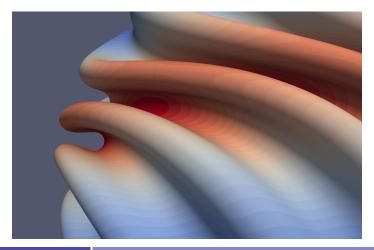
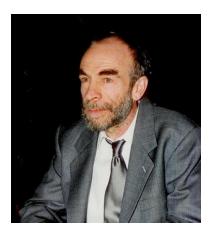
L2: From Nash-Kuiper to Gromov

Vincent Borrelli Institut Camille Jordan - Université Claude Bernard Lyon 1

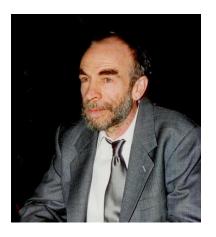


An incredible result



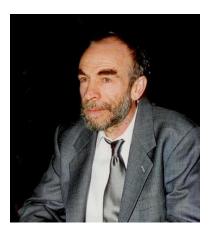
« At first, I looked at one of Nash's papers and thought it was just nonsense [...] It was incredible. It could not be true but it was true ».

An incredible



« I was thinking about this for several years, trying to understand the mechanism behind [the Nash's proof] »

An inspirational source



The Nash's proof was an inspirational source for the Gromov's Convex Integration Theory

Back to the Nash-Kuiper's proof

The step 2 problem.- Let

- $f_0: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{E}^q$ be an immersion,
- ullet $ho:\mathcal{U} o\mathbb{R}_{>0}$
- $\ell : \mathbb{R}^n \to \mathbb{R}$ be a linear form,
- $\bullet \ \epsilon > 0$

Find $f: \mathcal{U} \to \mathbb{E}^q$ such that :

i)
$$f^*\langle .,. \rangle = f_0^*\langle .,. \rangle + \rho \ell \otimes \ell$$

$$ii) \quad \|f-f_0\|_{C^0}<\epsilon$$

Back to the Nash-Kuiper's proof

The step 2 problem (rephrasing+codimension at least 2).— Let

- $f_0: [0,1]^n \to \mathbb{E}^q$ be an immersion with $q \ge n+2$,
- $\rho: [0,1]^n \to \mathbb{R}_{\geq 0}$
- $\ell = dx_1$
- $\bullet \ \epsilon > 0$

Find $f:[0,1]^n \to \mathbb{E}^q$ such that :

- i) $f^*\langle .,. \rangle = f_0^*\langle .,. \rangle + \rho dx_1 \otimes dx_1$
- $ii) \quad \|f-f_0\|_{C^0}<\epsilon$

Solution

• If we apply condition *i*) to (∂_1, ∂_1) we obtain

$$f^*\langle \partial_1, \partial_1 \rangle = f_0^*\langle \partial_1, \partial_1 \rangle + \rho dx_1(\partial_1) dx_1(\partial_1)$$

i.e.

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0(x)\|^2 + \rho(x)$$

Solution

• If we apply condition *i*) to (∂_1, ∂_1) we obtain

$$f^*\langle \partial_1, \partial_1 \rangle = f_0^*\langle \partial_1, \partial_1 \rangle + \rho dx_1(\partial_1) dx_1(\partial_1)$$

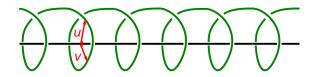
i.e.

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0(x)\|^2 + \rho(x)$$

• We first build a map $\partial_1 f(x)$ satisfying the above equation and then we define f to be a primitive of that map :

$$f(x) = f_0(0, x_2, ..., x_n) + \int_0^{x_1} \partial_1 f(u, x_1, ..., x_n) du$$

Solution

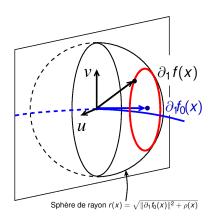


 \bullet To define $\partial_1 f$ we follow the Nash's approach. Given two unit normal vectors of f_0 :

$$\mathbf{u}, \mathbf{v}: [0,1]^n \to \mathbb{E}^q$$

such that $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, we look for a solution $\partial_1 f$ behaving as a tangent vector to an helix.

