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In the previous document we gave a general description of a convex
integration process which is appropriate for the Nash-Kuiper construction of
isometric embeddings. Here we specify this process to the case of isometric
embeddings of a square flat torus in E3. We then discuss the geometric
structure of their images.

1 Isometric embeddings of square flat tori in E3

Definition.– A flat torus is a quotient E2/Λ where Λ = ZU ⊕ ZV ⊂ E2

is a lattice. This quotient is called a square flat torus if it is isometric to a
quotient E2/ZU1 ⊕ ZV1 ⊂ E2 where (U1, V1) is an orthonormal basis of E2.

Exemple.– Let (e1, e2) be an orthonormal basis of E2. The quotients
E2/ZU(i)⊕ ZV (i), i ∈ {1, 2, 3} with

U(1) = e1 U(2) = 1
5(e1 + 2e2) U(3) = 1

5(e1 − 2e2)
V (1) = e2 V (2) = −2e1 + e2 V (3) = 2e1 + e2

define the same square flat torus (up to isometries). We denote by T2 this
square flat torus and by Domi the fundamental domain spanned by U(i)
and V (i).

Three fundamental domains Domi, i ∈ {1, 2, 3}, of the same square flat torus T2.
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Lemma.– Let R > r > 0 and

f0 : T2 = E2/Ze1 ⊕ Ze2 −→ E3

(u, v) 7−→



1

2π
(R+ r cos 2πu) cos 2πv

1

2π
(R+ r cos 2πu) sin 2πv

r

2π
sin 2πu

If R+ r < 1 then f0 is a strictly short embedding of T2 in E3.

The image of T2 by f0.

Proof.– A straightforward computation shows that

f∗0 〈., .〉E3 = r2du2 + (R+ r cos 2πu)2dv2.

Therefore f∗0 〈., .〉E3 < du2 + dv2 iff R+ r < 1. �

Let us choose f0 as initial map. The image of its isometric default

∆ : T2 −→ M
(u, v) 7−→ (1− r2)du2 + (1−R− r cos 2πu)2dv2

is a segment lying inside the positive cone of inner products

M = {Edu2 + 2Fdudv +Gdv2 | E > 0, EG− F 2 > 0}

of E2.
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The image of the isometric default ∆ is the blue segment, the positive cone of

inner products is pictured in red.

Let `1, `2 and `3 be the three linear form of E2 defined by

∀ i ∈ {1, 2, 3}, `i(.) =
〈 U(i)

‖U(i)‖E2

, .
〉
E2

where the U(i)s are the ones appearing in the above exemple. It is easily
checked that ∆(T2) lies inside the positive cone spanned by the `i ⊗ `i.
Therefore there exist three positive functions ρ1, ρ2 and ρ3 such that

∆ = ρ1`1 ⊗ `1 + ρ2`2 ⊗ `2 + ρ3`3 ⊗ `3.

We are now in position to apply the general process described in the previous
document in order to iteratively construct an isometric embedding. It turns
out that we can manage to keep the same set of three linear forms {`1, `2, `3}
during all the process (that point won’t be detailed here) therefore we are
going to obtain a sequence

f0, f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, etc.

Each map fk,j is built from fk,j−1 by a convex integration over the domain
Domj (we use the circular convention fk,0 := fk−1,3).

Let us see the details of the construction of fk,1 from the map fk,0. The
isometric default of fk,0 is

gk − f∗k,0〈., 〉E3 = ρk,1`1 ⊗ `1 + ρk,2`2 ⊗ `2 + ρk,3`3 ⊗ `3.
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Recall that we want fk,1 to have an isometric default roughly equal to the
sum of the last two terms ρk,2`21⊗ `2 +ρk,3`3⊗ `3. To this end we introduce
the intermediary metric

µk,1 := f∗k,0〈., .〉E3 + ρk,1`1 ⊗ `1

and observe that the above requirement amounts to ask that fk,1 is quasi-
isometric for µk,1. Let

Wk,1 := U(1) + ζk,1V (1)

with

ζk,1 = −
(f∗k,0〈., .〉E3)(U(1), V (1))

(f∗k,0〈., .〉E3)(V (1), V (1))
.

