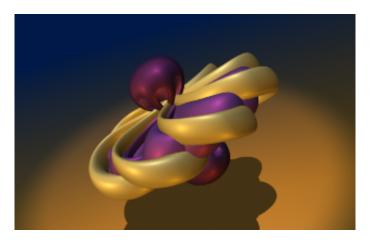
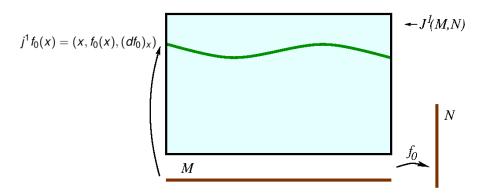
L4 - Gromov Theorem for Ample Relations

Vincent Borrelli

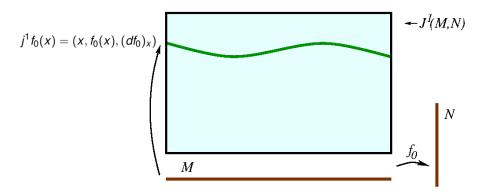
Institut Camille Jordan - Université Claude Bernard Lyon 1



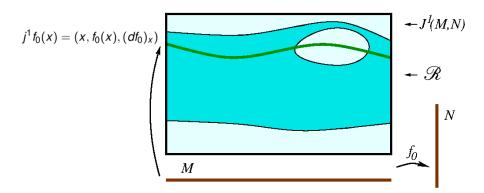


The 1-jet Space.-

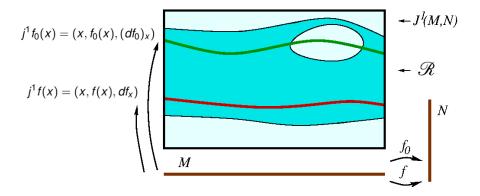
$$J^{1}(M,N) = \{(x,y,L) \mid x \in M, y \in N, L \in \mathcal{L}(T_{x}M, T_{y}N)\}.$$



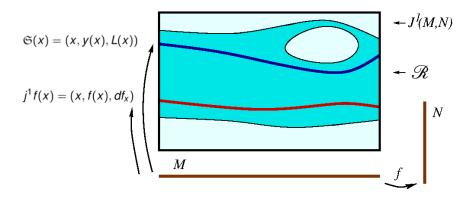
Holonomic section.— Any section $x \mapsto \mathfrak{S}(x) = (x, f_0(x), L(x))$ such that $L(x) = (df_0)_x$, i. e. $\mathfrak{S} = j^1 f_0$.



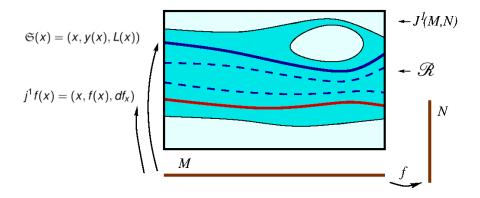
Differential Relation.— Any subset \mathcal{R} of $J^1(M, N)$.



Solution of \mathcal{R} .— Any map $f: M \longrightarrow N$ such that $j^1 f(M) \subset \mathcal{R}$. We denote by $Sol(\mathcal{R})$ the **space of solutions** of \mathcal{R} .



Formal Solution.— Any section $\mathfrak{S}: M \longrightarrow \mathcal{R}$. We denote by $\Gamma(\mathcal{R})$ the **space of formal solutions** of \mathcal{R} .



H-Principle.— A differential relation \mathcal{R} satisfies the *h*-principle (or homotopy principle) if every formal solution $\mathfrak{S}: M \longrightarrow \mathcal{R}$ is homotopic in $\Gamma(\mathcal{R})$ to the 1-jet of a solution of \mathcal{R} .

The natural inclusion

$$J: \quad \begin{array}{ccc} J: & C^1(M,N) & \longrightarrow & J^1(M,N) \\ f & \longmapsto & j^1f. \end{array}$$

induces a map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R}).$$

The natural inclusion

$$J: \quad C^{1}(M,N) \quad \longrightarrow \quad J^{1}(M,N)$$

$$f \qquad \longmapsto \qquad j^{1}f.$$

induces a map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R}).$$

• Note that a differential relation $\mathcal R$ satisfies the h-principle if and only if the map $\pi_0(J)$ is onto

$$\pi_0(J): \pi_0(\mathcal{S}ol(\mathcal{R})) \twoheadrightarrow \pi_0(\Gamma(\mathcal{R})).$$

The natural inclusion

$$J: \quad \begin{array}{ccc} J: & C^1(M,N) & \longrightarrow & J^1(M,N) \\ f & \longmapsto & j^1f. \end{array}$$

induces a map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R}).$$

The natural inclusion

$$J: \quad C^{1}(M,N) \quad \longrightarrow \quad J^{1}(M,N)$$

$$f \qquad \longmapsto \qquad j^{1}f.$$

induces a map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R}).$$

• Note that a differential relation $\mathcal R$ satisfies the h-principle if and only if the map $\pi_0(J)$ is onto

$$\pi_0(J): \pi_0(\mathcal{S}ol(\mathcal{R})) \twoheadrightarrow \pi_0(\Gamma(\mathcal{R})).$$

