Université Claude Bernard Lyon 1

M1G – Géométrie

Contrôle final - Mercredi 9 janvier 2019 - durée 2h

Les documents sont autorisés mais les calculettes et les portables sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Exercice. – [7 pts] Soit $F: \mathbb{R}^3 \to \mathbb{R}$ une submersion de classe C^{∞} . On note $S = F^{-1}(0)$ et on suppose $S \neq \emptyset$.

- 1) L'ensemble S est-il une sous-variété de \mathbb{R}^3 ? On justifiera la réponse.
- 2) Soit $M_0=(x_0,y_0,z_0)$ un point de S. Montrer que si $\frac{\partial F}{\partial z}(M_0)\neq 0$ alors il existe un voisinage V_1 de (x_0,y_0) , un voisinage V_2 de z_0 et une application $\varphi:V_1\to V_2$ telle que

$$(x, y, z) \in (V_1 \times V_2) \cap S \iff (x, y) \in V_1 \text{ et } z = \varphi(x, y)$$

3) Montrer que φ est C^{∞} sur V_1 et que pour tout $(x,y) \in V_1$ on a

$$d\varphi_{(x,y)} = -\frac{F_x(x,y,\varphi(x,y))}{F_z(x,y,\varphi(x,y))}dx - \frac{F_y(x,y,\varphi(x,y))}{F_z(x,y,\varphi(x,y))}dy$$

4) Soit $f:V_1\to\mathbb{R}^3$ la paramétrisation d'un voisinage de M_0 dans S donnée par

$$f(x,y) = (x,y,\varphi(x,y))$$

Montrer que f est régulière.

5) Montrer qu'une équation cartésienne du plan tangent à S en M_0 est donnée par

$$F_x(M_0)(X - x_0) + F_y(M_0)(Y - y_0) + F_z(M_0)(Z - z_0) = 0.$$

Problème. – [13 pts] Soit R > 0. On considère la surface paramétrée donnée par

$$f: \]0, +\infty[\times \mathbb{R} \longrightarrow \mathbb{R}^3$$

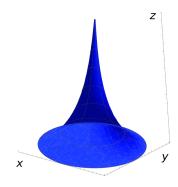
$$(u, v) \longmapsto R\left(\frac{\cos v}{\operatorname{ch} u}, \frac{\sin v}{\operatorname{ch} u}, (u - \operatorname{th} u)\right)$$

Le support de cette paramétrisation est appelé la pseudo-sphère de rayon R. On pose

$$e_u(u,v) = \left(-\frac{\cos v}{\operatorname{ch} u}, -\frac{\sin v}{\operatorname{ch} u}, \operatorname{th} u\right)$$
 et $e_v(u,v) = (-\sin v, \cos v, 0)$.

et on rappelle que pour tout $u \in \mathbb{R}$

$$\operatorname{ch}^2 u - \operatorname{sh}^2 u = 1, \operatorname{ch}' u = \operatorname{sh} u, \operatorname{sh}' u = \operatorname{ch} u \text{ et } \operatorname{th} u = \frac{\operatorname{sh} u}{\operatorname{ch} u}$$



La pseudo-sphère

- 1) i) Écrire f_u et f_v en fonction de e_u et e_v .
- ii) Déterminer les coefficients E, F et G de la première forme fondamentale I de f dans la base (f_u, f_v) .
- 2) i) Montrer que l'élément d'aire vaut

$$dS = R^2 \frac{\mathrm{sh}u}{\mathrm{ch}^2 u} du dv$$

- ii) En déduire que f est régulière.
- iii) Montrer que

$$\lim_{X \to +\infty} \int_0^X \frac{\sinh u}{\cosh^2 u} du = 1$$

et en déduire l'aire de f restreinte à $]0, +\infty[\times[0, 2\pi]]$.

- 3) Soit R_{θ} la rotation d'angle θ par rapport à l'axe (Oz). Montrer que le support S de f est stable par R_{θ} i. e. $R_{\theta}(S) \subset S$.
- 4) i) Déterminer une normale unitaire N aux points où f est régulière (on choisira celle pour laquelle la coordonnée en z est positive)
- 5) i) Déterminer les coordonnées du vecteur $w = (\cos v, \sin v, 0)$ dans la base orthonormée (e_u, e_v, N) .

- ii) Décomposer f_{uu} , f_{uv} et f_{vv} dans la base (e_u, e_v, N) .
- iii) Déterminer les coefficients \mathcal{L}, \mathcal{M} et \mathcal{N} de la seconde forme fondamentale de f dans la base (f_u, f_v) .
- iv) Montrer que la courbure de Gauss K(u, v) de f est constante et négative.
- v) Écrire la matrice A de l'opérateur de Weingarten W de f dans la base (f_u, f_v) et déterminer les courbures principales λ_1 et λ_2 .
- 6) Soit $\gamma(u) = \frac{1}{R}(u, u)$. On considère la courbe $u \mapsto \overline{\gamma}(u) = f \circ \gamma(u)$.
- i) Montrer que $\frac{\pi}{\gamma}$ est paramétrée par la longueur d'arc.
- ii) Exprimer $\overline{\gamma}''$ dans la base (e_u, e_v, N) .
- iii) Montrer que la courbure principale $k_{\overline{\gamma}}$ de $\overline{\gamma}$ ne s'annule jamais.
- iv) Montrer que la normal principale $n_{princ}(u)$ de $\overline{\gamma}(u)$ est incluse dans le plan tangent à f en $\overline{\gamma}(u)$.
- v) En déduire que $\overline{\gamma}$ est une courbe asymptotique. Suggestion. Utiliser le théorème de Meusnier.
- 7) Soient $I \subset \mathbb{R}$ et $\varphi : I \to]0, +\infty[$ et $\gamma : I \longrightarrow]0, +\infty[\times \mathbb{R}$ $t \longmapsto \gamma(t) = \frac{1}{R}(\varphi(t), t)$

Déterminer φ pour que $\overline{\gamma} = f \circ \gamma$ soit une courbe asymptotique.

- 8) Soient $I \subset \mathbb{R}$ et $\delta : I \to]0, +\infty[\times[0, 2\pi], t \mapsto (u(t), v(t)),$ une courbe paramétrée. On note $\overline{\delta} = f \circ \delta$.
- i) Déterminer les coordonnées de $\delta''(t)$ dans la base (e_u, e_v, N) en fonction de R, u, v, u', v', u'' et v''.
- ii) On suppose désormais que $\overline{\delta}$ est une géodésique paramétrée par la longueur d'arc. Montrer que

$$\begin{cases} u'' \operatorname{sh} u + \frac{1}{\operatorname{ch} u} (u'^2 + v'^2) = 0 & (1) \\ v'' - 2u'v' \operatorname{th} u = 0 & (2) \end{cases}$$

iii) On suppose en outre que $v'(t) \neq 0$ pour tout $t \in I$. Montrer qu'il existe $k \in \mathbb{R}^*$ tel que

$$\forall t \in I, \quad v'(t) = k \operatorname{ch}^2 u(t)$$

Suggestion. Remarquer que l'équation (2) est à variables séparées.

iv) Soit $\rho(t)$ la distance de $\overline{\delta}(t)$ à l'axe (Oz) et $\theta(t)$ l'angle entre $\overline{\delta}'(t)$ et e_v . Déduire de la question précédente que la fonction $t \mapsto \rho(t) \cos \theta(t)$ est constante (c'est la relation de Clairaut).