

Reduction of the isometric default
The goal of each convex integration process is to reduce one of the
coefficients ρk,1, ρk,2 or ρk,3 without increasing the two others. This
is achieved with a careful choice for the field of directions along
which we apply the corrugations. Suppose we are given a map
fk,0 := fk−1,3 whose isometric default with respect to gk lies in-
side the cone C:

gk − f∗k,0〈·, ·〉E3 = ρk,1`1 ⊗ `1 + ρk,2`2 ⊗ `2 + ρk,3`3 ⊗ `3 [6]
(the ρk,j’s being positive functions). We would like to build a map
fk,1 with the requirement that its isometric default gk−f∗k,1〈·, ·〉E3 is
roughly equal to the sum of the last two terms ρk,2`2⊗`2+ρk,3`3⊗`3
of gk−f∗k,0〈·, ·〉E3 . To this end we introduce the intermediary metric

µk,1 := f∗k,0〈·, ·〉E3 + ρk,1`1 ⊗ `1, [7]
and observe that the above requirement amounts to ask that fk,1 is
quasi-isometric for µk,1. Although natural, it turns out that perform-
ing a two dimensional convex integration along the constant vector
field U(1) does not produce a quasi-isometric map for µk,1. Instead,
we consider the non-constant vector field:

Wk,1 := U(1) + ζk,1V (1)

where the scalar ζk,1 is such that the fieldWk,1 is orthogonal to V (1)
for the metric µk,1. With this choice the integral curves ϕ(t, .) of
Wk,1 issuing from the line RV (1) of E2/Z2 define a diffeomorphism
ϕ : R/Z× [0, 1]→ (R/Z)V (1)× [0, 1]U(1). We now build a new
map Fk,1 by applying to fk,0 a two-dimensional convex integration
(see [4]) along the integral curves ϕ(t, .), i.e.,

Fk,1(ϕ(t, s)) := fk,0(tV (1)) +

∫ s

0

r(ϕ(t, u))eiθ(ϕ(t,u),u)du. [8]

The isometric condition in the direction Wk,1 for the metric µk,1 is
‖dFk,1(Wk,1)‖2E3 = µk,1(Wk,1,Wk,1). By differentiating [8] with
respect to s we get ‖dFk,1(Wk,1)‖2E3 = r2, hence we must choose
r =

√
µk,1(Wk,1,Wk,1). Furthermore, the map fk,0 is strictly short

for µk,1 since

r2 = ‖dfk,0(Wk,1)‖2E3 + ρk,1‖`1(U(1))‖2E2 > ‖dfk,0(Wk,1)‖2E3 .

We finally set θ(q, u) := α(q) cos 2πNk,1u where Nk,1 is the fre-
quency of our corrugations.

Note that the map Fk,1 is properly defined over a cylinder, but
does not descend to the torus in general. We eventually glue the two
cylinder boundaries with the following formula, leading to a map fk,1
defined over E2/Z2:

fk,1 ◦ ϕ(t, s) := Fk,1 ◦ ϕ(t, s)− w(s).(Fk,1 − fk,0) ◦ ϕ(t, 1) [9]
where w : (0, 1) → (0, 1) is a smooth S-shaped function satisfying
w(0) = 0, w(1) = 1 and w(k)(0) = w(k)(1) = 0 for all k ∈ N∗.

In order to cancel the last two terms in [6], we apply two more
corrugations in a similar way. For every j, the intermediary metric
µk,j involves fk,j−1 and the jth coefficient of the isometric default
Dk,j := gk − f∗k,j−1〈·, ·〉E3 . Notice that the three resulting maps
fk,1, fk,2 and fk,3 are completely determined by their numbers of
corrugations Nk,1, Nk,2 and Nk,3.
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Theorem 1. For j ∈ {1, 2, 3}, there exists a constant Ck,j indepen-
dent of Nk,j (but depending on fk,j−1 and its derivatives) such that

(i) ‖fk,j − fk,j−1‖C0 ≤ Ck,j

Nk,j

(ii) ‖dfk,j − dfk,j−1‖C0 ≤ Ck,j

Nk,j
+
√

7
√
‖ρk,j‖C0

(iii) ‖µk,j − f∗k,j〈·, ·〉E3‖C0 ≤ Ck,j

Nk,j
.