1-parametric h-**principle.**— A differential relation \mathcal{R} satisfies the **1-parametric** h-**principle** it satisfies the h-principle and if, for any family of sections $\mathfrak{S}_t \in \Gamma(\mathcal{R})$ such that $\mathfrak{S}_0 = j^1 f_0$ and $\mathfrak{S}_1 = j^1 f_1$, there exists a homotopy $H: [0,1]^2 \to \Gamma(\mathcal{R})$ such that :

$$H(0,t) = \mathfrak{S}_t, \ H(s,0) = \mathfrak{S}_0, \ H(s,1) = \mathfrak{S}_1, \ \text{et} \ H(1,t) = j^1 f_t.$$

1-parametric h-**principle.**— A differential relation \mathcal{R} satisfies the **1-parametric** h-**principle** it satisfies the h-principle and if, for any family of sections $\mathfrak{S}_t \in \Gamma(\mathcal{R})$ such that $\mathfrak{S}_0 = j^1 f_0$ and $\mathfrak{S}_1 = j^1 f_1$, there exists a homotopy $H: [0,1]^2 \to \Gamma(\mathcal{R})$ such that :

$$H(0,t) = \mathfrak{S}_t, \ H(s,0) = \mathfrak{S}_0, \ H(s,1) = \mathfrak{S}_1, \ \text{et} \ H(1,t) = j^1 f_t.$$

 \bullet Thus, a differential relation ${\cal R}$ satisfies the 1-parametric $\emph{h}\text{-principle}$ if and only if

$$\pi_0(J): \pi_0(\mathcal{S}ol(\mathcal{R})) \longrightarrow \pi_0(\Gamma(\mathcal{R})).$$

is a bijective map.

Definition.— Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a *homotopy equivalence* if there exists

$$g: Y \longrightarrow X$$

such that $f \circ g$ is homotopic to Id_Y and $g \circ f$ is homotopic to Id_X .

• In other words, *X* and *Y* are homotopically indistinguishable.

Definition.— Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a *homotopy equivalence* if there exists

$$g: Y \longrightarrow X$$

such that $f \circ g$ is homotopic to Id_Y and $g \circ f$ is homotopic to Id_X .

- In other words, *X* and *Y* are homotopically indistinguishable.
- Example : $X = \{*\}$ and $Y = \mathbb{R}^n$

Definition.— Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a *homotopy equivalence* if there exists

$$g: Y \longrightarrow X$$

such that $f \circ g$ is homotopic to Id_Y and $g \circ f$ is homotopic to Id_X .

- In other words, *X* and *Y* are homotopically indistinguishable.
- Example : $X = \{*\}$ and $Y = \mathbb{R}^n$
- Example : $X = \mathbb{S}^{n-1}$ and $Y = \mathbb{R}^n \setminus \{*\}$

Definition.— Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a *homotopy equivalence* if there exists

$$g: Y \longrightarrow X$$

such that $f \circ g$ is homotopic to Id_Y and $g \circ f$ is homotopic to Id_X .

- In other words, *X* and *Y* are homotopically indistinguishable.
- ullet Example : $X=\{*\}$ and $Y=\mathbb{R}^n$
- Example : $X = \mathbb{S}^{n-1}$ and $Y = \mathbb{R}^n \setminus \{*\}$
- Example : $X = \{x_1, x_2\}$ and $\mathbb{R}^n \setminus H$ where H is a hyperplane.

Definition.— A map $f: X \longrightarrow Y$ is a *weak homotopy equivalence* if the map

$$\pi_0(f):\pi_0(X)\to\pi_0(Y)$$

is bijective and if, for every $k \in \mathbb{N}^*$ and for every $x \in X$, the map f induces an isomorphism

$$\pi_k(f): \pi_k(X, X) \simeq \pi_k(Y, f(X)).$$

• If X is path-connected then first condition is automatic, and it suffices to state the second condition for a single point x in X.

Definition.— A map $f: X \longrightarrow Y$ is a *weak homotopy equivalence* if the map

$$\pi_0(f):\pi_0(X)\to\pi_0(Y)$$

is bijective and if, for every $k \in \mathbb{N}^*$ and for every $x \in X$, the map f induces an isomorphism

$$\pi_k(f): \pi_k(X, X) \simeq \pi_k(Y, f(X)).$$

- If X is path-connected then first condition is automatic, and it suffices to state the second condition for a single point x in X.
- If $f: X \mapsto Y$ is a homotopy equivalence then it is a weak homotopy equivalence.

Parametric h-principle.— A differential relation \mathcal{R} satisfies the parametric h-principle if the map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$$

is a weak homotopy equivalence.

Parametric h-principle.— A differential relation \mathcal{R} satisfies the parametric h-principle if the map

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$$

is a weak homotopy equivalence.

• It turns out that several differential relations arising from differential geometry satisfy the parametric *h*-principle.