Convex Integration

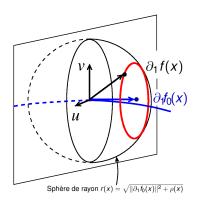


We put

$$\partial_1 f(x) = \sqrt{\rho(x)} e^{i\theta(x)} + \partial_1 f_0(x)$$

where $e^{i\theta} := \cos \theta \mathbf{u} + \sin \theta \mathbf{v}$ and $\theta : [0,1]^n \longrightarrow \mathbb{R}$ will be chosen latter.

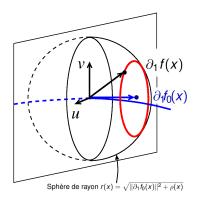
Convex Integration



 \bullet Since $(\boldsymbol{u},\boldsymbol{v})$ are unit normal vectors, we have

$$\partial_1 f(x) = \sqrt{\rho(x)} e^{i\theta(x)} + \partial_1 f_0(x) \implies \|\partial_1 f(x)\|^2 = \rho(x) + \|\partial_1 f_0(x)\|^2$$

Convex Integration



ullet A possible choice for heta is

$$\theta(x) = 2\pi Nx_1$$

where $N \in \mathbb{N}^*$ is a free parameter (= the number of spirals) .

C⁰-density

• For every $x \in [0,1]^n$ we set

$$f(x) := f_0(0, x_2, ..., x_n) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi N u} + \partial_1 f_0(u, x_2, ..., x_n) du$$

$$= f_0(x) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi N u} du$$

C⁰-density

• For every $x \in [0, 1]^n$ we set

$$f(x) := f_0(0, x_2, ..., x_n) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi Nu} + \partial_1 f_0(u, x_2, ..., x_n) du$$

$$= f_0(x) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi Nu} du$$

• Since $\int_0^1 e^{i2\pi u} du = 0$, we have (see the lemma below)

$$\|f - f_0\|_{C^0} = O(\frac{1}{N})$$
 and $\|\partial_j f - \partial_j f_0\|_{C^0} = O(\frac{1}{N})$

for every $j \ge 2$.

C⁰-density

• For every $x \in [0, 1]^n$ we set

$$f(x) := f_0(0, x_2, ..., x_n) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi Nu} + \partial_1 f_0(u, x_2, ..., x_n) du$$

$$= f_0(x) + \int_0^{x_1} \sqrt{\rho(u, x_2, ..., x_n)} e^{i2\pi Nu} du$$

• Since $\int_0^1 e^{i2\pi u} du = 0$, we have (see the lemma below)

$$||f - f_0||_{C^0} = O(\frac{1}{N})$$
 and $||\partial_j f - \partial_j f_0||_{C^0} = O(\frac{1}{N})$

for every $j \ge 2$.

• Thus, if N is large enough, f fulfills the C^0 -closeness condition ii).

Lemma.– Let $f:[a,b]\to \mathbb{E}^q$ be a C^1 function and $h:\mathbb{R}\to \mathbb{R}$ be a continuous T-periodic function then

$$\int_{a}^{b} f(s)h(Ns)ds = \left(\int_{a}^{b} f(s)ds\right)\left(\frac{1}{T}\int_{0}^{T} h(s)ds\right) + O\left(\frac{1}{N}\right)$$

In particular, if $\overline{h} = 0$, then

$$\int_{a}^{b} f(s)h(Ns)ds = O\left(\frac{1}{N}\right)$$

Proof.– Let $g = h - \overline{h}$. We have

$$\int_{a}^{b} f(s) \left(h(Ns) - \overline{h} \right) ds = \int_{a}^{b} f(s) g(Ns) ds$$
$$= \left[f(s) \frac{G(Ns)}{N} \right]_{a}^{b} - \int_{a}^{b} f'(s) \frac{G(Ns)}{N} ds$$

where *G* is the primitive of *g* given by $G(t) = \int_0^t g(s)ds$.

