H-Principle and Convex Integration Theory

Vincent Borrelli

Université Lyon 1

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

AND

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

AND

A tool to detect *h*-principles

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

AND

What is Convex Integration Theory?

A process to solve PDE's/Differential Relations (mostly arising from Differential Geometry)

AND

A tool to detect *h*-principles

What is the *h*-Principle?

What is the *h*-Principle?

Problem (\sim **1930 until 1960).**— Given two surfaces of \mathbb{R}^3 , is there exist a *regular* homotopy joining them?

What is the *h*-Principle?

Problem (\sim **1930 until 1960).**— Given two surfaces of \mathbb{R}^3 , is there exist a *regular* homotopy joining them?

Regular means that at each time the surface remains smooth (no sharp bend, no crease).

Self-intersections are allowed.

An example

An example

Obviously impossible.— There is a topological obstruction!

Another example

Another example

VIDEO

No obstruction!

What is the *h*-principle?

Mikhail Gromov

• Informal definition: We say that the *h*-principe holds on a differential problem if the obstructions to find solutions come from algebraic topology.

What is the *h*-principle?

Mikhail Gromov

- Informal definition: We say that the *h*-principe holds on a differential problem if the obstructions to find solutions come from algebraic topology.
- For instance, the *h*-principle holds on the problem of finding regular homotopies.

What is the *h*-principle?

• The *h*-principle holds for numerous problems : in Symplectic/Contact/Riemannian Geometry, in Foliation Theory...

What is the *h*-principle?

- The *h*-principle holds for numerous problems : in Symplectic/Contact/Riemannian Geometry, in Foliation Theory...
- In these lectures, we shall focus on one of the techniques to detect the presence of the *h*-principle : Convex Integration Theory.

General Philosophy of these lectures

• To present Convex Integration Theory in a historical perspective in order to emphasize the key ideas behind its development.

General Philosophy of these lectures

- To present Convex Integration Theory in a historical perspective in order to emphasize the key ideas behind its development.
- These key ideas were **outrageously simple**... Sometimes, you do not need tons of abstract and conceptual theories to get a breakthrough.

General Philosophy of these lectures

- To present Convex Integration Theory in a historical perspective in order to emphasize the key ideas behind its development.
- These key ideas were **outrageously simple**... Sometimes, you do not need tons of abstract and conceptual theories to get a breakthrough.
- Lectures on the *h*-principle were already given in 2012 on this MA2 with a classical perspective. It is highly recommended to download the pdf notes on my webpage (section "Enseignement"), to take a look at them and possibly to do some of the exercises.

Content

- L1 : Nash-Kuiper Theorem
- L2: The Whitney-Graustein Theorem and the h-Principle
- L3: 1D Convex Integration
- L4 : Gromov Theorem on Ample Relations
- L5 : Constructions of C¹ isometric maps
- L6: Theillière's Formula

Mikhail Gromov

Hansjörg Geiges

Hansjörg Geiges et Sinem Onaran

Yakov Eliashberg

David Spring

Patrick Massot

Bibliography

Pdf of the lectures "Introduction to the h-principle" on his web

Bibliography

Patrick Massot : lectures on Differential Topology

Let's work!

We have some *Wrong Way* signs to explode with *h*-principle dynamites!