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What is the h-principle ?

~J(MN)
000 = (x 0. (doh) e |
N
B
M o

The 1-jet Space.—

JYM,N) = {(x,y,L) | x € M,y € N,L € L(T(M, T,N)}.
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What is the h-principle ?

~J(MN)
j1 fo(x) = (x, fo(x). (dfo)x) \_/'\
N
5
M i

Holonomic section.— Any section x — &(x) = (x, fo(x), L(x)) such
that L(X) = (dfo)x, i.e. & :j1 fo-
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What is the h-principle ?

~J(MN)
J1fa(x) = (x. fo(x). (o))

M .

Differential Relation.— Any subset R of J'(M, N).
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What is the h-principle ?

~JiMN)
J'io(x) = (x, fy(x). (dfo)x)

-~ R
J'H(x) = (x. f(x), df)

Solution of R.— Any map f: M —; N such that j'f(M) c R. We
denote by Sol(R) the space of solutions of R.
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What is the h-principle ?

~JiMN)
&(x) = (x, y(x), L(x))

JH(x) = (x, f(x), df)

Formal Solution.— Any section & : M — R. We denote by I'(R) the
space of formal solutions of R.
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What is the h-principle ?

~JiMN)
S(x) = (x, y(x), L(x))

-~ R
JH(x) = (x.f(x), df)

N
M
i
S

H-Principle.— A differential relation R satisfies the h-principle (or
homotopy principle) if every formal solution & : M — R is
homotopic in I'(R) to the 1-jet of a solution of R.
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What is the h-principle ?

e The natural inclusion

J: CYM,N) — J'(M,N)
f — j'f

induces a map
J:Sol(R) — T(R).
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What is the h-principle ?

e The natural inclusion

J: CYM,N) — J'(M,N)
f — j'f

induces a map
J:Sol(R) — T(R).

¢ Note that a differential relation R satisfies the h-principle if and only if
the map mo(J) is onto

mo(J) : mo(S0l(R)) — mo(T(R))-
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What is the h-principle ?

e The natural inclusion

J: CYM,N) — J'(M,N)
f — j'f

induces a map
J:Sol(R) — T(R).
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What is the h-principle ?

e The natural inclusion

J: CYM,N) — J'(M,N)
f — j'f

induces a map
J:Sol(R) — T(R).

¢ Note that a differential relation R satisfies the h-principle if and only if
the map mo(J) is onto

mo(J) : mo(S0l(R)) — mo(T(R))-
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H-principles

1-parametric h-principle.— A differential relation R satisfies the
1-parametric h-principle it satisfies the h-principle and if, for any
family of sections &; € I'(R) such that &y = j'f and &4 = j'f;, there
exists a homotopy H : [0, 1]> — I'(R) such that :

H(0,t) = &¢, H(s,0) = &g, H(s,1) = &1, et H(1,t) = j'f,.
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H-principles

1-parametric h-principle.— A differential relation R satisfies the
1-parametric h-principle it satisfies the h-principle and if, for any
family of sections &; € I'(R) such that &y = j'f and &4 = j'f;, there
exists a homotopy H : [0, 1]> — I'(R) such that :

H(0,t) = &¢, H(s,0) = &g, H(s,1) = &1, et H(1,t) = j'f,.

e Thus, a differential relation R satisfies the 1-parametric h-principle if
and only if
mo(J) : mo(S0l(R)) — mo(M(R)).

is a bijective map.
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Homotopy Equivalence

Definition.— Let X and Y be two topological spaces. A map
f: X — Y is a homotopy equivalence if there exists

g:Y—X
such that f o g is homotopic to Idy and g o f is homotopic to /dy.

¢ In other words, X and Y are homotopically indistinguishable.
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Homotopy Equivalence

Definition.— Let X and Y be two topological spaces. A map
f: X — Y is a homotopy equivalence if there exists

g:Y—X
such that f o g is homotopic to /dy and g o f is homotopic to /dx.
¢ In other words, X and Y are homotopically indistinguishable.

e Example : X = {x}and Y =R"
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Homotopy Equivalence

Definition.— Let X and Y be two topological spaces. A map
f: X — Y is a homotopy equivalence if there exists

g:Y—X
such that f o g is homotopic to /dy and g o f is homotopic to /dx.
¢ In other words, X and Y are homotopically indistinguishable.
e Example : X = {x}and Y =R"

e Example : X =S"'and Y =R\ {x}
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Homotopy Equivalence

Definition.— Let X and Y be two topological spaces. A map

f: X — Y is a homotopy equivalence if there exists
g:Y—X

such that f o g is homotopic to /dy and g o f is homotopic to /dx.

