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Isometric embeddings

Definition.— Amap f: (M", g) L pa— (RY,(.,.)) is isometric if
f*(,)=g.
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Isometric embeddings

Definition.— Amap f: (M", g) L pa— (RY,(.,.)) is isometric if
f*(,)=g.

e In coordinates, the condition f*(.,.) = g reduces to a system of
n(n+ 1)/2 equations

of of
of the g unknown functions f : (x1, ..., Xp) — (f1, ..., fg) with
0<i<j<n

9
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Isometric embeddings

Definition.— Amap f: (M", g) L pa— (RY,(.,.)) is isometric if
f*(,)=g.

e In coordinates, the condition f*(.,.) = g reduces to a system of
n(n+ 1)/2 equations

of of
of the g unknown functions f : (x1, ..., Xp) — (f1, ..., fg) with
0<i<j<n

9

e The number
B n(n+1)
- 2

n

is called the Janet dimension.
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Schlafli Conjecture

Ludwig Schiafli

Schlafli Conjecture (1873).— Any n dimensional C* Riemannian
manifold admits locally an isometric embedding into 5.
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Historical perpective

Janet-Cartan Theorem (1926-27).— Any n dimensional C¥

Riemannian manifold admits locally an isometric embedding into E9
with g = sp.
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Historical perpective

Janet-Cartan Theorem (1926-27).— Any n dimensional C¥
Riemannian manifold admits locally an isometric embedding into E9
with g = sp.

Whitney Theorem (1936).— Any n dimensional differentiable manifold
admits an embedding into R?".
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Historical perpective

Janet-Cartan Theorem (1926-27).— Any n dimensional C¥

Riemannian manifold admits locally an isometric embedding into E9
with g = sp.

Whitney Theorem (1936).— Any n dimensional differentiable manifold
admits an embedding into R?".

Nash-Kuiper C' Embedding Theorem (1954-1955).— Statement in a
couple of minutes...
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Historical perpective

Nash C>* Embedding Theorem (1956).— Any C*> compact

Riemannian manifold admits a C*° isometric embedding into E9 with

o Newton lterative Method +C" Isometric Embedding Theorem
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Historical perpective

Nash C>* Embedding Theorem (1956).— Any C*> compact
Riemannian manifold admits a C*° isometric embedding into E9 with

¢ Newton lterative Method +C' Isometric Embedding Theorem

e In 1960, J. T. Schwartz observes that the Nash’s proof hides an Implicit

Function Theorem on Fréchet spaces, the so called Nash-Moser (or
Newton-Nash-Moser) Theorem.
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Historical perpective

Nash C>* Embedding Theorem (1956).— Any C>° compact
Riemannian manifold admits a C*° isometric embedding into E9 with

e Newton lterative Method +C" Isometric Embedding Theorem

e In 1960, J. T. Schwartz observes that the Nash’s proof hides an Implicit

Function Theorem on Fréchet spaces, the so called Nash-Moser (or
Newton-Nash-Moser) Theorem.

e In 1990, M. Gnther provides a proof of the Nash C>° Embedding
Theorem by using the "classical" tool of contractions.
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Historical perpective

Nash C>* Embedding Theorem (1956).— Any C>° compact
Riemannian manifold admits a C> isometric embedding into E9 with

e Newton lterative Method +C" Isometric Embedding Theorem

e In 1960, J. T. Schwartz observes that the Nash’s proof hides an Implicit
Function Theorem on Fréchet spaces, the so called Nash-Moser (or
Newton-Nash-Moser) Theorem.

e In 1990, M. Gnther provides a proof of the Nash C>° Embedding
Theorem by using the "classical" tool of contractions.

Theorem (Gromov, Rokhlin, Greene 1970).— Any C> compact

Riemannian manifold admits locally a C> isometric embedding into E9
with g = sp + n.
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Historical perpective

Theorem (Poznyak, 1973).— Any C> compact Riemannian surface
admits locally a C> isometric embedding into E*.
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Historical perpective

Theorem (Poznyak, 1973).— Any C> compact Riemannian surface
admits locally a C> isometric embedding into E*.

Theorem (Gromov 1986, Gunther 1989).— In the Nash C*°
Embedding Theorem, we can take

q = max{s, +2n,s, + n+ 5}.

e Remark that if n = 2 then s, = 3 and g = max{7,10} = 10.
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Historical perpective

Theorem (Poznyak, 1973).— Any C> compact Riemannian surface
admits locally a C> isometric embedding into E*.

