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An incredible result

« At first, I looked at one of Nash’s papers and thought it was just
nonsense [...] It was incredible. It could not be true but it was true ».
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An incredible

« I was thinking about this for several years, trying to understand the
mechanism behind [the Nash’s proof] »
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An inspirational source

The Nash’s proof was an inspirational source for the Gromov’s Convex
Integration Theory
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Back to the Nash-Kuiper’s proof

The step 2 problem.– Let

• f0 : U ⊂ Rn → Eq be an immersion,

• ρ : U → R≥0

• ` : Rn → R be a linear form,

• ε > 0

Find f : U → Eq such that :

i) f ∗〈., .〉 = f ∗0 〈., .〉+ ρ`⊗ `

ii) ‖f − f0‖C0 < ε
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Back to the Nash-Kuiper’s proof

The step 2 problem (rephrasing+codimension at least 2).– Let

• f0 : [0,1]n → Eq be an immersion with q ≥ n + 2,

• ρ : [0,1]n → R≥0

• ` = dx1

• ε > 0

Find f : [0,1]n → Eq such that :

i) f ∗〈., .〉 = f ∗0 〈., .〉+ ρdx1 ⊗ dx1

ii) ‖f − f0‖C0 < ε
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Solution

• If we apply condition i) to (∂1, ∂1) we obtain

f ∗〈∂1, ∂1〉 = f ∗0 〈∂1, ∂1〉+ ρdx1(∂1)dx1(∂1)

i.e.
‖∂1f (x)‖2 = ‖∂1f0(x)‖2 + ρ(x)

•We first build a map ∂1f (x) satisfying the above equation and then
we define f to be a primitive of that map :

f (x) = f0(0, x2, ..., xn) +

∫ x1

0
∂1f (u, x1, ..., xn)du
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Solution

• To define ∂1f we follow the Nash’s approach. Given two unit normal
vectors of f0 :

u,v : [0,1]n → Eq

such that 〈u,v〉 = 0, we look for a solution ∂1f behaving as a tangent
vector to an helix.
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Convex Integration

•We put
∂1f (x) =

√
ρ(x) eiθ(x) + ∂1f0(x)

where eiθ := cos θ u + sin θ v and θ : [0,1]n −→ R will be chosen latter.
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Convex Integration

• Since (u,v) are unit normal vectors, we have

∂1f (x) =
√
ρ(x) eiθ(x) + ∂1f0(x) =⇒ ‖∂1f (x)‖2 = ρ(x) + ‖∂1f0(x)‖2
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Convex Integration

• A possible choice for θ is

θ(x) = 2πNx1

where N ∈ N∗ is a free parameter (= the number of spirals) .
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C0-density

• For every x ∈ [0,1]n we set

f (x):=f0(0, x2, ..., xn) +

∫ x1

0

√
ρ(u, x2, ..., xn)ei2πNu + ∂1f0(u, x2, ..., xn) du

= f0(x) +
∫ x1

0

√
ρ(u, x2, ..., xn)ei2πNu du

• Since
∫ 1

0 ei2πudu = 0, we have (see the lemma below)

‖f − f0‖C0 = O(
1
N
) and ‖∂j f − ∂j f0‖C0 = O(

1
N
)

for every j ≥ 2.

• Thus, if N is large enough, f fulfills the C0-closeness condition ii).
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A useful lemma

Lemma.– Let f : [a,b]→ Eq be a C1 function and h : R→ R be a
continuous T -periodic function then∫ b

a
f (s)h(Ns)ds =

(∫ b

a
f (s)ds

)(
1
T

∫ T

0
h(s)ds

)
+ O

(
1
N

)

In particular, if h = 0, then∫ b

a
f (s)h(Ns)ds = O

(
1
N

)
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A useful lemma
Proof.– Let g = h − h. We have∫ b

a
f (s)

(
h(Ns)− h

)
ds =

∫ b

a
f (s)g(Ns)ds

=

[
f (s)

G(Ns)
N

]b

a
−
∫ b

a
f ′(s)

G(Ns)
N

ds

where G is the primitive of g given by G(t) =
∫ t

0 g(s)ds.