¢ In other words, X and Y are homotopically indistinguishable.

e Example : X = {x}and Y =R"

e Example : X =S""and Y =R"\ {x}

e Example : X = {xy,x2} and R" \ H where H is a hyperplane.
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H-principles

Definition.— Amap f: X — Y is a weak homotopy equivalence if the
map

mo(f) = mo(X) = mo(Y)

is bijective and if, for every k € N* and for every x € X, the map f
induces an isomorphism

7k (F) : m (X, x) = 7, (Y, £(X)).

o If X is path-connected then first condition is automatic, and it suffices
to state the second condition for a single point x in X.
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H-principles

Definition.— Amap f: X — Y is a weak homotopy equivalence if the
map
mo(f) : mo(X) = mo(Y)

is bijective and if, for every k € N* and for every x € X, the map f
induces an isomorphism

7k (F) : m (X, x) = 7, (Y, £(X)).

o If X is path-connected then first condition is automatic, and it suffices
to state the second condition for a single point x in X.

o If f: X — Y is a homotopy equivalence then it is a weak homotopy
equivalence.
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H-principles

Parametric h-principle.— A differential relation R satisfies the
parametric h-principle if the map

J: Sol(R) — T(R)

is a weak homotopy equivalence.
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H-principles

Parametric h-principle.— A differential relation R satisfies the
parametric h-principle if the map

J:Sol(R) — T(R)
is a weak homotopy equivalence.

e It turns out that several differential relations arising from differential
geometry satisfy the parametric h-principle.
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A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).— If f is a weak homotopy equivalence
between X and 'Y CW complexes then f is a homotopy equivalence.
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A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).— If f is a weak homotopy equivalence
between X and 'Y CW complexes then f is a homotopy equivalence.

¢ An infinite dimensional version of the Whitehead Theorem states that
any weak homotopy equivalence between two Fréchet metrizable
manifolds is a homotopy equivalence.

e Recall that a Fréchet space is a complete topological vector space
which is separated (=is a Hausdorff space) and whose topology is
induced by a countable family of seminormes |.|,. Such a space is

metrizable by setting d(x,y) := Y5, o 15/‘”

e The spaces Sol(R) and I'(R) are Fréchet metrizable. Consequently,
the parametric h-principle for R implies that J : Sol(R) — '(R) is a
homotopy equivalence.
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Examples of relations satisfying the h-principle

e The Whitney-Graustein Theorem (1937) shows that the relation
R={(x,y,v) eS' x R x R? | v # (0,0)}

satisfies the 1-parametric h-principle.
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Examples of relations satisfying the h-principle

e The Whitney-Graustein Theorem (1937) shows that the relation
R={(x,y,v) eS' x R x R? | v # (0,0)}
satisfies the 1-parametric h-principle.

e The generalization of this theorem stated in the end of the lecture 3
shows that R satisfies the parametric h-principle. This generalization is
due to Morris Hirsch and dates back from 1959.
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Examples of relations satisfying the h-principle

e The Whitney-Graustein Theorem (1937) shows that the relation
R={(x,y,v) eS' x R x R? | v # (0,0)}
satisfies the 1-parametric h-principle.

e The generalization of this theorem stated in the end of the lecture 3
shows that R satisfies the parametric h-principle. This generalization is
due to Morris Hirsch and dates back from 1959.

Definition.— Let M™ and N" be two manifolds. Amap f: M — N'is
an immersion if for all p € M, the differential dfp : ToM — Ty, N is of
maximal rank.
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Examples of relations satisfying the h-principle

e The Whitney-Graustein Theorem (1937) shows that the relation
R={(x,y,v) eS' x R x R? | v # (0,0)}
satisfies the 1-parametric h-principle.

e The generalization of this theorem stated in the end of the lecture 3
shows that R satisfies the parametric h-principle. This generalization is
due to Morris Hirsch and dates back from 1959.