The first point ensures that fk,j is C0 close to fk,j−1, while the sec-
ond point keeps the increase of the differentials under control and the
last point guarantees that fk,j is quasi-isometric for µk,j .

Main arguments of the proof. We deduce from [9] that

‖fk,j − fk,j−1‖C0 ≤ 2‖Fk,j ◦ ϕ− fk,j−1 ◦ ϕ‖C0 .

We then apply Lemma 1 to the right hand side with f := Fk,j◦ϕ(t, ·)
and f0 := fk,j−1 ◦ ϕ(t, ·) to obtain (i). For (ii), it is suffi-
cient to bound ‖dfk,j(X)− dfk,j−1(X)‖C0 for X = V (j) and
X = Wk,j . Since ∂ϕ

∂t
= cϕV (j) for some non-vanishing func-

tion cϕ, the norm ‖dfk,j(V (j))− dfk,j−1(V (j))‖C0 is bounded
by ‖ ∂(fk,j◦ϕ)

∂t
− ∂(fk,j−1◦ϕ)

∂t
‖
C0 , up to a multiplicative constant.

It is readily seen that ∂(fk,j◦ϕ)
∂t

results from a convex integra-

tion process applied to ∂(fk,j−1◦ϕ)
∂t

and Lemma 1 shows that

‖ ∂(fk,j◦ϕ)
∂t

− ∂(fk,j−1◦ϕ)
∂t

‖
C0 = O( 1

Nk,j
). For X = Wk,j , we dif-

ferentiate [9] with respect to s and obtain

‖dfk,j(Wk,j)− dfk,j−1(Wk,j)‖C0 ≤ ‖dΨ(Wk,j)‖C0+|w′|C0‖Ψ‖C0

with Ψ := Fk,j − fk,j−1. We bound the second term of the right
hand side as for (i). Let J0(α) :=

∫ 1

0
cos(α cos 2πu)du be the

Bessel function of 0 order. In the one hand, it is easily checked that
for every non-negative α lower than the first positive root of J0 we
have: 1 + J0(α) − 2J0(α) cos(α) ≤ 7(1 − J0(α)). On the other
hand, ‖dΨ(Wk,j)‖2E3 = r2 +r20−2rr0 cos(α cos(2πNk,js)) where
r0 := ‖dfk,j−1(Wk,j)‖E3 . Since dfk,j−1(Wk,j) = rJ0(α)t we ob-
tain

‖dΨ(Wk,j)‖2E3 ≤ r2(1 + J0(α)2 − 2J0(α) cos(α))
≤ 7r2(1− J0(α)2) = 7(r2 − r20).

From [7], we deduce ‖dΨ(Wk,j)‖C0 ≤
√

7‖U(j)‖E2‖ρk,j‖1/2C0 ,
hence (ii). Once the differential of Ψ is under control, (iii) reduces
to a meticulous computation of the coefficients of µk,j − f∗k,j〈·, ·〉E3

in the basis (Wk,j , V (j)). �

Corrugation numbers
We make a repeated use of Theorem 1 to show that the map fk,3 is
quasi-isometric for gk and strictly short for gk+1. Thereby, the whole
process can be iterated. Moreover, theC0 control of the maps and the
differentials, as provided by Theorem 1, allows in turn to control the
C0 andC1 convergences of the sequence (fk,3)k∈N∗ . With a suitable
choice of the Nk,j’s, this sequence can be made C1 converging, thus
producing a C1 isometric map f∞ in the limit. By the C0 control of
the sequence we also obtain a C0 density property: given ε > 0, the
Nk,j’s can be chosen so that

‖f∞ − finit‖C0 ≤ ε.