Proof.– Let $g = h - \overline{h}$. We have

$$\int_{a}^{b} f(s) \left(h(Ns) - \overline{h} \right) ds = \int_{a}^{b} f(s) g(Ns) ds$$
$$= \left[f(s) \frac{G(Ns)}{N} \right]_{a}^{b} - \int_{a}^{b} f'(s) \frac{G(Ns)}{N} ds$$

where *G* is the primitive of *g* given by $G(t) = \int_0^t g(s)ds$. Since

$$\int_0^T g(s)ds = \int_0^T (h(s) - \overline{h})ds = 0$$

the primitive G is T-periodic thus bounded.

Proof.– Let $g = h - \overline{h}$. We have

$$\int_{a}^{b} f(s) \left(h(Ns) - \overline{h} \right) ds = \int_{a}^{b} f(s) g(Ns) ds$$
$$= \left[f(s) \frac{G(Ns)}{N} \right]_{a}^{b} - \int_{a}^{b} f'(s) \frac{G(Ns)}{N} ds$$

where *G* is the primitive of *g* given by $G(t) = \int_0^t g(s)ds$. Since

$$\int_0^T g(s)ds = \int_0^T (h(s) - \overline{h})ds = 0$$

the primitive *G* is *T*-periodic thus bounded. We conclude

$$\int_{a}^{b} f(s) \left(h(Ns) - \overline{h} \right) ds = O\left(\frac{1}{N}\right)$$

• By construction, for j = 1, we have

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0\|^2 + \rho(x)$$

for every $x \in [0, 1]^n$. Thus, f fulfills Condition i) for the couple (∂_1, ∂_1) .

• By construction, for j = 1, we have

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0\|^2 + \rho(x)$$

for every $x \in [0,1]^n$. Thus, f fulfills Condition i) for the couple (∂_1, ∂_1) .

• However, for the other couples (∂_i, ∂_j) , $(i, j) \neq (1, 1)$, we have

$$\begin{aligned} \langle \partial_i f(x), \partial_j f(x) \rangle &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + O(\frac{1}{N}) \\ &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + \rho(x) dx_1(\partial_i) dx_1(\partial_j) + O(\frac{1}{N}) \end{aligned}$$

• By construction, for j = 1, we have

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0\|^2 + \rho(x)$$

for every $x \in [0,1]^n$. Thus, f fulfills Condition i) for the couple (∂_1, ∂_1) .

• However, for the other couples (∂_i, ∂_j) , $(i, j) \neq (1, 1)$, we have

$$\begin{aligned} \langle \partial_i f(x), \partial_j f(x) \rangle &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + O(\frac{1}{N}) \\ &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + \rho(x) dx_1(\partial_i) dx_1(\partial_j) + O(\frac{1}{N}) \end{aligned}$$

• Finally, we have solved condition i) approximately

$$f^*\langle .,.\rangle = f_0^*\langle .,.\rangle + \rho dx_1 \otimes dx_1 + O(\frac{1}{N})$$

• By construction, for j = 1, we have

$$\|\partial_1 f(x)\|^2 = \|\partial_1 f_0\|^2 + \rho(x)$$

for every $x \in [0,1]^n$. Thus, f fulfills Condition i) for the couple (∂_1, ∂_1) .

• However, for the other couples (∂_i, ∂_j) , $(i, j) \neq (1, 1)$, we have

$$\begin{aligned} \langle \partial_i f(x), \partial_j f(x) \rangle &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + O(\frac{1}{N}) \\ &= \langle \partial_i f_0(x), \partial_j f_0(x) \rangle + \rho(x) dx_1(\partial_i) dx_1(\partial_j) + O(\frac{1}{N}) \end{aligned}$$

• Finally, we have solved condition i) approximately

$$f^*\langle .,. \rangle = f_0^*\langle .,. \rangle + \rho dx_1 \otimes dx_1 + O(\frac{1}{N})$$

Note that Nash also solved this condition approximately.