A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).— If f is a weak homotopy equivalence between X and Y CW complexes then f is a homotopy equivalence.

A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).— If f is a weak homotopy equivalence between X and Y CW complexes then f is a homotopy equivalence.

- An infinite dimensional version of the Whitehead Theorem states that any weak homotopy equivalence between two Fréchet metrizable manifolds is a homotopy equivalence.
- Recall that a Fréchet space is a complete topological vector space which is separated (=is a Hausdorff space) and whose topology is induced by a countable family of seminormes $|.|_n$. Such a space is metrizable by setting $d(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x-y|_n}{1+|x-y|_n}$.
- The spaces $Sol(\mathcal{R})$ and $\Gamma(\mathcal{R})$ are Fréchet metrizable. Consequently, the parametric h-principle for \mathcal{R} implies that $J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$ is a **homotopy equivalence**.

• The Whitney-Graustein Theorem (1937) shows that the relation

$$\mathcal{R} = \{(x, y, v) \in \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2 \mid v \neq (0, 0)\}$$

satisfies the 1-parametric h-principle.

• The Whitney-Graustein Theorem (1937) shows that the relation

$$\mathcal{R} = \{(x, y, v) \in \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2 \mid v \neq (0, 0)\}$$

satisfies the 1-parametric h-principle.

• The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

• The Whitney-Graustein Theorem (1937) shows that the relation

$$\mathcal{R} = \{(x, y, v) \in \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2 \mid v \neq (0, 0)\}$$

satisfies the 1-parametric h-principle.

• The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

Definition.– Let M^m and N^n be two manifolds. A map $f: M \longrightarrow N$ is an **immersion** if for all $p \in M$, the differential $df_p: T_pM \to T_{f(p)}N$ is of maximal rank.

• The Whitney-Graustein Theorem (1937) shows that the relation

$$\mathcal{R} = \{(x, y, v) \in \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2 \mid v \neq (0, 0)\}$$

satisfies the 1-parametric h-principle.

• The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

Definition.— Let M^m and N^n be two manifolds. A map $f: M \longrightarrow N$ is an **immersion** if for all $p \in M$, the differential $df_p: T_pM \to T_{f(p)}N$ is of maximal rank.

• If f is an immersion then $df_p(T_pM)$ is a n-dimensional subspace of $T_{f(p)}N$. The image f(M) has no crease or tip.

- The space of immersions from M to \mathbb{R}^n is denoted by $I(M, \mathbb{R}^n)$.
- Let $(K_n)_{n\in\mathbb{N}}$ be a countable family of compact sets covering M. For every $n\in\mathbb{N}$, we define

$$d_n(f,g) := \sup_{x \in K_n} \|f(x) - g(x)\| + \sup_{x \in K_n} \|df_x - dg_x\|$$

and we endow $I(M, \mathbb{R}^n)$ with the distance

$$d(f,g) := \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{d_n(f,g)}{1 + d_n(f,g)}.$$

Smale Theorem on Sphere Immersions

Stephen Smale

Smale Theorem (1957). – Let m < n. The relation

$$\mathcal{R} = \{(x, y, L) \in J^1(\mathbb{S}^m, \mathbb{R}^n) \mid rank \ L = m\}$$

of immersions of \mathbb{S}^m into \mathbb{R}^n satisfies the 1-parametric h-principle.

Smale Theorem on Sphere Immersions

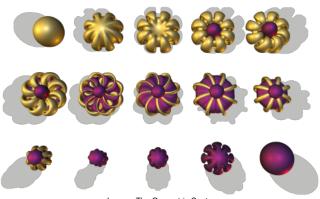


Image : The Geometric Center

Corollary (Smale 1957).— The space $I(\mathbb{S}^2, \mathbb{R}^3)$ is path-connected. In particular, it is possible to realize an eversion of the 2-sphere among immersions.

Proof of the Sphere Eversion

Proof of the corollary.— Since \mathcal{R} satisfies the 1-parametric h-principle, the map

$$J:\pi_0(I(\mathbb{S}^2,\mathbb{R}^3))\mapsto \pi_0(\Gamma(\mathcal{R}))$$

is a 1-to-1. The proof of the corollary thus reduces to the computation of $\pi_0(\Gamma(\mathcal{R}))$ with

$$\mathcal{R} = \{(x, y, L) \in J^1(\mathbb{S}^2, \mathbb{R}^3) \mid rank \ L = 2\}$$

Proof of the Sphere Eversion

Proof of the corollary.— Since \mathcal{R} satisfies the 1-parametric h-principle, the map

$$J:\pi_0(I(\mathbb{S}^2,\mathbb{R}^3))\mapsto\pi_0(\Gamma(\mathcal{R}))$$

is a 1-to-1. The proof of the corollary thus reduces to the computation of $\pi_0(\Gamma(\mathcal{R}))$ with

$$\mathcal{R} = \{(x, y, L) \in J^1(\mathbb{S}^2, \mathbb{R}^3) \mid rank \ L = 2\}$$