The vector field Wk,1 is orthogonal to the field V (1) for the metric µk,1 and
its integral curves ϕ(., c) of issuing from the line RV (1) of Dom1 define a
diffeomorphism ϕ : R/Z× [0, 1]→ (R/Z)V (1)× [0, 1]U(1).

The integral lines of Wk,j with j = 1, 2 and 3.

We now build a new map Fk,1 by applying to fk,0 a two-dimensional convex
integration along the integral curves ϕ(., c), i.e.,

Fk,1(ϕ(s, c)) := fk,0(0, c) +

∫ s

0
r(ϕ(u, c))eiθ(ϕ(u,c),u)du

with r =
√
µk,1(Wk,1,Wk,1), θ(q, u) := α(q) cos 2πNk,1u, α = J−10

(
‖dfk,0(Wk,1)‖

r

)
,

t =
dfk,0(Wk,1)
‖dfk,0(Wk,1)‖ , n is a unit normal to the surface and Nk,1 is the number of

corrugations.

Note that the map Fk,1 is properly defined over a cylinder, but does not de-
scend to the torus in general. We eventually glue the two cylinder boundaries
with the following formula, leading to a map fk,1 defined over T2 = E2/Z2:

fk,1 ◦ ϕ(s, c) := Fk,1 ◦ ϕ(s, c)− w(s).(Fk,1 − fk,0) ◦ ϕ(1, c)
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where w : (0, 1)→ (0, 1) is a smooth S-shaped function satisfying w(0) = 0,
w(1) = 1 and w(k)(0) = w(k)(1) = 0 for all k ∈ N∗.

The function w.

Let c′ ∈ [0, 1] such that ϕ(1, c) = (1, c′). We have

fk,0 ◦ ϕ(1, c) = fk,0(1, c
′) = fk,0(0, c

′) = Fk,1(0, c
′).

Hence, in the above formula defining fk,1, the difference

(Fk,1 − fk,0) ◦ ϕ(1, c) = Fk,1(1, c
′)− Fk,1(0, c′)

is precisely the gap that prevent Fk,1 to descend to the quotient.

A flow line with endpoints (0, c) and ϕ(1, c) = (1, c′).

In order to cancel the last two terms ρk,2`21⊗`2+ρk,3`3⊗`3 in the isometric
default, we apply two more corrugations in a similar way. For every j, the
intermediary metric µk,j involves fk,j−1 and the jth coefficient of the iso-
metric default gk − f∗k,j−1〈., .〉E3 . Notice that the three resulting maps fk,1,
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fk,2 and fk,3 are completely determined by their numbers of corrugations
Nk,1, Nk,2 and Nk,3.

Images of the maps f1,1, f1,2, f1,3 and f2,1.

For the implementation, we choose the following sequence of metrics con-
verging toward 〈., .〉E2 :

gk := f∗0 〈·, ·〉Eq + δk∆

with δk = 1 − e−kγ and γ = 0.1. We also take R = 1
4π and r = 1

10π in
the definition of f0. The number of corrugations of the four first maps are
12, 80, 500, and 9,000. A grid of 2 milliards nodes was needed to picture
the image of the fourth map. The visualization of the map f2,1 shows that
the image of the limit map f∞ has a geometric structure which looks like a
fractal.
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The image of f2,1. Notice that the pointwise displacement between the map f2,1
and the limit isometric map f∞ could hardly be detected as the amplitude of each

corrugation decreases dramatically. Further corrugations would thus not be visible

to the naked eye.

Observation.– A numerical exploration seems to suggest that the growth
of the number of corrugations is (at least) exponentional. This is in accor-
dance with [2].