Compared to Nash’s and Kuiper’s proofs, we have an extra con-
straint. For each integer k the isometric default gk+1 − f∗k,3〈·, ·〉E3

must lie inside the convex hull C spanned by the `j⊗`j , j ∈ {1, 2, 3}.
The reason for this constraint is to avoid the numerous local gluings
required by Nash and Kuiper’s proof. Using a single chart substan-
tially simplifies the implementation. More importantly, keeping the

same linear forms `j all through the process enlightens the recursive
structure of the solution that was hidden in the previous methods.

To deal with this constraint, we introduce some more notations.
Let

ρmin(∆) := min
p∈E2/Z2

{ρ1(p), ρ2(p), ρ3(p)}

where the ρj’s are, as above, the coefficients of the decomposi-
tion of ∆ over the `j ⊗ `j’s. We also denote by errk,j the norm
‖µk,j − f∗k,j〈., .〉R3‖C0 of the isometric default of fk,j . By Theo-
rem 1, this number can be made as small as we want provided that
the number of corrugations Nk,j is chosen large enough.
Lemma 2. If

15
√

3

8
(errk,1 + errk,2 + errk,3) < (δk+1 − δk)ρmin(∆)

then D := gk+1 − f∗k,3〈., .〉R3 lies inside C.
Proof. We want to show that ρj(D) > 0 for j ∈ {1, 2, 3}.

Let B := gk − f∗k,3〈., .〉R3 . Since D = (δk+1− δk)∆ +B, we have
by linearity of the decomposition coefficient ρj :

ρj(D) = ρj((δk+1 − δk)∆) + ρj(B)

≥ (δk+1 − δk)ρmin(∆) + ρj(B).

In particular, the condition ‖ρj(B)‖ < (δk+1− δk)ρmin(∆) implies
ρj(D) > 0. Now, it follows by some easy linear algebra that

max{‖ρ1(B)‖C0 , ‖ρ2(B)‖C0 , ‖ρ3(B)‖C0} ≤ 5
√

3

8
‖B‖C0

and a computation shows that ‖B‖C0 ≤ 3(err1+err2+err3).

We are now in position to choose the corrugation numbers,
and doing so, to settle a complete description of the sequence
(fk,j)k∈N∗,j∈{1,2,3}.

Choice of the corrugation numbers. Let ε > 0. At each step, we
choose the corrugation numberNk,j large enough so that the follow-
ing three conditions hold (j ∈ {1, 2, 3}):

(i) ‖fk,j − fk,j−1‖C0 ≤ ε
3.2k

(ii) ‖dfk,j−dfk,j−1‖C0 ≤
√
δk − δk−1‖∆‖

1
2

C0+
√

35‖ρj(Dk,j)‖
1
2

C0

(iii) errk,j < 4

45
√

3
(δk+1 − δk)ρmin(∆).

Here we have put, similarly as above, Dk,j = gk − f∗k,j−1〈·, ·〉E3 .
The first condition ensures the C0 closeness of f∞ to finit. Thanks
to Lemma 2, the third condition implies that the isometric default
gk+1− f∗k,3〈·, ·〉E3 lies inside the cone C. It can be shown to also im-
ply that the intermediary bilinear forms µk,2 and µk,3 are metrics, an
essential property to apply the convex integration process to fk,1 and
to fk,2. Finally, we can prove the C1 convergence of the resulting
sequence with the help of the second condition.

Note that at each step, the map fk,j is ensured to be a C1 em-
bedding if Nk,j is chosen large enough. This follows from the two
conditions (i) and (ii), since a C1 immersion which is C1 close to a
C1 embedding must be an embedding.