Theorem (Gromov 1986, Gunther 1989).— In the Nash C*°
Embedding Theorem, we can take

q = max{s, +2n,s, + n+ 5}.

e Remark that if n = 2 then s, = 3 and g = max{7,10} = 10.

Theorem (Gromov 1989).— Any C>° compact Riemannian surface
admits a C> isometric embedding into FS.
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Nash-Kuiper Theorem

John Nash and Nicolaas Kuiper

Definition.— A map f : (M", g) S E9 is said (strictly) short if
F(.,.) < Kgwith 0 < K < 1.
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Nash-Kuiper Theorem

Theorem (1954-55).— Let M" be a compact manifold and

fo: (M" g) i1> E9, g > n, be a short embedding. Then, for every

e > 0, there exists a C' -isometric embedding f : (M", g) — E9 such
that ||f — follco < e.
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Nash-Kuiper Theorem

Theorem (1954-55).— Let M" be a compact manifold and

fo: (M" g) i1> E9, g > n, be a short embedding. Then, for every
e > 0, there exists a C' -isometric embedding f : (M", g) — E9 such
that ||f — follco < e.

e The assumption about the compacity is not essential but allows to
simplify the statement of the theorem.
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Nash-Kuiper Theorem

Theorem (1954-55).— Let M" be a compact manifold and

fo: (M" g) i1> E9, g > n, be a short embedding. Then, for every
e > 0, there exists a C' -isometric embedding f : (M", g) — E9 such
that ||f — follco < e.

e The assumption about the compacity is not essential but allows to
simplify the statement of the theorem.

e Nash proved the case g > n+ 2 in 1954 and Kuiper improved the
Nash’s proof to the case g = n+ 1 in 1955.

Vincent Borrelli L1 - Nash-Kuiper Theorem



Nash-Kuiper Theorem

Theorem (1954-55).— Let M" be a compact manifold and

fo: (M" g) i1> E9, g > n, be a short embedding. Then, for every
e > 0, there exists a C' -isometric embedding f : (M", g) — E9 such
that ||f — follco < e.

e The assumption about the compacity is not essential but allows to
simplify the statement of the theorem.

e Nash proved the case g > n+ 2 in 1954 and Kuiper improved the
Nash’s proof to the case g = n+ 1 in 1955.

e The CP-closeness condition appears latter (Kuiper, 1959).
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Some puzzling corollaries

Corollary (Nash-Kuiper).— Any Riemannian compact manifold M"
admits a C' isometric embedding into E2".
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Some puzzling corollaries

Corollary (Nash-Kuiper).— Any Riemannian compact manifold M"
admits a C' isometric embedding into E2".

Corollary (Nash-Kuiper).— Any flat torus T" = E" /A admits a C'
isometric embedding into E"1.
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Some puzzling corollaries

Corollary (Nash-Kuiper).— Any Riemannian compact manifold M"
admits a C' isometric embedding into E2".

Corollary (Nash-Kuiper).— Any flat torus T" = E" /A admits a C'
isometric embedding into E"1.

Corollary (Nash-Kuiper).— Let x € M" be any point of a Riemannian

manifold. There exists a neighborhood V(x) of x which admits C'
isometric embedding into E"t1.

Vincent Borrelli L1 - Nash-Kuiper Theorem



Some puzzling corollaries

Corollary (Nash-Kuiper).— Any Riemannian compact manifold M"
admits a C' isometric embedding into E2".

Corollary (Nash-Kuiper).— Any flat torus T" = E" /A admits a C'
isometric embedding into E"1.

Corollary (Nash-Kuiper).— Let x € M" be any point of a Riemannian
manifold. There exists a neighborhood V(x) of x which admits C'
isometric embedding into E"*1.

Corollary (Existence of reduced spheres, 1959?).— Let0O < r < 1.

There exists a C' isometric embedding of the unit sphere S" ¢ E"+1
inside a ball B(r) c E"1.
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Some puzzling corollaries

Corollary (Nash-Kuiper).— Any Riemannian compact manifold M"
admits a C' isometric embedding into E2".

Corollary (Nash-Kuiper).— Any flat torus T" = E" /A admits a C'
isometric embedding into E"1.

Corollary (Nash-Kuiper).— Let x € M" be any point of a Riemannian
manifold. There exists a neighborhood V(x) of x which admits C'
isometric embedding into E"*1.

Corollary (Existence of reduced spheres, 1959?).— Let0O < r < 1.
There exists a C' isometric embedding of the unit sphere S" ¢ E"+1
inside a ball B(r) c E"1.