A homotopic computation shows that

$$\pi_0(\Gamma(\mathcal{R})) = \pi_2(GL_+(\mathbb{R}^3)).$$

Proof of the Sphere Eversion

Proof of the corollary.— Since $\mathcal R$ satisfies the 1-parametric h-principle, the map

$$J:\pi_0(I(\mathbb{S}^2,\mathbb{R}^3))\mapsto\pi_0(\Gamma(\mathcal{R}))$$

is a 1-to-1. The proof of the corollary thus reduces to the computation of $\pi_0(\Gamma(\mathcal{R}))$ with

$$\mathcal{R} = \{(x, y, L) \in J^1(\mathbb{S}^2, \mathbb{R}^3) \mid rank \ L = 2\}$$

• A homotopic computation shows that

$$\pi_0(\Gamma(\mathcal{R})) = \pi_2(GL_+(\mathbb{R}^3)).$$

• It turns out that $\pi_2(GL_+(\mathbb{R}^3)) = \{0\}.$

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). – Let M^m and N^n be two manifolds with m < n. The relation of immersions of M^m into N^n :

$$\mathcal{R} = \{(x, y, L) \in J^1(M^m, N^n) \mid rank \ L = m\}$$

satisfies the parametric h-principle. Precisely, the map

$$J: I(M^m, N^n) \longrightarrow \Gamma(\mathcal{R})$$

$$f \longmapsto j^1 f$$

is a weak homotopy equivalence.

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). – The theorem still holds if m = n provided that M^m is open.

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). – The theorem still holds if m = n provided that M^m is open.

 Recall that an open manifold is a manifold without boundary and with no compact component.

Exercice: Immersions of the 2-Torus

Exercice. Apply the Hirsch Theorem to show that Card $\pi_0(I(\mathbb{T}^2, \mathbb{R}^3)) = 4$.

Exercice: Immersions of the 2-Torus

Exercice. Apply the Hirsch Theorem to show that Card $\pi_0(I(\mathbb{T}^2, \mathbb{R}^3)) = 4$.

• We recall that $\pi_1(GL_+(\mathbb{R}^3)) = \mathbb{Z}/2\mathbb{Z}$ and we admit that the space $C^0(\mathbb{T}^2, GL_+(\mathbb{R}^3))$ has four components. Precisely,

$$\begin{array}{cccc} \Phi: & \pi_0(C^0(\mathbb{T}^2,GL_+(\mathbb{R}^3))) & \longrightarrow & \pi_1(GL_+(\mathbb{R}^3)) \times \pi_1(GL_+(\mathbb{R}^3)) \\ & [f] & \longmapsto & [f_{|\mathbb{S}^1 \times \{*\}}] \times [f_{|\{*\} \times \mathbb{S}^1}] \end{array}$$

is a bijective map.

Isometric Immersions

Mikhail Gromov

Theorem (Nash 1954 - Kuiper 1955 - Gromov 1986). – Let (M^m, g) and (N^n, h) be two Riemannian manifold with m < n. The relation of isometric immersions of M^m into N^n :

$$\mathcal{R} = \{(x, y, L) \in J^1(M^m, N^n) \mid L^*h = g\}$$

satisfies the parametric h-principle. The weak homotopy equivalence is given by the map $J: f \longmapsto j^1 f$.

Isometric Immersions

Corollary (Gromov 1986). – There exists a C^1 isometric eversion of the 2-sphere.

More examples of relations satisfying the *h*-principle...

... with Jean-Claude Sikorav in the second part of this course.

The *h*-Principe for Ample Relations

ullet Here is a theorem of Gromov ensuring the presence of a h-principle provided ${\mathcal R}$ satisfies some topological and convexity properties :

The *h*-Principe for Ample Relations

ullet Here is a theorem of Gromov ensuring the presence of a h-principle provided ${\cal R}$ satisfies some topological and convexity properties :

Theorem (Gromov 69-73). – Let $\mathcal{R} \subset J^1(M,N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric h-principle i. e.

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$$

is a weak homotopy equivalence.

The *h*-Principe for Ample Relations

ullet Here is a theorem of Gromov ensuring the presence of a h-principle provided ${\cal R}$ satisfies some topological and convexity properties :

Theorem (Gromov 69-73). – Let $\mathcal{R} \subset J^1(M, N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric h-principle i. e.

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$$

is a weak homotopy equivalence.

• It remains to define what is an **ample** differential relation and to give a (sketch of the) proof of this theorem.

Definition.— A subset $A \subset \mathbb{R}^n$ is *ample* if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is \mathbb{R}^n i. e. : $IntConv(A, a) = \mathbb{R}^n$ (in particular $A = \emptyset$ is ample).

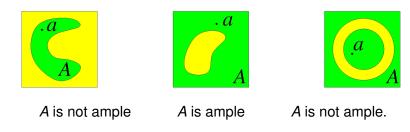
Definition.— A subset $A \subset \mathbb{R}^n$ is *ample* if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is \mathbb{R}^n i. e. : $IntConv(A, a) = \mathbb{R}^n$ (in particular $A = \emptyset$ is ample).