C1 fractal structure
The recursive definition of the sequence paves the way for a geo-
metric understanding of its limit. Since the resulting embedding is
C1 and not C2, this geometry consists merely of the behavior of its
tangent planes or, equivalently, of the properties of its Gauss map.

We denote by vk,j the normalized derivative of fk,j in the di-
rection V (j) and by nk,j the unit normal to fk,j . We also set
v⊥k,j := vk,j × nk,j . Obviously, there exists a matrix Ck,j ∈ SO(3)
such that

(v⊥k,j vk,j nk,j)
t = Ck,j · (v⊥k,j−1 vk,j−1 nk,j−1)t.
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Here, (a b c)t stands for the transpose of the matrix with column
vectors a,b and c. We call Ck,j a corrugation matrix since it encodes
the effect of one corrugation on the map fk,j−1. Despite its natural
and simple definition, the corrugation matrix has intricate coefficients
with integro-differential expressions. The situation is further compli-
cated by some technicalities such as the elaborated direction field of
the corrugation or the final stitching of the map used to descend to
the torus. Remarkably, all these difficulties vanish when considering
the dominant terms of the two parts of a specific splitting of Ck,j .
Theorem 2. (Corrugation Theorem) The matrix Ck,j ∈ SO(3) can
be expressed as the product of two orthogonal matrices Lk,j ·Rk,j−1

where

Lk,j =

 cos θk,j 0 sin θk,j
0 1 0

− sin θk,j 0 cos θk,j

+O(
1

Nk,j
)

and

Rk,j =

 cosβj sinβj 0
− sinβj cosβj 0

0 0 1

+O(εk,j)

and where εk,j := ‖〈., .〉R2 − f∗k,j〈., .〉R3‖E2 is the norm of the iso-
metric default, βj is the angle between V (j) and V (j + 1), and, as
above, θk,j(p, u) = αk,j(p) cos 2πNk,ju.

Main arguments of the proof. The matrixRk,j−1 maps
(v⊥k,j−1 vk,j−1 nk,j−1) to (tk,j−1 nk,j−1×tk,j−1 nk,j−1) where
tk,j−1 is the normalized derivative of fk,j−1 in the direction Wk,j ,
see Fig. 4. This last vector field converges toward U(j) when the
isometric default tends to zero. Hence, Rk,j−1 reduces to a rotation
matrix of the tangent plane that maps V (j − 1) to V (j). The matrix
Lk,j accounts for the corrugation along the flow lines. From the proof
of Theorem 1(ii) we have ‖dfk,j(V (j)) − dfk,j−1(V (j))‖E3 =
O( 1

Nk,j
). Therefore, modulo O( 1

Nk,j
), the transversal effect of a

corrugation is not visible. In other words, a corrugation reduces at
this scale to a purely one dimensional phenomenon. Hence the sim-
ple expression of the dominant part of this matrix. Notice also that
Theorem 1(i) implies that the perturbations induced by the stitching
are not visible as well. �

Fig. 4. The corrugation matrix carries the frame (v⊥k,j−1,vk,j−1,nk,j−1)

to (v⊥k,j ,vk,j ,nk,j). The images of the maps fk,j−1 and fk,j
are pictured by the left gray and right pink surfaces respectively.
Note that vk,j ≈ tk,j−1 × nk,j−1 so that the intermediary
frame (tk,j−1,nk,j−1 × tk,j−1,nk,j−1) is obtained by rotating
(v⊥k,j−1,vk,j−1,nk,j−1) about nk,j−1 by an angle approximately βj−1.

Then, the frame (v⊥k,j ,vk,j ,nk,j) is approximately the rotation of the frame
(tk,j−1,nk,j−1 × tk,j−1,nk,j−1) about vk,j by the angle θk,j

The Gauss map n∞ of the limit embedding f∞ := lim
k−→+∞

fk,3

can be expressed very simply by means of the corrugation matrices:

∀k ∈ N∗, nt∞ = (0 0 1)·
∞∏
`=k

(
3∏
j=1

C`,j

)
·(v⊥k,0 vk,0 nk,0)t.