Definition.— Let

- $\gamma: [0,1]^n \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}^q$ be a family of loops
- $f_0:[0,1]^n \to \mathbb{R}^q$ a map
- *N* > 0

We define a new map $F : [0,1]^n \to \mathbb{R}^q$ by setting

$$F(x) := f_0(0, x_2, ..., x_n) + \int_0^{x_1} \gamma(u, x_2, ..., x_n; Nu) du$$

for every $x \in [0,1]^n$. The map F is said to be obtained from f_0 by **Convex Integration**. It is denoted by $F = Cl_{\gamma}(f_0, \partial_1, N)$.

Example.— The map f previously built is obtained by convex integration from f_0 and with the following choice for γ :

$$\gamma(\mathbf{x},t) = \sqrt{\rho(\mathbf{x})} e^{2i\pi t} + \partial_1 f_0(\mathbf{x})$$

Example.— The map f previously built is obtained by convex integration from f_0 and with the following choice for γ :

$$\gamma(x,t) = \sqrt{\rho(x)}e^{2i\pi t} + \partial_1 f_0(x)$$

Observe that

$$\int_0^1 \gamma(x,t)dt = \partial_1 f_0(x).$$

In average, the effect of γ and $\partial_1 f_0$ are the same. This is the reason why f is C^0 -close to f_0 .

Example.— The map f previously built is obtained by convex integration from f_0 and with the following choice for γ :

$$\gamma(x,t) = \sqrt{\rho(x)}e^{2i\pi t} + \partial_1 f_0(x)$$

Observe that

$$\int_0^1 \gamma(x,t)dt = \partial_1 f_0(x).$$

In average, the effect of γ and $\partial_1 f_0$ are the same. This is the reason why f is C^0 -close to f_0 .

Definition.— A family of loops $\gamma:[0,1]^n\times\mathbb{R}/\mathbb{Z}\to\mathbb{R}^q$ satisfies the average condition with respect to f_0 and in the direction of ∂_1 if

$$\forall x \in [0,1]^n$$
, $\int_0^1 \gamma(x,t)dt = \partial_1 f_0(x)$.

Proposition.– If γ satisfies the average condition with respect to f_0 and in the direction ∂_1 then the following properties hold for $F = Cl_{\gamma}(f_0, \partial_1, N)$:

$$(P_1) \|f_0 - F\|_{C^0} = O(1/N),$$

(P₂)
$$\|\partial_i f_0 - \partial_i F\|_{C^0} = O(1/N)$$
 for every $i \neq 1$,

$$(P_3) \ \forall x \in [0,1]^n, \ \partial_1 F(x) = \gamma(x, Nx_1).$$

Proposition.— If γ satisfies the average condition with respect to f_0 and in the direction ∂_1 then the following properties hold for $F = Cl_{\gamma}(f_0, \partial_1, N)$:

$$(P_1) \|f_0 - F\|_{C^0} = O(1/N),$$

$$(P_2) \|\partial_i f_0 - \partial_i F\|_{C^0} = O(1/N)$$
 for every $i \neq 1$,

$$(P_3) \ \forall x \in [0,1]^n, \ \partial_1 F(x) = \gamma(x, Nx_1).$$

Proof.— Postponed to the lecture devoted to the 1D Convex Integration.

The step 2 problem (codimension 1).— We assume q = n+1. Given $\epsilon > 0$ we want to construct $f : [0,1]^n \to \mathbb{E}^{n+1}$ such that

$$i) \quad \|f^*\langle .,.\rangle - (f_0^*\langle .,.\rangle + \rho dx_1 \otimes dx_1)\|_{C^0} < \epsilon$$

$$ii) \quad \|f-f_0\|_{C^0}<\epsilon$$

The step 2 problem (codimension 1).— We assume q=n+1. Given $\epsilon>0$ we want to construct $f:[0,1]^n\to\mathbb{E}^{n+1}$ such that