A is not ample

A is ample

A is not ample.

Definition.— A subset $A \subset \mathbb{R}^n$ is *ample* if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is \mathbb{R}^n i. e. : $IntConv(A, a) = \mathbb{R}^n$ (in particular $A = \emptyset$ is ample).



Example.— The complement of a linear subspace $F \subset \mathbb{R}^n$ is ample if and only if Codim $F \geq 2$.

Definition.— Let $E = P \times \mathbb{R}^n \xrightarrow{\pi} P$ be a fiber bundle, a subset $\mathcal{R} \subset E$ is said to be *ample* if, for every $p \in P$, $\mathcal{R}_p := \pi^{-1}(p) \cap \mathcal{R}$ is ample in \mathbb{R}^n .

Remark.– If $\mathcal{R} \subset E$ is ample and $z : P \longrightarrow E$ is a section, then, for every $p \in P$, we have $z(p) \in Conv(\mathcal{R}_p, \sigma(p))$.

• Locally, we identify $J^1(M, N)$ with

$$\begin{array}{lcl} J^{1}(\mathcal{U},\mathcal{V}) & = & \mathcal{U} \times \mathcal{V} \times \mathcal{L}(\mathbb{R}^{m},\mathbb{R}^{n}) = \mathcal{U} \times \mathcal{V} \times \prod_{i=1}^{m} \mathbb{R}^{n}. \\ & = & \{(x,y,v_{1},...,v_{m})\} \end{array}$$

where \mathcal{U} and \mathcal{V} are charts of M and N.

• We set :

$$J^1(\mathcal{U},\mathcal{V})^{\perp} := \{(x,y,v_1,...,v_{m-1})\}.$$

• We have

$$\begin{array}{ccc} \mathcal{R}_{\mathcal{U},\mathcal{V}} & \longrightarrow & J^1(\mathcal{U},\mathcal{V}) \\ & & \downarrow \rho^{\perp} \\ & & J^1(\mathcal{U},\mathcal{V})^{\perp}. \end{array}$$

• Let $z \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$, we set

$$\mathcal{R}_z^\perp = (\rho^\perp)^{-1}(z) \cap \mathcal{R}_{\mathcal{U},\mathcal{V}}.$$

 $\bullet \mathcal{R}^{\perp}$ is a differential relation of the bundle

$$J^1(\mathcal{U},\mathcal{V}) \xrightarrow{\rho^{\perp}} J^1(\mathcal{U},\mathcal{V})^{\perp}.$$

Definition. – A differential relation $\mathcal{R} \subset J^1(M,N)$ is *ample* if for every local identification $J^1(\mathcal{U},\mathcal{V})$ and for every $z \in J^1(\mathcal{U},\mathcal{V})^\perp$, the space $\mathcal{R}_{\mathcal{Z}}^\perp$ is ample in $(p^\perp)^{-1}(z) \simeq \mathbb{R}^n$.

Proposition. – The differential relation \mathcal{R} of immersions of M^m into N^n is ample if n > m.

Proposition. – The differential relation \mathcal{R} of immersions of M^m into N^n is ample if n > m.

Proof.— Let $J^1(\mathcal{U}, \mathcal{V})$ be any local identification and let $z = (x, y, v_1, ..., v_{m-1}) \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$. We have

 $(p^\perp)^{-1}(z)\cap\mathcal{R}\simeq\{v_m\in\mathbb{R}^n\mid\{v_1,...,v_m\}\text{ are linearly independent in }\mathbb{R}^n\}$

Proposition. – The differential relation \mathcal{R} of immersions of M^m into N^n is ample if n > m.

Proof.— Let $J^1(\mathcal{U}, \mathcal{V})$ be any local identification and let $z = (x, y, v_1, ..., v_{m-1}) \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$. We have

$$(\rho^\perp)^{-1}(z)\cap\mathcal{R}\simeq\{v_m\in\mathbb{R}^n\mid\{v_1,...,v_m\}\text{ are linearly independent in }\mathbb{R}^n\}$$

• If $\{v_1, ..., v_{m-1}\}$ are linearly independent then

$$\begin{array}{lll} \textit{v}_{\textit{m}} \in (\textit{p}^{\perp})^{-1}(\textit{z}) \text{ lies inside } \mathcal{R}_{\mathcal{U},\mathcal{V}} & \iff & \textit{v}_{\textit{m}} \not \in \textit{Span}(\textit{v}_{1},...,\textit{v}_{m-1}) =: \Pi \\ & \iff & \textit{v}_{\textit{m}} \in \mathbb{R}^{n} \setminus \Pi. \end{array}$$

Therefore $\mathcal{R}_z^{\perp}=\mathcal{R}_{\mathcal{U},\mathcal{V}}\cap(p^{\perp})^{-1}(z)=\mathbb{R}^n\setminus\Pi.$ Since the codimension of Π is $n-(m-1)\geq 2$, it ensues that \mathcal{R}_p^{\perp} is ample.