The Corrugation Theorem gives the key to understand this infinite
product. It shows that asymptotically the terms of this product resem-
ble each other, only the amplitudes αk,j , the frequenciesNk,j and the
directions are changing. In particular, the Gauss map n∞ shows an

asymptotic self-similarity: the accumulation of corrugations creates
a fractal structure.

It should be noted that there is a clear formal similarity between
the infinite product defining n∞ and, in a one dimensional setting,
the well-known Riesz products:

n(x) :=

∞∏
k=1

(1 + αk cos(2πNkx))

where (αk)k∈N∗ and (Nk)k∈N∗ are two given sequences. It is a
fact [8] that an exponential growth of Nk, known as Hadamard’s la-
cunary condition, results in a fractional Hausdorff dimension of the
Riesz measure n(x)dx. A similar result for the normal n∞ of the
embedding of the flat square torus seems hard to obtain. It is likely
that the graph of the Gauss map n∞ has Hausdorff dimension strictly
larger than two. Yet, since the limit map is a continuously differen-
tiable isometry onto its image, the embedded flat torus has Hausdorff
dimension two.

Implementation of the Convex Integration Theory
The above convex integration process provides us with an algorith-
mic solution to the isometric embedding problem for square flat tori.
This algorithm has for initial data three numbers K ∈ N∗, ε > 0,
γ > 0 and a map finit : E2/Z2 −→ E3 for which the isometric
default ∆ is lying inside the cone C. From finit a finite sequence of
maps (fk,j)k∈{1,...,K},j∈{1,2,3} is iteratively constructed. Each map
fk,j is built from the map fk,j−1 by first applying the convex inte-
gration formula [8] to obtain an intermediary map Fk,j . The gluing
formula [9] is further applied to Fk,j resulting in the composition
fk,j ◦ ϕ, where ϕ is the flow of the vector field Wk,j . We finally
get fk,j by composing with the inverse map of the flow. The number
γ rules the amplitude of the isometric default of each fk,3 via the
formula [5]. Formulae [8] and [9] are completely explicit except
for the corrugation number Nk,j which is to be determined so that
fk,j fulfills the postconditions expressed in the above Choice of the
corrugation numbers. Since there is no available formula, we obtain
by binary search the smallest integer Nk,j that satisfies these post-
conditions. The algorithm stops when the map fK,3 is constructed.
Note that Theorem 1 insures that the algorithm terminates. The map
fK,3 satisfies ‖fK,3 − finit‖C0 ≤ ε and its isometric default is less
than 3

2
e−Kγ‖∆‖C0 . Moreover, the limit f∞ of the fK,3’s is a C1

isometric map and ‖f∞ − fK,3‖C0 ≤ ε
2K
. Therefore, the algorithm

produces an approximation fK,3 of a solution of the underdetermined
PDE system for isometric maps:

〈∂f
∂x
,
∂f

∂x
〉 = 1, 〈∂f

∂x
,
∂f

∂y
〉 = 0 and 〈∂f

∂y
,
∂f

∂y
〉 = 1,

and this approximation is C0 close to the initial map finit.
We have implemented the above algorithm to obtain the first vi-

sualisation of a flat torus shown in Fig. 5. The initial map finit is
the standard parametrization of the torus of revolution with minor
and major radii respectively 1

10π
and 1

4π
. Each map of the sequence

(fk,j)k∈{1,...,K},j∈{1,2,3} is encoded by a n × n grid whose node
i1, i2 contains the coordinates of fk,j(i1/n, i2/n). Flows and in-
tegrals are common numerical operations for which we have used
Hairer’s solver [14] based on DOPRI5 for non-stiff differential equa-
tions. In order to invert the flow ϕ of Wk,j we take advantage of the
fact that the U(j) component of Wk,j is constant. The line RV (j)
of initial conditions is thus carried parallel to itself along the flow. It
follows that the points ϕ( i1

n
V (j), i2

n
) of a uniform sampling of the

flow are covered by n lines running parallel to the initial conditions.
We now observe that the same set of lines also covers the nodes of
the n × n uniform grid over E2/Z2. This last observation leads to a
simple linear time algorithm for inverting the flow.
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Fig. 5. The image of a square flat torus by a C1 isometric map: views from
the outside and from the inside.