Definition.— Let M and N" be two manifolds. Amap f: M — N is
an immersion if for all p € M, the differential dfp : ToM — Ty, N is of
maximal rank.

e If f is an immersion then df,(TpM) is a n-dimensional subspace of
Tt(pyN. The image f(M) has no crease or tip.
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Examples of relations satisfying the h-principle

e The space of immersions from M to R” is denoted by /(M,R").

e Let (Kh)nen be a countable family of compact sets covering M. For
every n € N, we define

dn(f,g) == sup [[f(x) — g(x)|| + sup || dfy — dgx|l
XEKn

xeKn

and we endow /(M,R"™) with the distance
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Smale Theorem on Sphere Immersions

Stephen Smale

Smale Theorem (1957). — Let m < n. The relation
R ={(x,y,L) € J'(S™,R") | rank L = m}

of immersions of S™ into R" satisfies the 1-parametric h-principle.
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Smale Theorem on Sphere Immersions

Image : The Geometric Center

Corollary (Smale 1957).— The space I(S?, R®) is path-connected. In
particular, it is possible to realize an eversion of the 2-sphere among
immersions.
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Proof of the Sphere Eversion

Proof of the corollary.— Since R satisfies the 1-parametric
h-principle, the map

J: mo(I(S?,R3)) = (T (R))

is a 1-to-1. The proof of the corollary thus reduces to the computation
of mo(M(R)) with

R ={(x,y,L) € J'(S®,R®) | rank L = 2}
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Proof of the Sphere Eversion

Proof of the corollary.— Since R satisfies the 1-parametric
h-principle, the map

J: mo(I(S?,R3)) = (T (R))

is a 1-to-1. The proof of the corollary thus reduces to the computation
of mo(M(R)) with

R ={(x,y,L) € J'(S®,R®) | rank L = 2}
¢ A homotopic computation shows that

mo(T(R)) = m2(GL (R®)).
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Proof of the Sphere Eversion

Proof of the corollary.— Since R satisfies the 1-parametric
h-principle, the map

J: mo(I(S?,R3)) = (T (R))

is a 1-to-1. The proof of the corollary thus reduces to the computation
of mo(M(R)) with

R ={(x,y,L) € J'(S®,R®) | rank L = 2}
e A homotopic computation shows that
mo(T(R)) = ma2( GL+(R®)).

e It turns out that 7o(GL, (R®)) = {0}. O
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Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). — Let M™ and N" be two manifolds with
m < n. The relation of immersions of M™ into N" :

R ={(x,y,L) € J'(M™ N")| rank L = m}
satisfies the parametric h-principle. Precisely, the map
J: (M N") — T(R)
f — '
is a weak homotopy equivalence.



Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). — The theorem still holds if m = n provided
that M™ is open.
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Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). — The theorem still holds if m = n provided
that M™ is open.

¢ Recall that an open manifold is a manifold without boundary and
with no compact component.
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Exercice : Immersions of the 2-Torus

Exercice.— Apply the Hirsch Theorem to show that
Card mo(/(T?,R?)) = 4.
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Exercice : Immersions of the 2-Torus

Exercice.— Apply the Hirsch Theorem to show that
Card mo(/(T?,R?)) = 4.

e We recall that m1(GL . (R3)) = Z/2Z and we admit that the space
CO(T2, GL, (R®)) has four components. Precisely,

®: m(COT2 GLL(R?)) — m1(GLL(R%)) x m4(GL+ (RS))
(1] — [fistx ] X [figsyxst]
is a bijective map.
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Isometric Immersions

Mikhail Gromov

Theorem (Nash 1954 - Kuiper 1955 -Gromov 1986). — Let (M, g)
and (N", h) be two Riemannian manifold with m < n. The relation of
isometric immersions of M™ into N" :

R={(x,y,L) e J)(M" N" | L*h= g}

satisfies the parametric h-principle. The weak homotopy equivalence is
given by the map J : f — j'f.