Proposition. – The differential relation \mathcal{R} of immersions of M^m into N^n is ample if n > m.

Proof.— Let $J^1(\mathcal{U}, \mathcal{V})$ be any local identification and let $z = (x, y, v_1, ..., v_{m-1}) \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$. We have

$$(\rho^\perp)^{-1}(z)\cap\mathcal{R}\simeq\{v_m\in\mathbb{R}^n\mid\{v_1,...,v_m\}\text{ are linearly independent in }\mathbb{R}^n\}$$

• If $\{v_1, ..., v_{m-1}\}$ are linearly independent then

$$v_m \in (p^{\perp})^{-1}(z)$$
 lies inside $\mathcal{R}_{\mathcal{U},\mathcal{V}} \iff v_m \not\in \textit{Span}(v_1,...,v_{m-1}) =: \Pi \iff v_m \in \mathbb{R}^n \setminus \Pi.$

Therefore $\mathcal{R}_{z}^{\perp}=\mathcal{R}_{\mathcal{U},\mathcal{V}}\cap(p^{\perp})^{-1}(z)=\mathbb{R}^{n}\setminus\Pi.$ Since the codimension of Π is $n-(m-1)\geq 2$, it ensues that \mathcal{R}_{p}^{\perp} is ample.

• If $\{v_1,...,v_{m-1}\}$ are linearly dependent then $\mathcal{R}_p^\perp=\emptyset$ and thus \mathcal{R}_p^\perp is ample.

• We first work locally over a cubic chart $C = [0, 1]^m$ of M and an open $\mathcal{V} \approx \mathbb{R}^n$ of N.

- We first work locally over a cubic chart $C = [0, 1]^m$ of M and an open $\mathcal{V} \approx \mathbb{R}^n$ of N.
- ullet Let $\mathfrak{S}\in\Gamma(\mathcal{R}_{\mathcal{C},\mathbb{R}^n})$ be a section :

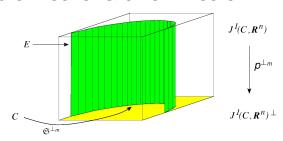
$$\mathfrak{S}: \boldsymbol{c} \longmapsto (\boldsymbol{c}, f_0(\boldsymbol{c}), v_1(\boldsymbol{c}), ..., v_m(\boldsymbol{c})) \in \mathcal{R}_{\boldsymbol{C}, \mathbb{R}^n}.$$

and let p^{\perp_m} be the projection

$$(c, y, v_1, ..., v_m) \longmapsto (c, y, v_1, ..., v_{m-1})$$

and

$$\mathcal{R}_{z}^{\perp_{m}}:=\mathcal{R}_{\mathcal{C},\mathbb{R}^{n}}\cap(p^{\perp_{m}})^{-1}(z)$$



• We set

$$\mathfrak{S}^{\perp_m}: egin{array}{ccc} C & \longrightarrow & J^1(C,\mathbb{R}^n)^{\perp_m} \ c & \longmapsto & (c,f_0(c),v_1(c),...,v_{m-1}(c)) \end{array}$$

and we denote by E the pull-back bundle:

$$\begin{array}{ccc} E & \longrightarrow & J^1(C,\mathbb{R}^n) \\ \pi \downarrow & & \downarrow p^{\perp_m} \\ C & \stackrel{\mathfrak{S}^{\perp_m}}{\longrightarrow} & J^1(C,\mathbb{R}^n)^{\perp_m} \end{array}$$

- Let $\mathcal{S}^m \subset E$ be the pull-back of the relation \mathcal{R}^{\perp_m} . The relation \mathcal{S}^m is obviously open and ample and $v_m : C \longrightarrow \mathbb{R}^n$ provides a section of \mathcal{S}^m over C.
- We use the parametric version of the Fundamental Lemma with $C := [0,1]^m$ as parameter space and with \mathcal{S}^m as differential relation. There exists $\gamma : C \times [0,1] \longrightarrow \mathcal{S}^m$ such that

$$\gamma(.,0) = \gamma(.,1) = v_m \in \Gamma(\mathcal{S}^m)$$

and

$$\forall c \in C, \quad \gamma(c,.) \in Concat(\Omega^{BF}_{\nu_m(c)}(\mathcal{S}_c^m))$$

and

$$\forall c \in C, \ \int_0^1 \gamma(c,s) ds = \frac{\partial f_0}{\partial c_m}(c).$$

We set

$$F_1(c) := f_0(c_1,...,c_{m-1},0) + \int_0^{c_m} \gamma(c_1,...,c_{m-1},s,N_1s) ds.$$

• We set

$$F_1(c) := f_0(c_1,...,c_{m-1},0) + \int_0^{c_m} \gamma(c_1,...,c_{m-1},s,N_1s) ds.$$

• We then have

$$||F_1 - f_0|| = O(\frac{1}{N_1})$$

and even more,

$$||F_1 - f_0||_{C^1,\widehat{m}} = O(\frac{1}{N_1})$$

where

$$||f||_{C^{1,\widehat{m}}} = \max(||f||_{C^0}, ||\frac{\partial f}{\partial c_1}||_{C^0}, ..., ||\frac{\partial f}{\partial c_{m-1}}||_{C^0})$$

is the C^1 norm without the $\|\frac{\partial f}{\partial c_m}\|_{C^0}$ term.