$$i) \quad \|f^*\langle .,.\rangle - (f_0^*\langle .,.\rangle + \rho dx_1 \otimes dx_1)\|_{C^0} < \epsilon$$

ii)
$$||f - f_0||_{C^0} < \epsilon$$

Solution.— We are going to build f by a convex integration from f_0 in the direction ∂_1 . Any such map will satisfy property (P2):

$$\|\partial_i f - \partial_i f_0\|_{C^0} = O(1/N)$$
 pour tout $i \neq 1$

which implies that

$$\langle \partial_i f, \partial_j f \rangle = \langle \partial_i f_0, \partial_j f_0 \rangle + O(1/N)$$

for every $i \neq 1, j \neq 1$.

• It remains to solve (i) for the couples (1, i), $i \in \{1, ..., n\}$, i. e.

$$\begin{cases} \langle \partial_1 f, \partial_i f \rangle = \langle \partial_1 f_0, \partial_i f_0 \rangle + O(1/N) \text{ for every } i \neq 1 \\ \|\partial_1 f\|^2 = \|\partial_1 f_0\|^2 + \rho + O(1/N) \end{cases}$$

• It remains to solve (i) for the couples (1, i), $i \in \{1, ..., n\}$, i. e.

$$\begin{cases} \langle \partial_1 f, \partial_i f \rangle = \langle \partial_1 f_0, \partial_i f_0 \rangle + O(1/N) \text{ for every } i \neq 1 \\ \|\partial_1 f\|^2 = \|\partial_1 f_0\|^2 + \rho + O(1/N) \end{cases}$$

Or equivalently

$$\begin{cases} \langle \partial_1 f, \partial_i f_{0} \rangle = \langle \partial_1 f_{0}, \partial_i f_{0} \rangle + O(1/N) \text{ for every } i \neq 1 \\ \|\partial_1 f\|^2 = \|\partial_1 f_{0}\|^2 + \rho + O(1/N) \end{cases}$$

since

$$\|\partial_i f - \partial_i f_0\|_{C^0} = O(1/N)$$
 pour tout $i \neq 1$

• For every $x \in [0, 1]^n$, we put

$$\mathcal{R}_{x} = \left\{ v \in \mathbb{R}^{n+1} \mid \begin{array}{l} \langle v, \partial_{i} f_{0}(x) \rangle = \langle \partial_{1} f_{0}(x), \partial_{i} f_{0}(x) \rangle \text{ for every } i \neq 1 \\ \|v\|^{2} = \|\partial_{1} f_{0}(x)\|^{2} + \rho(x) \end{array} \right\}$$

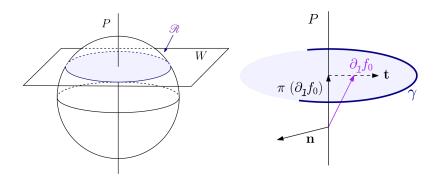
$$\mathcal{R}_{x} = \left\{ v \in \mathbb{R}^{n+1} \mid \begin{array}{l} \langle v, \partial_{i} f_{0}(x) \rangle = \langle \partial_{1} f_{0}(x), \partial_{i} f_{0}(x) \rangle \text{ for every } i \neq 1 \\ \|v\|^{2} = \|\partial_{1} f_{0}(x)\|^{2} + \rho(x) \end{array} \right\}$$

• The set \mathcal{R}_x is the intersection of a hypersphere $\mathbb{S}^n(R)$ of radius

$$R = \sqrt{\|\partial_1 f_0(x)\|^2 + \rho(x)}$$

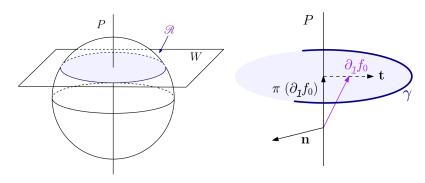
and of an affine 2-plane

$$W = \{ v \in \mathbb{R}^{n+1} \mid \langle v, \partial_i f_0(x) \rangle = \langle \partial_1 f_0(x), \partial_i f_0(x) \rangle \text{ for every } i \neq 1 \}$$