It is worth noting that the integrand in Equation [8] essentially
depends upon the first order derivatives of fk,j−1 and upon the corru-
gation frequency Nk,j . The derivatives are accurately estimated with
a finite difference formula of order four. Regarding the corrugation
frequency, we have observed a rapid growth as from the four first
values of Nk,j . For instance, for γ = 0.1, we have obtained:

N1,1 = 611, N1,2 = 69, 311,
N1,3 = 20, 914, 595, N2,1 = 6, 572, 411, 478.

In fact, computing these values is already a challenge since a reason-
able resolution of 10 grid samples per period of corrugation would
require a grid with (10 × 6, 572, 411, 478)2 ≈ 4.3 1019 nodes. We
have restricted the computations to a small neighborhood of the ori-
gin (0, 0) ∈ E2/Z2 in order to obtain the above values. These values
are therefore lower bounds with respect to the postconditions for the
choice of Nk,j . However, these postconditions are only sufficient
and we were able to reduce these numbers for the four first steps to
respectively 12, 80, 500 and 9000 after a number of trials over the

entire grid mesh. See Figs. 1 and 5. The pointwise displacement be-
tween the last map f2,1 and the limit isometric map could hardly be
detected as the amplitudes of the next corrugations decrease dramati-
cally. Further corrugations would thus not be visible to the naked eye.
To illustrate the metric improvement we have compared the lengths
of a collection of meridians, parallels, and diagonals on the flat torus
with the lengths of their images by f2,1. The length of any curve in
the collection differs by at most 10.2% with the length of its image.
By contrast, the deviation reaches 80% when the standard torus finit
is taken in place of f2,1.

In practice, calculations were performed on a 8-core CPU (3.16
GHz) with 32 GB of RAM and parallelised C++ code. We used a
10, 0002 grid mesh (n = 10, 000) for the three first corrugations and
refined the grid to 2 milliards nodes for the last corrugation. Due to
memory limitations, the last mesh was divided into 33 pieces. We
then had to render each piece with a ray tracer software and to com-
bine the resulting images into a single one as on Fig. 5. The com-
putation of the final mesh took approximately two hours. Two extra
days were needed for the final image rendering with the ray tracer
software Yafaray[15].

Conclusion and perspective
Convex Integration is a major theoretical tool for solving underde-
termined systems [4]. After a substantial simplification, we obtained
the first implementation of a Convex Integration process, providing
the first images of a flat torus. This visualization led us in turn to
discover a geometric structure that combines the usual differentiabil-
ity found in Riemannian geometry with the self similarity of fractal
objects. This C1 fractal structure is captured by an infinite product
of corrugation matrices. In some way, these corrugations constitute
an efficient and natural answer to the curvature obstruction [10] ob-
served in the introduction, leading to an atypical solution. A similar
process occurs in weak solutions of the Euler equation [11] and could
be present in other natural phenomena [12, 13].

Despite its high power, Convex Integration Theory remains rel-
atively unknown to non specialists [9]. We hope that our implemen-
tation will help to popularize this technique and will open a door to
applications ranging from other isometric immersions, such as hy-
perbolic compact spaces, to solutions of underdetermined systems of
non-linear partial differential equations. Convex Integration Theory
could emerge in a near future as a major operating tool in a very large
spectrum of applied sciences.

ACKNOWLEDGMENTS. Research partially supported by Région Rhône-Alpes
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