The growth of the Nk for various values of γ.
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2 The convex integration process for curves

In that section we study the geometry of the image of limit map image in a
one-dimensional setting. Precisely, we apply the convex integration process
to a short curve of E2 and we set a explicite formula for the normal map of
the limit curve. We then perform a Fourier decomposition of that normal
map.

To simplify the computations, we assume that the inial short embedding
f0 : S1 = E/Z→ E2 is:

• (Cond 1) of constant arc length

• (Cond 2) radially symetric that is: ∂f0
∂x (x+ 1

2) = −∂f0
∂x (x).

Then the isometric default ∆ := 〈., .〉E2 − f∗0 〈., .〉E3 is constant and each
metric gk := f∗0 〈., .〉E3 + δk∆ is also constant.

Proposition.– Let (Nk)k∈N∗ be any sequence of natural even integers and
f0 : S1 = E/Z→ E2 be a short embedding satisfying conditions (Cond 1) and
(Cond 2). For every k ∈ N∗, let fk : ([0, 1], gk) → E2 be defined inductively
by

fk(x) := fk−1(0) +

∫ x

0
rke

iαk cos 2πNksds.

Then fk descends to a isometry fk : (E/Z, gk)→ E2 which is short for gk+1

and which satisfies (Cond 1) and (Cond 2).

Remark.– As usual rk =
√
gk(∂x, ∂x), αk = J−10

(‖f ′k−1‖
rk

)
, eiθ = cos θ tk−1+

sin θ nk−1, tk−1 =
f ′k−1

‖f ′k−1‖
and nk−1 = itk−1.

Proof.– By induction. Note that rk is constant since gk is constant. Since
we have ‖∂fk∂x (x)‖2E2 = rk, fk satisfies (Cond 1). Since, by induction hypoth-
esis fk−1 satisfies (Cond 1), the function αk is constant. We have∫ 1

0
rke

iαk cos 2πNksds = 0

because Nk is even and fk−1 is radially symetric. Thus fk descend to the
quotient. It is trivial to check that fk is also radially symetric. �.
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· · ·
The convex integration process applied to circle

Let (Ak)k∈N∗ be the sequence of functions defined by

∀x ∈ S1, Ak(x) :=

k∑
l=1

αl cos(2πNlx).

Lemma.– We have:

∂fk
∂x

(x) = eiAk(x)
rk
r0

∂f0
∂x

(x).

Proof.– From

∂fk
∂x

(x) = rk(cos(αk cos(2πNkx))tk−1(x) + sin(αk cos(2πNkx))nk−1(x))

= rke
iαk cos(2πNkx)

1

rk−1

∂fk−1
∂x

(x)

we deduce by induction

∂fk
∂x

(x) = eiAk(x)
rk
r0

∂f0
∂x

(x).

�

Warning.– We now assume that the sequence (fk)k∈N is C1 converging
toward its limit f∞ and we set

∀x ∈ E/Z, A∞(x) :=

+∞∑
l=1

αl cos(2πNlx).

Corollary.– The normal map n∞ of f∞ has the following expression

∀x ∈ E/Z, n∞(x) = eiA∞(x)n0(x)
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The formal expression of the normal map

n∞(x) =

(
+∞∏
l=1

eiαl cos(2πNlx)

)
n0(x)

is reminiscent of a Riesz product. These are products of the form

h(x) =
+∞∏
l=1

(1 + αl cos(2πNlx)).

It is a fact that an exponential growth of Nl, known as Hadamard’s lacunary
condition, results in a fractional Hausdorff dimension of the Riesz measure1

µ := h(x)dx [3].

Lemma (Fourier Decomposition of nk).– Let Nk := bk. For all k ∈ N
we denotes by

∀x ∈ R/Z, nk(x) :=
∑
p∈Z

ap(k)e2iπpx

the Fourier decomposition of nk. Then

∀p ∈ Z, ap(k) =
∑
n∈Z

un(k)ap−nbk(k − 1)

where un(k) = inJn(αk) (Jn denotes the Bessel function of order n).