• It is easily seen that \mathcal{R}_x is a circle whose center is given by the projection $\pi(\partial_1 f_0(x))$ of $\partial_1 f_0(x)$ on $P = Span(\partial_2 f_0(x),...,\partial_n f_0(x))$ and whose radius is

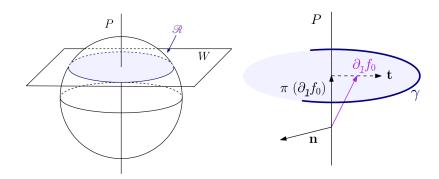
$$r(x) = \sqrt{\|\partial_1 f_0(x)\|^2 + \rho(x) - \|\pi(\partial_1 f_0(x))\|^2}$$



 \bullet We have to choose a family of loops $\gamma:[0,1]^n\times \mathbb{R}/\mathbb{Z}\to \mathbb{R}^{n+1}$ such that

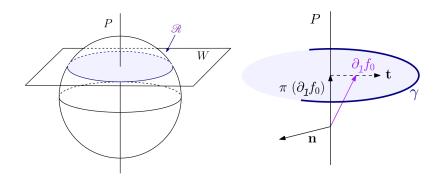
1)
$$t \mapsto \gamma(x,t) \in \mathcal{R}_x$$

2)
$$\int_0^1 \gamma(x,t)dt = \partial_1 f_0(x)$$



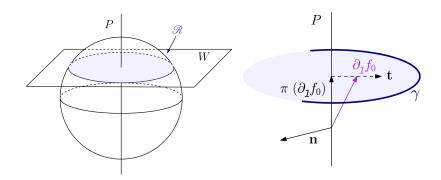
• We set

$$\mathbf{t} = \frac{\partial_1 f_0 - \pi(\partial_1 f_0)}{\|\partial_1 f_0 - \pi(\partial_1 f_0)\|} \quad \text{and} \quad \mathbf{n} = \frac{\partial_1 f_0 \wedge ... \wedge \partial_n f_0}{\|\partial_1 f_0 \wedge ... \wedge \partial_n f_0\|}$$



ullet We define γ to be

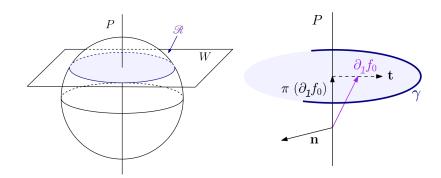
$$\gamma(x,t) = \pi(\partial_1 f_0(x)) + r(x)(\cos\theta \, \mathbf{t} + \sin\theta \, \mathbf{n})$$



ullet We define γ to be

$$\gamma(\mathbf{x},t) = \pi(\partial_1 f_0(\mathbf{x})) + r(\mathbf{x})(\cos\theta \,\mathbf{t} + \sin\theta \,\mathbf{n})$$

with $\theta(x, t) = \alpha(x) \cos 2\pi t$ and $\alpha(x)$ is to be determined.

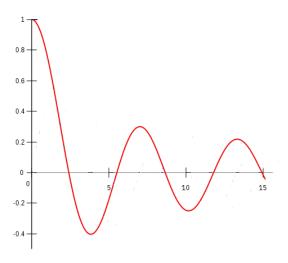


We then have

$$\int_0^1 \gamma(x,t)dt = r(x)J_0(\alpha(x))\mathbf{t} + \pi(\partial_1 f_0(x))$$

where J_0 the Bessel function.

The Bessel Function J_0



$$J_0(\alpha) = \frac{1}{\pi} \int_0^{\pi} \cos(\alpha \sin u) du$$

We then have

$$\int_0^1 \gamma(x,t)dt = r(x)J_0(\alpha(x))\mathbf{t} + \pi(\partial_1 f_0(x))$$

where J_0 the Bessel function.

