Université Claude Bernard Lyon 1

M1 EADM – Géométrie

Mardi 8 janvier 2013

Les documents et les calculettes sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Les questions. – Les questions sont indépendantes les unes des autres. Chaque question rapporte 2 points.

- 1.— Le lieu des points $C = \{(x,y) \in \mathbb{E}^2 \mid 5x^2 2xy + 2y^2 6x + y 13 = 0\}$ est-il une hyperbole? Justifier.
- **2.** Ecrire l'équation cartésienne de la tangente au point P=(1,1) de la conique euclidienne $C=\{(x,y)\in\mathbb{E}^2\mid 3x^2-10xy+y^2+4x+3y-1=0\}.$
- **3.** Soient u, v, w trois nombres complexes distincts deux à deux. Ecrire une homographie envoyant u, v, w respectivement sur ∞ , 0 et 1.
- **4.** Soient \mathcal{C} un cercle de centre Ω et de rayon R, et A un point de E. La puissance $P_{\mathcal{C}}(A)$ de A par rapport à \mathcal{C} est le nombre $A\Omega^2 R^2$. Soit D une droite passant par A et coupant \mathcal{C} en deux points (distincts ou confondus) M et M'. Montrer que $\langle \overrightarrow{AM}, \overrightarrow{AM'} \rangle = P_{\mathcal{C}}(A)$.
- **5.** Rappeler la construction d'une branche d'hyperbole au moyen d'un fil de longueur ℓ et une règle de longueur $\ell + 2a$.
- **Le problème.** (10 pts) Soient $\mathcal{D} \subset \mathbb{E}^2$ une droite d'un plan affine euclidien orienté, $O \in \mathbb{E}^2$ un point n'appartenant pas à \mathcal{D} et \mathcal{D}_0 la droite passant par O et parallèle à \mathcal{D} . La projection centrale de centre O sur la droite \mathcal{D} est l'application qui a tout point M de $\mathbb{E}^2 \setminus \mathcal{D}_0$ associe le point $M' \in \mathcal{D}$ tel que O, M et M' sont alignés.
- 1) Les projections centrales sont-elles des applications affines?

- 2) On munit \mathbb{E}^2 d'un repère orthonormé (O, e_1, e_2) et on note (x, y) les coordonnées d'un point M dans ce repère. Soit f la projection centrale de centre O sur la droite $\mathcal{D} = \{y = 1\}$. Déterminer les coordonnées de f(M) pour tout $M \in \mathbb{E}^2 \setminus (Ox)$.
- 3) Soient A = (0, 1), Δ_+ la droite d'équation cartésienne X + Y = 0 et Δ_- la droite d'équation cartésienne X Y = 0. Soit $m \in \mathbb{R}$, $m \neq \pm 1$. On note D_m la droite d'équation cartésienne Y = mX + 1 et on pose $B = D_m \cap \Delta_+$ et $C = D_m \cap \Delta_-$. On note A' = f(A), B' = f(B) et C' = f(C). Montrer que

$$\frac{A'B'}{AB} = \frac{A'C'}{AC} \iff m = 0.$$

En déduire que f ne conserve pas le rapport des distances de trois points alignés.

- 4) Soient Δ_1 , Δ_2 , Δ_3 et Δ_4 quatre droites distinctes deux-à-deux et passant par O et soit Δ_0 une sécante coupant ces quatre droites respectivement en quatre points distincts A, B, C et D.
- a) En choisissant judicieusement une nouvelle base (ϵ_1, ϵ_2) , montrer que l'on peut toujours supposer que (Ox) est une perpendiculaire à Δ_0 .
- b) On suppose désormais que $\Delta_0 \perp (Ox)$ et on note $H = \Delta_0 \cap (Ox)$. On note α , β , γ , δ les angles orientés des couples de vecteurs $(\overrightarrow{OH}, \overrightarrow{OA})$, $(\overrightarrow{OH}, \overrightarrow{OB})$, $(\overrightarrow{OH}, \overrightarrow{OC})$, et $(\overrightarrow{OH}, \overrightarrow{OD})$. Montrer que

$$\overline{AC} = \frac{\sin(\gamma - \alpha)}{\cos \gamma \cos \alpha} \overline{OH}.$$

c) En déduire que le birapport

$$[A,B,C,B] := \frac{\overline{AC}}{\overline{AD}} : \frac{\overline{BC}}{\overline{BD}}$$

est indépendant de la sécante Δ_0 (précisément, si Δ'_0 est une autre sécante ayant quatre points d'intersection A', B', C', D', on a [A, B, C, D] = [A', B', C', D']).

5) On suppose qu'aucun des points A, B, C ou D n'appartient à l'axe (Ox) et on note A', B', C' et D' leurs images par f. Montrer que

$$[A', B', C', D'] = [A, B, C, D],$$

autrement dit, que f conserve le birapport des distances de quatre points alignés.

6) Le birapport $[\Delta_1, \Delta_2, \Delta_3, \Delta_4]$ de quatre droites concourantes en P est le birapport [A, B, C, B] des quatre points d'intersections de ces quatre droites avec n'importe quelle sécante. On considère quatre points A, B, C, D d'un même cercle \mathcal{C} et distincts deux-à deux. Soit M un point de ce même cercle et distinct des quatre autres points. Montrer que le birapport

$$[(MA), (MB), (MC), (MD)]$$

est indépendant de la position de M sur $\mathcal{C} \setminus \{A, B, C, D\}$.

- 7) On identifie \mathbb{E}^2 avec le plan complexe en prenant le point M de la question précédente comme origine et en choisissant l'axe des réels de telle façon qu'il passe par le centre Ω de \mathcal{C} . On choisit aussi les unités pour que le rayon de \mathcal{C} soit 1. En particulier, l'affixe ω de Ω est le nombre 1.
 - a) Montrer que

$$z \in \mathcal{C} \iff z\overline{z} - z - \overline{z} = 0.$$

- b) Montrer que la transformation $h: z \longmapsto \frac{1}{z}$ envoie $\mathcal{C} \setminus \{M\}$ sur une droite verticale.
- c) On note a, b, c et d (resp. a', b', c', d') les affixes des quatre points A, B, C et D de la question 6 (resp. les affixes des images A', B', C' et D' de ces quatre points par la transformation h). Montrer que

$$[a', b', c', d'] = \overline{[a, b, c, d]}.$$

(On rappelle que $[a,b,c,d]:=\frac{c-a}{d-a}:\frac{c-b}{d-b}$). d) En déduire que [a',b',c',d']=[a,b,c,d].

- e) Montrer que

$$[(MA'), (MB'), (MC'), (MD')] = [(MA), (MB), (MC), (MD)].$$

f) Déduire de d) et de e) que

$$[(MA), (MB), (MC), (MD)] = [a, b, c, d].$$