• By the very definition of S^m , the section

$$c \mapsto (c, f_0(c), v_1(c), ..., v_{m-1}(c), \frac{\partial F_1}{\partial c_m}(c))$$

lies inside the relation $\mathcal{R}_{C,\mathbb{R}^n}$.

• By the very definition of S^m , the section

$$c \mapsto (c, f_0(c), v_1(c), ..., v_{m-1}(c), \frac{\partial F_1}{\partial c_m}(c))$$

lies inside the relation $\mathcal{R}_{C,\mathbb{R}^n}$.

• Since $\mathcal{R}_{C,\mathbb{R}^n}$ is open and F_1 is C^0 -close to f_0 , even if it means to increase N_1 , we can assume that

$$c \mapsto (c, F_1(c), v_1(c), ..., v_{m-1}(c), \frac{\partial F_1}{\partial c_m}(c))$$

is a section of $\mathcal{R}_{C,\mathbb{R}^n}$.

ullet We then repeat the same process with respect to the variable c_{m-1} to obtain

$$c\mapsto (c,F_1(c),v_1(c),...,v_{m-2}(c),\frac{\partial F_2}{\partial c_{m-1}}(c),\frac{\partial F_1}{\partial c_m}(c))\in \mathcal{R}_{C,\mathbb{R}^n}.$$

ullet We then repeat the same process with respect to the variable c_{m-1} to obtain

$$c\mapsto (c,F_1(c),v_1(c),...,v_{m-2}(c),\frac{\partial F_2}{\partial c_{m-1}}(c),\frac{\partial F_1}{\partial c_m}(c))\in \mathcal{R}_{C,\mathbb{R}^n}.$$

• Noticing that $\mathcal{R}_{C,\mathbb{R}^n}$ is open and that F_2 and F_1 are $C^{1,\widehat{c_{m-1}}}$ -close, we have if N_2 is large enough :

$$c\mapsto (c,F_2(c),v_1(c),...,v_{m-2}(c),\frac{\partial F_2}{\partial c_{m-1}}(c),\frac{\partial F_2}{\partial c_m}(c))\in\mathcal{R}_{C,\mathbb{R}^n}.$$

ullet We then repeat the same process with respect to the variable c_{m-1} to obtain

$$c\mapsto (c,F_1(c),v_1(c),...,v_{m-2}(c),\frac{\partial F_2}{\partial c_{m-1}}(c),\frac{\partial F_1}{\partial c_m}(c))\in \mathcal{R}_{\mathcal{C},\mathbb{R}^n}.$$

• Noticing that $\mathcal{R}_{C,\mathbb{R}^n}$ is open and that F_2 and F_1 are $C^{1,\widehat{c_{m-1}}}$ -close, we have if N_2 is large enough :

$$c\mapsto (c,F_2(c),v_1(c),...,v_{m-2}(c),\frac{\partial F_2}{\partial c_{m-1}}(c),\frac{\partial F_2}{\partial c_m}(c))\in\mathcal{R}_{C,\mathbb{R}^n}.$$

• Iterating over the other variables $v_1, ..., v_{m-2}$ we eventually obtain a holonomic section over C. Moreover $F := F_m$ and f_0 are C^0 -close:

$$\|F - f_0\|_{C^0} = O(\frac{1}{N_1} + ... + \frac{1}{N_m}).$$

• In order to build a solution globally defined over M^m , we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.

- In order to build a solution globally defined over M^m , we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.
- The real problem is the matching the solutions together. Precisely if C is an open cube, K a compact subset of C and f_0 a solution over an open neighborhood Op(K) of K, the point is to construct a solution f such that $f = f_0$ on some $Op_2(K) \subset Op(K)$.

- In order to build a solution globally defined over M^m , we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.
- The real problem is the matching the solutions together. Precisely if C is an open cube, K a compact subset of C and f_0 a solution over an open neighborhood Op(K) of K, the point is to construct a solution f such that $f = f_0$ on some $Op_2(K) \subset Op(K)$.
- ullet To achieve this goal, we need to modify every convex integrations defining $F_1,...,F_m$. Let $\lambda_1:C\longrightarrow [0,1]$ be a compactly supported C^∞ function such that

$$\lambda_1(c) = \left\{ egin{array}{ll} 1 & ext{if } c \in Op_2(K) \ 0 & ext{if } c \in C \setminus Op_1(K). \end{array}
ight.$$

where $Op_2(K) \subset Op_1(K) \subset Op(K)$.