Remark.– This formula gives the key to understand the construction of the
spectrum (ap(k))p∈Z from the spectrum (ap(k − 1))p∈Z. The k-th spectrum
is obtained by collecting an infinite number of shifts of the former spectrum.
The n-th shift is of amplitude nbk−1 and weighted by un(k) = inJn(αk).
Since

|Jn(αk)| ↓ 0

the weight is decreasing with n.

1Let dimsupµ (resp. diminfµ) denotes the supremum (resp. the infimum) of the Haus-
dorff dimension of the Borel sets of positive µ-measure. If d = dimsupµ = diminfµ then
the measure µ is said to have Hausdorff dimension d.
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A schematic picture of the various spectra (ap(k))p∈Z.

Proof of the Lemma.– From the Jacobi-Anger identity

eiz cos θ =

+∞∑
n=−∞

inJn(z)einθ

we deduce

eiαk cos(2πNkx) =
+∞∑

n=−∞
inJn(αk)e

2iπnNkx

=

+∞∑
n=−∞

un(k)e2iπnNkx.

Since
nk(x) = eiαk cos(2πNkx)nk−1(x)

we thus have

nk(x) =

(
+∞∑

n=−∞
un(k)e2iπnb

kx

)(
+∞∑
p=−∞

ap(k − 1)e2iπpx

)

=

+∞∑
p=−∞

(
+∞∑

n=−∞
un(k)ap−nbk(k − 1)

)
e2iπpx.
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Therefore

ap(k) =
+∞∑

n=−∞
un(k)ap−nbk(k − 1). �

3 Riesz-like fractal structure for flat tori

We now turn back to the case of the square flat torus. Previously, we have
recursively built a sequence of embeddings (fk,j)k∈N∗,j∈{1,2,3} converging to-
ward a isometric embedding f∞. Since this embedding is C1 and not C2,
its geometry consists merely of the behavior of its tangent planes or, equiv-
alently, of the properties of its Gauss map

n∞ : E2/Z2 −→ S2(1) ⊂ E3.

We denote by vk,j the normalized derivative of fk,j in the direction V (j) and
by nk,j the unit normal to fk,j . We also set v⊥k,j := vk,j × nk,j . Obviously,
there exists a matrix Ck,j ∈ SO(3) such that

(v⊥k,j vk,j nk,j)
t = Ck,j · (v⊥k,j−1 vk,j−1 nk,j−1)

t.

Here, (a b c)t stands for the transpose of the matrix with column vectors
a,b and c. We call Ck,j a corrugation matrix since it encodes the effect of
one corrugation on the map fk,j−1. Note that the above formula is analogous
to the formula

nk(x) = eiαk cos(2πNkx)nk−1(x)

arising in the curves case. In particular, the Gauss map n∞ of the limit
embedding f∞ can be expressed very simply by means of the corrugation
matrices:

∀k ∈ N∗, nt∞ = (0 0 1) ·
∞∏
`=k

 3∏
j=1

C`,j

 · (v⊥k,0 vk,0 nk,0)
t.

Despite its natural and simple definition, the corrugation matrix has intri-
cate coefficients with integro-differential expressions. The situation is further
complicated by some technicalities such as the elaborated direction field of
the corrugation or the final stitching of the map used to descend to the
torus.
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The corrugation matrix carries the frame (v⊥k,j−1,vk,j−1,nk,j−1) to

(v⊥k,j ,vk,j ,nk,j). The images of the maps fk,j−1 and fk,j are pictured by the left

gray and right pink surfaces respectively. Note that vk,j ≈ tk,j−1 × nk,j−1 so that

the intermediary frame (tk,j−1,nk,j−1 × tk,j−1,nk,j−1) is obtained by rotating

(v⊥k,j−1,vk,j−1,nk,j−1) about nk,j−1 by an angle approximately βj−1. Then, the

frame (v⊥k,j ,vk,j ,nk,j) is approximately the rotation of the frame

(tk,j−1,nk,j−1 × tk,j−1,nk,j−1) about vk,j by the angle θk,j

More deeply, there is reason why things become far move involved when
moving from the curves to the surfaces: the celebrated loss of derivative
phenomenon. This loss of derivative is the major obstacle to apply a Fixed
Point Theorem when trying to find a solution to the PDE of isometric maps.
Let us observe where this loss of derivative phenomenon occurs in the convex
integration process.