Since ∫ T

0
g(s)ds =

∫ T

0
(h(s)− h)ds = 0

the primitive G is T -periodic thus bounded. We conclude∫ b

a
f (s)

(
h(Ns)− h

)
ds = O

(
1
N

)
�
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The isometric condition
• By construction, for j = 1, we have

‖∂1f (x)‖2 = ‖∂1f0‖2 + ρ(x)

for every x ∈ [0,1]n. Thus, f fulfills Condition i) for the couple (∂1, ∂1).

• However, for the other couples (∂i , ∂j), (i , j) 6= (1,1), we have

〈∂i f (x), ∂j f (x)〉 = 〈∂i f0(x), ∂j f0(x)〉+ O(
1
N
)

= 〈∂i f0(x), ∂j f0(x)〉+ ρ(x)dx1(∂i)dx1(∂j) + O(
1
N
)

• Finally, we have solved condition i) approximately

f ∗〈., .〉 = f ∗0 〈., .〉+ ρdx1 ⊗ dx1 + O(
1
N
)

• Note that Nash also solved this condition approximately.
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Convex Integration Formula

Definition.– Let
• γ : [0,1]n × R/Z→ Rq be a family of loops

• f0 : [0,1]n → Rq a map

• N > 0

We define a new map F : [0,1]n → Rq by setting

F (x) := f0(0, x2, ..., xn) +

∫ x1

0
γ(u, x2, ..., xn;Nu)du

for every x ∈ [0,1]n. The map F is said to be obtained from f0 by
Convex Integration. It is denoted by F = CIγ(f0, ∂1,N).
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Convex Integration Formula
Example.– The map f previously built is obtained by convex
integration from f0 and with the following choice for γ :

γ(x , t) =
√
ρ(x)e2iπt + ∂1f0(x)

• Observe that ∫ 1

0
γ(x , t)dt = ∂1f0(x).

In average, the effect of γ and ∂1f0 are the same. This is the reason
why f is C0-close to f0.

Definition.– A family of loops γ : [0,1]n × R/Z→ Rq satisfies the
average condition with respect to f0 and in the direction of ∂1 if

∀x ∈ [0,1]n,
∫ 1

0
γ(x , t)dt = ∂1f0(x).
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Convex Integration Formula

Proposition.– If γ satisfies the average condition with respect to f0
and in the direction ∂1 then the following properties hold for
F = CIγ(f0, ∂1,N) :

(P1) ‖f0 − F‖C0 = O(1/N),

(P2) ‖∂i f0 − ∂iF‖C0 = O(1/N) for every i 6= 1,

(P3) ∀x ∈ [0,1]n, ∂1F (x) = γ(x ,Nx1).

Proof.– Postponed to the lecture devoted to the 1D Convex
Integration.
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Improving the Kuiper Formula

The step 2 problem (codimension 1).– We assume q = n + 1. Given
ε > 0 we want to construct f : [0,1]n → En+1 such that

i) ‖f ∗〈., .〉 − (f ∗0 〈., .〉+ ρdx1 ⊗ dx1)‖C0 < ε

ii) ‖f − f0‖C0 < ε

Solution.– We are going to build f by a convex integration from f0 in
the direction ∂1. Any such map will satisfy property (P2) :

‖∂i f − ∂i f0‖C0 = O(1/N) pour tout i 6= 1

which implies that

〈∂i f , ∂j f 〉 = 〈∂i f0, ∂j f0〉+ O(1/N)

for every i 6= 1, j 6= 1.
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Improving the Kuiper Formula
• It remains to solve (i) for the couples (1, i), i ∈ {1, ...,n}, i. e.{

〈∂1f , ∂i f 〉 = 〈∂1f0, ∂i f0〉+ O(1/N) for every i 6= 1

‖∂1f‖2 = ‖∂1f0‖2 + ρ+ O(1/N)

Or equivalently{
〈∂1f , ∂i f0〉 = 〈∂1f0, ∂i f0〉+ O(1/N) for every i 6= 1

‖∂1f‖2 = ‖∂1f0‖2 + ρ+ O(1/N)

since
‖∂i f − ∂i f0‖C0 = O(1/N) pour tout i 6= 1

• For every x ∈ [0,1]n, we put

Rx =

{
v ∈ Rn+1 |

〈v , ∂i f0(x)〉 = 〈∂1f0(x), ∂i f0(x)〉 for every i 6= 1

‖v‖2 = ‖∂1f0(x)‖2 + ρ(x)

}
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Improving the Kuiper Formula