Corollary (Gromov 1989).— It is possible to perform an eversion of
the 2-sphere through C' isometric immersions.
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Strategy of the proof (compact case)

elet A =g fj(.,.) be the isometric default. Since f; is strictly short,
A is a metric.
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Strategy of the proof (compact case)

elet A =g fj(.,.) be the isometric default. Since f; is strictly short,
A is a metric.

e We construct a sequence of maps (fx)ken+ such that

. A
g - it e < 151e
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Strategy of the proof (compact case)

elet A =g fj(.,.) be the isometric default. Since f; is strictly short,
A is a metric.

e We construct a sequence of maps (fx)ken+ such that

. A
g - it e < 151e

e Each fy is built iteratively from f,_4. The parameters of the
construction allow to insure that for all k,

1 C
I|fer1 — kaCo < ok and ||dfxi1 — dkaCo < oKz

with C > 0. Therefore, the limit £, is a C' isometric map.
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Strategy of the proof (compact case)

elet A =g fj(.,.) be the isometric default. Since f; is strictly short,
A is a metric.

e We construct a sequence of maps (fx)ken+ such that

[Allco

19 — (., leo < ok

e Each fy is built iteratively from f,_4. The parameters of the
construction allow to insure that for all k,

1 C
i1 = Felleo < 55 and fldfirr = dikllco < 575

with C > 0. Therefore, the limit £, is a C' isometric map.

e Each f, is an embedding and we show by using the C°-closeness
property that the limit still is an embedding.
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Step 1 : Decomposition of A

e It is enough to work locally since the use of a partition of unity
(Un, Yq) allows to move from a local construction to a global one.
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Step 1 : Decomposition of A

e It is enough to work locally since the use of a partition of unity
(Un, Yq) allows to move from a local construction to a global one.

¢ We choose the U,’s so that for each «, U,, is compact and each chart
extends to U,.
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Step 1 : Decomposition of A

e It is enough to work locally since the use of a partition of unity
(Un, Yq) allows to move from a local construction to a global one.

¢ We choose the U,’s so that for each «, U,, is compact and each chart
extends to U,,.

e On U,, the isometric default induces a map A : U, — S, (R").
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Step 1 : Decomposition of A

e It is enough to work locally since the use of a partition of unity
(Un, Yq) allows to move from a local construction to a global one.

¢ We choose the U,’s so that for each «, U,, is compact and each chart
extends to U,,.

e On U,, the isometric default induces a map A : U, — S, (R").

e The space S, (R") of positive definite symetric bilinear forms on R”
is an open convex cone of dimension s,
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Step 1 : Decomposition of A

e It is enough to work locally since the use of a partition of unity
(Un, Yq) allows to move from a local construction to a global one.

e We choose the U4,’s so that for each «, U, is compact and each chart
extends to U,.

e On U,, the isometric default induces a map A : U, — S, (R").

e The space S, (R") of positive definite symetric bilinear forms on R”
is an open convex cone of dimension s,.

e The first step is to write the isometric default as a sum of squares of
linear forms :

with p;(x) > 0,j € {1,..., P} and x € U,.



Step 1 : Decomposition of A

n
Va,f = Z ea,r,i ® eo,r,i

i=1

e To do so, we choose a locally finite covering of S, (R") by open
simplices and a partition of unity (¢, ) subordinated to that covering.
Note that, by locally finite, we mean that every point has a
neighborhood that intersects a finite number of simplices.
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Step 1 : Decomposition of A

n
va,‘r = Z Za,'r,i ® ea,r,i

i=1

e Furthermore we require this finite number to be uniformly bounded,
say by W (we admit the existence of such a covering).
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Step 1 : Decomposition of A

n
Vo,‘r = Z Z(7,7—,i ® Ea,r,i

i=1

e Each simplex o has s + 1 vertices V,, ..., V, s, and each vertex has
a decomposition as a sum of n squares of linear forms

n
VG’,T = Zga,‘r,i @ eO’,T,I’
i=1
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Step 1 : Decomposition of A

n
Va,‘r = Z Z(7,7—,i ® Ea,r,i
i=1

e We then write A as a sum of squares of linear forms :

Ax) = Z% A(x))A Z%(A X)) Zam

—ZSOU(A )ZaUT(X)ZeJTI(ggUTI
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Step 1 : Decomposition of A

n
va,‘r = Z EU,T,I‘ ® éa,'r,i

i=1

e Since A(U,) is compact, it intersects a finite number of simplices
Q(A,U,,). Reindexing the above sum, we obtain

Py
A(x) =" pi(x)
j=1

with Py = (s + 1)nQ(A, Us,).