In the one dimensional setting, the convex integration process produces a
new map f from an initial one f0 by the formula:

f(t) := f0(0) +

∫ t

0
r(u)eiα(u) cos 2πNu du.

with, as usual, eiθ := cos θ t + sin θ n and t :=
f ′0
‖f ′0‖

. We than have

∂f

∂t
(t) = r(t)eiα(t) cos 2πNt,

which shows that if f0 is Ck then f is Ck also. There is no loss of derivative
in that case.
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In the two dimensional setting, the new map f is defined by:

f(t, s) := f0(0, s) +

∫ t

0
r(u, s)eiα(u,s) cos 2πNu du+ gluing term

where eiθ := cos θ t + sin θ n, t := ∂tf0
‖∂tf0‖ and n := ∂tf0∧∂sf0

‖∂tf0∧∂sf0‖ . Here, the
integral over the variable t can not recover the loss of derivative due to the
presence of the partial derivative ∂sf in the definition of n. Therefore if f0
is Ck then, generically, f is Ck−1 only.

Fortunately, the analytic expression of the corrugation matrices consider-
ably simplifies when considering the dominant terms of the two parts of a
specific splitting of Ck,j .

Corrugation Theorem (∼, S. Jabrane, F. Lazarus, B. Thibert,
2012, [1]).– The matrix Ck,j ∈ SO(3) can be expressed as the product of
two orthogonal matrices Lk,j · Rk,j−1 where

Lk,j =

 cos θk,j 0 sin θk,j
0 1 0

− sin θk,j 0 cos θk,j

+O(
1

Nk,j
)

and

Rk,j =

 cosβj sinβj 0
− sinβj cosβj 0

0 0 1

+O(εk,j)

and where εk,j := ‖〈., .〉R2−f∗k,j〈., .〉R3‖E2 is the norm of the isometric default,
βj is the angle between V (j) and V (j+1), and θk,j(p, u) = αk,j(p) cos 2πNk,ju.

Observation.– The Corrugation Theorem gives the key to understand the
infinite product defining the Gauss map. It shows that asymptotically the
terms of this product resemble each other, only the amplitudes αk,j , the fre-
quencies Nk,j and the directions are changing. In particular, the Gauss map
n∞ shows an asymptotic self-similarity: the accumulation of corrugations
creates a fractal structure.

Main ideas of the proof.– The matrix Rk,j−1 maps (v⊥k,j−1 vk,j−1 nk,j−1)
to (tk,j−1 nk,j−1×tk,j−1 nk,j−1) where tk,j−1 is the normalized derivative of
fk,j−1 in the direction Wk,j . This last vector field converges toward U(j)
when the isometric default tends to zero. Hence, Rk,j−1 reduces to a rotation
matrix of the tangent plane that maps V (j − 1) to V (j). The matrix Lk,j
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accounts for the corrugation along the flow lines. Since V (j) ∈ ker `j we
have ‖dfk,j(V (j))−dfk,j−1(V (j))‖E3 = O( 1

Nk,j
). Therefore, modulo O( 1

Nk,j
),

the transversal effect of a corrugation is not visible. In other words, a
corrugation reduces at this scale to a purely one dimensional phenomenon.
Hence the simple expression of the dominant part of this matrix. Notice
also that the C0-closeness of Fk,j to fk,j−1 implies that the perturbations
induced by the stitching are not visible as well. �
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