• Let F_1 be the preceding solution over C obtained from the section

$$\mathfrak{S}: \boldsymbol{c} \longmapsto (\boldsymbol{c}, f_0(\boldsymbol{c}), v_1(\boldsymbol{c}), ..., v_m(\boldsymbol{c})) \in \mathcal{R}_{\boldsymbol{C}, \mathbb{R}^n}.$$

We set

$$f_1 := F_1 + \lambda_1 (f_0 - F_1).$$

Let F₁ be the preceding solution over C obtained from the section

$$\mathfrak{S}: \boldsymbol{c} \longmapsto (\boldsymbol{c}, f_0(\boldsymbol{c}), v_1(\boldsymbol{c}), ..., v_m(\boldsymbol{c})) \in \mathcal{R}_{\boldsymbol{C}, \mathbb{R}^n}.$$

We set

$$f_1 := F_1 + \lambda_1 (f_0 - F_1).$$

• Let $j \in \{1, ..., m\}$, we have

$$\frac{\partial f_1}{\partial c_j} = \frac{\partial F_1}{\partial c_j} + \lambda_1 \cdot \left(\frac{\partial f_0}{\partial c_j} - \frac{\partial F_1}{\partial c_j} \right) + \frac{\partial \lambda_1}{\partial c_j} \cdot (f_0 - F_1).$$

Since λ_1 is compactly supported, the $\frac{\partial \lambda_1}{\partial c_j}$'s are bounded for every $j \in \{1, ..., m\}$.

• Let $j \in \{1, ..., m-1\}$. Since F_1 and f_0 are (C^1, \widehat{m}) -close, we have

$$\left\|\frac{\partial f_1}{\partial c_j} - \frac{\partial F_1}{\partial c_j}\right\|_{\mathcal{C}^0} = O(\frac{1}{N_1}).$$

• Let $j \in \{1, ..., m-1\}$. Since F_1 and f_0 are (C^1, \widehat{m}) -close, we have

$$\left\|\frac{\partial f_1}{\partial c_j} - \frac{\partial F_1}{\partial c_j}\right\|_{\mathcal{C}^0} = O(\frac{1}{N_1}).$$

• Let j = m. In general,

$$\frac{\partial f_1}{\partial c_m} - \frac{\partial F_1}{\partial c_m}$$

is not small and therefore

$$c \longmapsto \left(c, \frac{\partial f_1}{\partial c_m}(c)\right)$$

should not be a section of S^m .

• Since λ_1 is 0 over $C \setminus Op_1(K)$, for every $c \in C \setminus Op_1(K)$, we have $F_1 = f_1$ and thus

$$\frac{\partial f_1}{\partial c_m}(c) - \frac{\partial F_1}{\partial c_m}(c) = 0.$$

• Since λ_1 is 0 over $C \setminus Op_1(K)$, for every $c \in C \setminus Op_1(K)$, we have $F_1 = f_1$ and thus

$$\frac{\partial f_1}{\partial c_m}(c) - \frac{\partial F_1}{\partial c_m}(c) = 0.$$

• Over Op(K), we admit that it is possible to choose the family of loops $\gamma: C \times [0,1] \to \mathcal{S}^m$ such that, for all $c \in Op_1(K)$, we have

$$\gamma(\mathbf{c},.) \equiv \frac{\partial f_0}{\partial \mathbf{c}_m}(\mathbf{c}).$$

• Since λ_1 is 0 over $C \setminus Op_1(K)$, for every $c \in C \setminus Op_1(K)$, we have $F_1 = f_1$ and thus

$$\frac{\partial f_1}{\partial c_m}(c) - \frac{\partial F_1}{\partial c_m}(c) = 0.$$

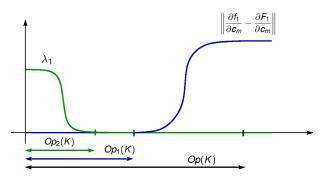
• Over Op(K), we admit that it is possible to choose the family of loops $\gamma: C \times [0,1] \to \mathcal{S}^m$ such that, for all $c \in Op_1(K)$, we have

$$\gamma(\boldsymbol{c},.) \equiv \frac{\partial f_0}{\partial \boldsymbol{c}_m}(\boldsymbol{c}).$$

• Thus, for all $c \in Op_1(K)$ we have

$$\frac{\partial F_1}{\partial c_m}(c) = \gamma(c_1, ..., c_{m-1}, c_m, N_1 c_m) = \frac{\partial f_0}{\partial c_m}(c)$$

and the difference $\frac{\partial f_0}{\partial c_m} - \frac{\partial F_1}{\partial c_m}$ vanishes over $Op_1(K)$.



It follows that

$$\lambda_1(c) \left(\frac{\partial f_1}{\partial c_m}(c) - \frac{\partial F_1}{\partial c_m}(c) \right)$$

vanishes for all $c \in Op(K)$ and thus

$$\mathfrak{S}_1: \boldsymbol{c} \longmapsto (\boldsymbol{c}, f_1(\boldsymbol{c}), v_1(\boldsymbol{c}), ..., v_{m-1}(\boldsymbol{c}), \frac{\partial f_1}{\partial \boldsymbol{c}_m}(\boldsymbol{c})) \in \mathcal{R}_{C,\mathbb{R}^n}.$$

Morris Hirsch