Step 1 : Decomposition of A

n
‘Vo,‘r = Z Z(7,7—,i ® Ea,r,i

i=1

e A crucial observation is that, for each x € U,, the decomposition

A(x) =" pi(x)?

has at most (s, + 1)nW non vanishing coefficients p;(x).
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Step 2 : lterations

e We build from f; a sequence of maps

fa,fhp="H

such that
g- 42/)/5 + Z pil
J=i+1
In particular
. 1
g — f1:PO<" > ~ ZA
—

. 1
lg = dlleo < SlAlleo
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Step 2 : lterations

AW WaWaWaWa Y
VAUAVAVAVAY,

e The maps build by Nash are given iteratively by the formula

V3pi :
f1’,- = f1’,'_1 + 2N1p"(COS(N1’I' )u+ sm(N”K,-) V)
i

where u = uy ; and v = vy ; are two orthogonal unit normal vectors. We
have :

* * 3
il —Rici(s) = ZP/’@? +O(1/Ny j)
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Step 2 : lterations

AN N
VAUAVAVAVAY,

e Therefore

P
" 1
g-fipls) =40+ > O0(1/Ny))
=

and if the Ny ;s are large enough :

* Allco
0~ gl s < 1500
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Step 2 : lterations

« Actually the condition g > n+ 2 might be replaced by g > n+ 1. This
would come from use of a less easily controlled perturbation process
needing only one direction normal to the imbedding. » Nash, 1954
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Step 2 : lterations

\/R/\/\/\
VARVAR

e The maps built by Kuiper are given iteratively by the formula

V3p 3pi
fri="fi1— sm(2N1 j Lt \/_ 1 sin (N1 ,E, 16 sm(2N1 ,E ))
i

where t =ty ;_4 is a (convenient) unit tangent vector and w = w4 ;_4 a
unit normal vector. We have

3pi
16N

y

i) =iz, = gp,ﬁ? + extra unexpected terms + O(1/Ny )
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Step 2 : lterations

\/R/\/\/\
VARVAR

e The maps built by Kuiper are given iteratively by the formula

V3p 3pi
fri="fi1— sm(2N1 j Lt \/_ 1 sin (N1 ,E, 16 sm(2N1 ,E ))
i

where t =ty ;_4 is a (convenient) unit tangent vector and w = w4 ;_4 a
unit normal vector. We have

3pi
16N

y

* * 3
fiiles) = f i1 () = oitF + O(sF) + O(1/Ny )
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Step 2 : lterations

« Qur proof follows Nash’ proof with the exception of a different kind of
one step device : a strain. This strain however requires considerations
concerning the convergence of the process which are even more
delicate then those required with Nash’ one step device. We therefore
give a complete proof independent of Nash’ paper » Kuiper, 1955
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Step 2 : lterations

\/h/\/\/\
VARV

e The passing from the codimension 2 to the codimension 1 shows a
real technical problem.
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Step 2 : lterations

\/h/\/\/\
VARV

e The passing from the codimension 2 to the codimension 1 shows a
real technical problem.

e This problem can be settled by substituting a Convex Integration to
the Kuiper formula (we shall see how latter).

e The new map f; ; thus defined is such that

* * 3
i) — iz, = Zp'[’? + O(1/Ny )
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Step 3 : Convergence

e We re-do all the process starting with f; and decomposing the new
isometric default as a sum of P; squares of linear forms

Ar(x) =9 f( ZPL/(X)ZU
j=1

and then redoing P; iterations to obtain f> := f; p,. And so on...
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Step 3 : Convergence

e We re-do all the process starting with f; and decomposing the new
isometric default as a sum of P; squares of linear forms

and then redoing P; iterations to obtain f> := f; p,. And so on...

o If the Nj ;s are large enough, the resulting sequence of maps
satisfies :
[Allco

lg =Tl Mg = Tk
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Step 3 : Convergence

« A direct computation shows that the sequence (f) is C' converging.