Isometric Immersions

Corollary (Gromov 1986). — There exists a C' isometric eversion of
the 2-sphere.
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More examples of relations satisfying the h-principle...

... with Jean-Claude Sikorav in the second part of this course.
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The h-Principe for Ample Relations

¢ Here is a theorem of Gromov ensuring the presence of a h-principle
provided R satisfies some topological and convexity properties :
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The h-Principe for Ample Relations

¢ Here is a theorem of Gromov ensuring the presence of a h-principle
provided R satisfies some topological and convexity properties :

Theorem (Gromov 69-73). — Let R c J' (M, N) be an open and ample
differential relation. Then R satisfies the parametric h-principle i. e.

J: Sol(R) — T(R)

is a weak homotopy equivalence.
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The h-Principe for Ample Relations

¢ Here is a theorem of Gromov ensuring the presence of a h-principle
provided R satisfies some topological and convexity properties :

Theorem (Gromov 69-73). — Let R c J' (M, N) be an open and ample
differential relation. Then R satisfies the parametric h-principle i. e.

J:Sol(R) — T(R)
is a weak homotopy equivalence.

e It remains to define what is an ample differential relation and to give
a (sketch of the) proof of this theorem.
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Ample Relations

Definition.— A subset A C R" is ample if for every a € A the interior of
the convex hull of the connected component to which a belongs is R” i.
.. IntConv(A, a) = R” (in particular A = () is ample).
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Ample Relations

Definition.— A subset A C R" is ample if for every a € A the interior of
the convex hull of the connected component to which a belongs is R” i.
.. IntConv(A, a) = R” (in particular A = () is ample).

Ais not ample Ais ample Ais not ample.
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Ample Relations

Definition.— A subset A C R" is ample if for every a € A the interior of
the convex hull of the connected component to which a belongs is R” i.
.. IntConv(A, a) = R” (in particular A = () is ample).

Ais not ample Ais ample Ais not ample.

Example.— The complement of a linear subspace F C R"” is ample if
and only if Codim F > 2.
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Ample Relations

™

Definition.— Let E = P x R" — P be a fiber bundle, a subset R C E
is said to be ample if, for every p € P, Rp := 7~ '(p) N'R is ample in R".

Remark.— If R C E isample and z: P — E is a section, then, for
every p € P, we have z(p) € Conv(Rp,a(p)).
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Ample Relations in J'(M, N)

e Locally, we identify J'(M, N) with

JUYV) = UxVxLR™R) =UxV x [[Z;R".
= {(X7ya Vi, Vm)}

where U and V are charts of M and N.

o We set :
JNUV)E =Xy, v, e Vine1) )
e We have
Ru,y — J1 (U,V)
Lot
J U, V)t
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Ample Relations in J'(M, N)

o Letze J' (U, V), we set
Rz = (pH) "(2) N Ry
e R is a differential relation of the bundle

I U, V) 2 S,

Definition. — A differential relation R c J'(M, N) is ample if for every
local identification J' (24, V) and for every z € J'(U, V)*, the space R+
is ample in (p*)~"(z) ~ R".
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Ample Relations in J'(M, N)

Proposition. — The differential relation R of immersions of M™ into N"
is ample if n > m.
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Ample Relations in J'(M, N)

Proposition. — The differential relation R of immersions of M™ into N"
is ample if n > m.

Proof.— Let J'(i4, V) be any local identification and let
zZ=(X,¥, V4, ..., Vm—_1) € J'(U,V)*. We have

(PH) " (2)NR ~ {Vm € R" | {v4, ..., vin} are linearly independent in R"}
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Ample Relations in J'(M, N)

Proposition. — The differential relation R of immersions of M™ into N"
is ample if n > m.

Proof.— Let J'(i4, V) be any local identification and let
zZ=(X,¥, V4, ..., Vm—_1) € J'(U,V)*. We have

(PH) " (2)NR ~ {Vm € R" | {v4, ..., vin} are linearly independent in R"}
o If {vq,...,vy_1} are linearly independent then

Vm € (p1)71(2) lies inside Ryy <= Vm & Span(vq, ..., Vm_1) =: 1N
= Vm € RT\ .