• To ensure the average to be equal to $\partial_1 f_0$, it is enough to choose

$$\alpha(x) = J_0^{-1} \left(\frac{\|\partial_1 f_0(x) - \pi(\partial_1 f_0(x))\|}{r(x)} \right)$$

We then have

$$\int_0^1 \gamma(x,t)dt = r(x)J_0(\alpha(x))\mathbf{t} + \pi(\partial_1 f_0(x))$$

where J_0 the Bessel function.

• To ensure the average to be equal to $\partial_1 f_0$, it is enough to choose

$$\alpha(x) = J_0^{-1} \left(\frac{\|\partial_1 f_0(x) - \pi(\partial_1 f_0(x))\|}{r(x)} \right)$$

• Since $rJ_0(\alpha)\mathbf{t} + \pi(\partial_1 f_0) = \partial_1 f_0$, we can write

$$\gamma(x,t) = r(\cos(\alpha\cos 2\pi t) - J_0(\alpha)) \mathbf{t} + r\sin(\alpha\cos 2\pi t) \mathbf{n} + \partial_1 f_0$$

To sum up. The map $f = CI_{\gamma}(f_0, \partial_1, N)$ with

$$\gamma(x,t) = r(\cos(\alpha\cos 2\pi t) - J_0(\alpha)) \mathbf{t} + r\sin(\alpha\cos 2\pi t) \mathbf{n} + \partial_1 f_0$$

and

$$r = \sqrt{\|\partial_1 f_0\|^2 + \rho - \|\pi(\partial_1 f_0)\|^2}, \quad \alpha = J_0^{-1} \left(\frac{\|\partial_1 f_0 - \pi(\partial_1 f_0)\|}{r}\right)$$

satisfies the following properties

i)
$$f^*\langle .,. \rangle = f_0^*\langle .,. \rangle + \rho dx_1 \otimes dx_1 + O(1/N)$$

ii)
$$||f - f_0||_{C^0} = O(1/N)$$

iii)
$$\|\partial_i f - \partial_i f_0\|_{C^0} = O(1/N)$$
 for every $i \neq 1$.

Analytical expression.— The map $f = Cl_{\gamma}(f_0, \partial_1, N)$ has the following expression

$$f(x) = f_0(0, x_2, ..., x_m) + \int_0^{x_1} \gamma(\mathbf{u}, x_2, ..., x_m; N\mathbf{u}) d\mathbf{u}$$

with

$$\gamma(x,t) = \pi(\partial_1 f_0(x)) + r(x)(\cos(\alpha(x)\cos 2\pi t) \mathbf{t}(x) + \sin(\alpha(x)\cos 2\pi t) \mathbf{n}(x)).$$

Analytical expression.— The map $f = Cl_{\gamma}(f_0, \partial_1, N)$ has the following expression

$$f(x) = f_0(0, x_2, ..., x_m) + \int_0^{x_1} \gamma(\mathbf{u}, x_2, ..., x_m; N\mathbf{u}) d\mathbf{u}$$

with

$$\gamma(x,t) = \pi(\partial_1 f_0(x)) + r(x)(\cos(\alpha(x)\cos 2\pi t) \mathbf{t}(x) + \sin(\alpha(x)\cos 2\pi t) \mathbf{n}(x)).$$

• By comparison the Kuiper formula is :

$$f(x) = f_0(x) - \frac{3\rho(x)}{16N} \sin(2Nx_1)\mathbf{t}(x) + \frac{\sqrt{3\rho(x)}}{\sqrt{2}N} \sin(Nx_1 - \frac{3\rho(x)}{16})\sin(2Nx_1)\mathbf{n}(x)$$

The outrageously simple idea

Mikhaïl Gromov

• The $O(\rho^2)$ default in the Kuiper process deserves to be corrected

The outrageously simple idea

Mikhaïl Gromov

- The $O(\rho^2)$ default in the Kuiper process deserves to be corrected
- This can be done by combining a geometrical approach with a simple integral formula.

Mikhaïl Gromov