Nash :

v/ 3pk
fei= Tkt + 57— 2Nk/ (cos(Nklék,) u -+ sin(Ny ; 4 i) V)
Kuiper :
3pk
fei = friz1— 16Nk sm(2Nk,£k,)

3Pk, . 3pk,i .
+\/§Nk i sin (Nk,f li— 1—6’ sm(ZNk,i eky,-))w

(here again u = u4 ; and v = vy ; are two orthogonal unit normal
vectors of fx j_1).
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Step 3 : Convergence
« A direct computation shows that the sequence (f) is C' converging.
Nash :

3Pk
fei= Tkt + 57— 2Nk (Cos(Nklék,) U+ sin(Ny j lg.i) v)
/

Kuiper :

3pk
fei = friz1— 16Nk sm(2Nk,£k,)

3Pk . 3pki .
+\/§Nk i sin (Nk,f li— 1—6’ sm(ZNk,i eky,-))w

(here again u = u4 ; and v = vy ; are two orthogonal unit normal
vectors of fx j_1).

e Thus the limit map £, is C' isometric.
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Step 4 : The limit map £, is an embedding

e The image of f; 1 is a graph above f; (lying in a normal neiborhood of
fo), therefore f; 1 is an embedding. For the same reason, each fx is an
embedding.
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Step 4 : The limit map £, is an embedding

e The image of f; 1 is a graph above f; (lying in a normal neiborhood of
fo), therefore f; 1 is an embedding. For the same reason, each fx is an
embedding.

e Let x; and x» be two distinct points of M and let k > 0, we put
dk(X1 , X2) = diSt(fk(X1 ), fk(Xz)).
Since ||fx1 — fillcy < o We have

dist(f.o(x) — f(x))) < 2,(1—_1

and thus

(1, %2) — g < At(f(), o)) = 1, )
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Step 4 : The limit map £, is an embedding

¢ We shall show that, for every couple of distinct points (xy, x2), there
exists k such that di(x1,X2) — 52— > 0. This will imply that £ is an
embedding.
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Step 4 : The limit map £, is an embedding

¢ We shall show that, for every couple of distinct points (xy, x2), there
exists k such that di(x1,X2) — 52— > 0. This will imply that £ is an
embedding.

e Let (f)ics,....p,y € the sequence joining fx to fi, 1. We first observe
that

lim fejiv1 — fxi =0
Ny 4100 ” K,i+1 k,IHCO

implies
lim  |[dkir1(-,-) = Ak,i(;)[co =0

Nk7,'+1 —+00

Thus, for every k and every i, there exists N ;1 such that

o\ 1/Pk
dk,it1 > <§> dk.i
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Step 4 : The limit map £, is an embedding

e As a consequence dy 1 > %dk for every k and

K
dk > (g) do

Vincent Borrelli L1 - Nash-Kuiper Theorem



Step 4 : The limit map £, is an embedding

e As a consequence dy 1 > %dk for every k and

o\ K
> —
0> (2)'a
e We deduce

1 2 8 1%
dk(%1,%2) = 5= = Ab(¥1, x2) —4{3
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Step 4 : The limit map £, is an embedding

e As a consequence dy 1 > %dk for every k and

o\ K
> —
0> (2)'a
e We deduce

1 2 8 1%
dk(%1,%2) = 5= = Ab(¥1, x2) —4{3

e If k is large enough, the right term is positive, hence d.(xq, x2) > 0.
Thus, the map £, is an embedding.
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Step 4 : The limit map £, is an embedding

e As a consequence dy 1 > %dk for every k and

o\ K
> —
0> (2)'a
e We deduce

1 2 8 1%
dk(%1,%2) = 5= = Ab(¥1, x2) —4{3

e If k is large enough, the right term is positive, hence d.(xq, x2) > 0.
Thus, the map £, is an embedding.

e We have proved the Nash-Kuiper Theorem
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The outrageously simple idea
I S

John Nash

The isometric default must be reduced iteratively and not all at once.
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The outrageously simple idea
By considering

Vi -
fri="Hi1+ N, ~ ((cos Nigj £4,)) U+ sin(Ny j £1,7) V)
i

instead of

\V/3p1i .
f1,i = f17,'_1 + N, .’, (COS N1’,' 517,') u-+ sm(N1’,- @1,,') V)
i

it is obviously possible to kill the whole isometric default in each
direction ¢4 ; up to a O(1/Ny ;) :

fil ) — £ iq () =1 % pit? + O(1/Ny )

to get a map f; approximately isometric
g- (. Z O(1/Ns ).
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The outrageously simple idea

BUT

This leads to a dead end. Indeed there is no control on the sign of
O(1/Ny ;) and consequently f; is no longer a short map in general. It

lengthens some curves and the helix deformation can not reduce their
length.
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The outrageously simple idea

BUT

This leads to a dead end. Indeed there is no control on the sign of
O(1/Ny ;) and consequently f; is no longer a short map in general. It

lengthens some curves and the helix deformation can not reduce their
length.

NASH
bypasses this difficulty with an iterative approach, dividing the

isometric default by 2 at each step rather than trying to reduce it to
zero all at once.
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That’s all folks !
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