Therefore R = Ryy N (p)~1(z) = R™\ M. Since the codimension of
Mis n—(m—1) > 2, it ensues that R is ample.
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Ample Relations in J'(M, N)

Proposition. — The differential relation R of immersions of M™ into N"
is ample if n > m.

Proof.— Let J'(i4, V) be any local identification and let
zZ=(X,¥, V4, ..., Vm—_1) € J'(U,V)*. We have

(PH) " (2)NR ~ {Vm € R" | {v4, ..., vin} are linearly independent in R"}
o If {vq,...,vy_1} are linearly independent then

Vm € (p1)71(2) lies inside Ryy <= Vm & Span(vq, ..., Vm_1) =: 1N
= Vm € RT\ .

Therefore R = Ryy N (p)~1(z) = R™\ M. Since the codimension of
Mis n—(m—1) > 2, it ensues that R is ample.

o If {v4,..., v;n_1} are linearly dependent thenR; = () and thus Ry is
ample. O
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Sketch of the Proof of Gromov Theorem

e We first work locally over a cubic chart C = [0, 1] of M and an open
Y ~ R" of N.
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Sketch of the Proof of Gromov Theorem

¢ We first work locally over a cubic chart C = [0, 1]” of M and an open
V ~ R" of N.

o Let & € [(R¢rn) be a section :
& :c— (¢, f(c), vi(c), ..., vim(C)) € Rogn-
and let p'™ be the projection

(C’y7 Viy e Vm) — (Ca Yovi, o Vm—1)

and
RE™ = Ropn N (A7) 1(2)
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Sketch of the Proof of Gromov Theorem
Jhc.r™)

ptm

JI(C,R”)J‘

o We set
Gtm: C — J'(C,R")Lm
c — (c,fi(c),vi(c),...,vm_1(C))
and we denote by E the pull-back bundle :
E — JY(C,R"
Tl Lptm

&tm

c 8 J(C,R)Ln



Sketch of the Proof of Gromov Theorem

e Let S™ C E be the pull-back of the relation Rm. The relation S™ is

obviously open and ample and v, : C — R" provides a section of S™
over C.

e We use the parametric version of the Fundamental Lemma with
= [0, 1]™ as parameter space and with S™ as differential relation.
There exists v : C x [0,1] — 8™ such that

Y(,0) =~(.,1) = vp e [(S™)

and
Vce C, ~(c,.) € Concat(Q5" (S2))
and |
_oh
Ve e C, /0 (¢, s)ds = E(C)'
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Sketch of the Proof of Gromov Theorem

o We set

Cm
Fi(c) := fo(c1,...,cm_1,0)+/0 ~v(ct, ..., Cm_1, S, NyS)ds.
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Sketch of the Proof of Gromov Theorem

e We set
Cm
Fi(c) := fo(c1,...,cm_1,0)+/0 ~v(ct, ..., Cm_1, S, NyS)ds.

¢ We then have ’
|F1 — ol = O(m)

and even more, ;
1F1 = fllerm = O(m)

where of of
HfHCm—max(Hcho,H Hc ;- 7Hm”00)

. . of
is the C' norm without the || —— || co term.
OCm
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Sketch of the Proof of Gromov Theorem

e By the very definition of S™, the section

&5 (6. (C), V4 (C)s s Vin_1(C), %(c))

lies inside the relation R ¢ rn.

Vincent Borrelli L4 - Gromov Theorem for Ample Relations



Sketch of the Proof of Gromov Theorem

e By the very definition of S™, the section

&5 (6. (C), V4 (C)s s Vin_1(C), %(c))

lies inside the relation R ¢ gn.

e Since R ro is open and Fq is CO-close to fy, even if it means to
increase N;, we can assume that

c+— (c,Fi(c),v1(C),..., Vm-1(0C), %(c))

is a section of R¢ rn.
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Sketch of the Proof of Gromov Theorem

e We then repeat the same process with respect to the variable ¢,,_1
to obtain

oF
OCm—1

8F1

— (c, F1(c), v1(€), ..., Vm_2(C), ( ) ( )) € Re o
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Sketch of the Proof of Gromov Theorem

e We then repeat the same process with respect to the variable ¢,,_1
to obtain

_OF
0Cm—_1

OF;