Rx =

{
v ∈ Rn+1 |

〈v , ∂i f0(x)〉 = 〈∂1f0(x), ∂i f0(x)〉 for every i 6= 1

‖v‖2 = ‖∂1f0(x)‖2 + ρ(x)

}

• The set Rx is the intersection of a hypersphere Sn(R) of radius

R =
√
‖∂1f0(x)‖2 + ρ(x)

and of an affine 2-plane

W = {v ∈ Rn+1 | 〈v , ∂i f0(x)〉 = 〈∂1f0(x), ∂i f0(x)〉 for every i 6= 1}
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Improving the Kuiper Formula

• It is easily seen that Rx is a circle whose center is given by the
projection π(∂1f0(x)) of ∂1f0(x) on P = Span(∂2f0(x), ..., ∂nf0(x)) and
whose radius is

r(x) =
√
‖∂1f0(x)‖2 + ρ(x)− ‖π(∂1f0(x))‖2
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Improving the Kuiper Formula

•We have to choose a family of loops γ : [0,1]n × R/Z→ Rn+1 such
that

1) t 7→ γ(x , t) ∈ Rx

2)
∫ 1

0
γ(x , t)dt = ∂1f0(x)
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Improving the Kuiper Formula

•We set

t =
∂1f0 − π(∂1f0)
‖∂1f0 − π(∂1f0)‖

and n =
∂1f0 ∧ ... ∧ ∂nf0
‖∂1f0 ∧ ... ∧ ∂nf0‖
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Improving the Kuiper Formula

•We define γ to be

γ(x , t) = π(∂1f0(x)) + r(x)(cos θ t + sin θ n)

with θ(x , t) = α(x) cos2πt and α(x) is to be determined.
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Improving the Kuiper Formula

•We then have∫ 1

0
γ(x , t)dt = r(x)J0(α(x))t + π(∂1f0(x))

where J0 the Bessel function.

Vincent Borrelli L2 - From Nash-Kuiper to Gromov



The Bessel Function J0

J0(α) =
1
π

∫ π

0
cos(α sinu)du

Vincent Borrelli L2 - From Nash-Kuiper to Gromov



Improving the Kuiper Formula

•We then have∫ 1

0
γ(x , t)dt = r(x)J0(α(x))t + π(∂1f0(x))

where J0 the Bessel function.

• To ensure the average to be equal to ∂1f0, it is enough to choose

α(x) = J−1
0

(
‖∂1f0(x)− π(∂1f0(x))‖

r(x)

)

• Since rJ0(α)t + π(∂1f0) = ∂1f0, we can write

γ(x , t) = r(cos(α cos2πt)− J0(α)) t + r sin(α cos2πt) n + ∂1f0
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Improving the Kuiper Formula

•We then have∫ 1
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γ(x , t) = r(cos(α cos2πt)− J0(α)) t + r sin(α cos2πt) n + ∂1f0
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Improving the Kuiper Formula

To sum up.– The map f = CIγ(f0, ∂1,N) with

γ(x , t) = r(cos(α cos2πt)− J0(α)) t + r sin(α cos2πt) n + ∂1f0

and

r =
√
‖∂1f0‖2 + ρ− ‖π(∂1f0)‖2, α = J−1

0

(
‖∂1f0 − π(∂1f0)‖

r

)
satisfies the following properties

i) f ∗〈., .〉 = f ∗0 〈., .〉+ ρdx1 ⊗ dx1 + O(1/N)

ii) ‖f − f0‖C0 = O(1/N)

iii) ‖∂i f − ∂i f0‖C0 = O(1/N) for every i 6= 1.
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Improving the Kuiper Formula

Analytical expression.– The map f = CIγ(f0, ∂1,N) has the following
expression

f (x) = f0(0, x2, ..., xm) +

∫ x1

0
γ(u, x2, ..., xm;Nu)du

with

γ(x , t) = π(∂1f0(x))+r(x)(cos(α(x) cos2πt) t(x)+sin(α(x) cos2πt) n(x)).

• By comparison the Kuiper formula is :

f (x)=f0(x)−
3ρ(x)
16N

sin(2Nx1)t(x)+
√

3ρ(x)√
2N

sin
(
Nx1−

3ρ(x)
16

sin(2Nx1)
)
n(x)
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The outrageously simple idea

Mikhaïl Gromov

• The O(ρ2) default in the Kuiper process deserves to be corrected

• This can be done by combining a geometrical approach with a
simple integral formula.
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