— (c, F1(c), v1(€), ..., Vm_2(C), (c ,E(C)) € Regn-

e Noticing that R¢ rn is open and that F» and F; are C! vﬁ-close, we
have if N, is large enough :

oFs
OCm—1

oF;

— (C, F2(C)7 Vq (C), ceey Vm—2( ) O0Cm

e (©);

(C)) S RC,R”-
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Sketch of the Proof of Gromov Theorem

e We then repeat the same process with respect to the variable ¢,,_1
to obtain

_OF
0Cm—_1

OF;

c— (c,Fi(c),vi(C), ..., Vm_2(0), (c ,E(C)) € Regn-

e Noticing that R¢ rn is open and that F» and F; are C! vﬁ-close, we
have if N, is large enough :

oFs
OCm—1

¢~ (c, F2(c), vi(c), ..., vm_2(C), (¢), —

e lterating over the other variables vy, ..., v;,_o we eventually obtain a
holonomic section over C. Moreover F := F, and fy are C%-close :

1 1
IF—follco = (ﬁ+ +N_m)
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Sketch of the Proof of Gromov Theorem

e In order to build a solution globally defined over M™, we first perform
a cubic decomposition of the manifold and we then recursively apply
the preceding process over every cube.
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Sketch of the Proof of Gromov Theorem

e In order to build a solution globally defined over M™, we first perform
a cubic decomposition of the manifold and we then recursively apply
the preceding process over every cube.

e The real problem is the matching the solutions together. Precisely if
C is an open cube, K a compact subset of C and f; a solution over an
open neighborhood Op(K) of K, the point is to construct a solution f
such that f = fy on some Op>(K) C Op(K).
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Sketch of the Proof of Gromov Theorem

e In order to build a solution globally defined over M™, we first perform
a cubic decomposition of the manifold and we then recursively apply
the preceding process over every cube.

e The real problem is the matching the solutions together. Precisely if
C is an open cube, K a compact subset of C and f; a solution over an
open neighborhood Op(K) of K, the point is to construct a solution f
such that f = fy on some Op>(K) C Op(K).

¢ To achieve this goal, we need to modify every convex integrations
defining Fq, ..., Fm. Let Ay : C — [0, 1] be a compactly supported C>
function such that

[ 1 ifce Op(K)
A(e) = { 0 ifceC\ Op(K)

where Opy(K) C Op1(K) C Op(K).
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Sketch of the Proof of Gromov Theorem

e Let F4 be the preceding solution over C obtained from the section
& :c— (¢, f(c), vi(c), ..., vim(C)) € Rogn-

We set
fi = F + )\1(f0 — F1)
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Sketch of the Proof of Gromov Theorem

e Let F; be the preceding solution over C obtained from the section

& :c— (¢, f(c), vi(c), ..., vim(C)) € Rogn-

We set
fi = F + )\1(f0 — F1)

eletje {1,..,m}, we have

ofy  OF; ofy OF; 8>\1
G 9 LS f,— F.
o6~ a5 T (c’wf 9 (o=

Since )\ is compactly supported, the g)‘ 's are bounded for every
G
je{1,....m}
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Sketch of the Proof of Gromov Theorem

eletjec {1,...,m—1}. Since F; and fy are (C', m)-close, we have

8f1 8F1 1

(N

96, lle> =
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Sketch of the Proof of Gromov Theorem

eletjec {1,...,m—1}. Since F; and fy are (C', m)-close, we have

8f1 8F1 1

” HCO - (M)'
e Let j = m. In general,
ok _OF
ocm OCm

is not small and therefore

Cr— (c, %(c))

should not be a section of S™.
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Sketch of the Proof of Gromov Theorem

e Since A\ is 0 over C\ Op¢(K), for every c € C\ Op;(K), we have
F = f1 and thus
o

O0Cm

oK
0Cm

(c) (c)=0.
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Sketch of the Proof of Gromov Theorem

e Since A\ is 0 over C\ Op¢(K), for every c € C\ Op;(K), we have

F = f1 and thus F
ofy oFy
8cm(c) — 8cm(c) = 0.

e Over Op(K), we admit that it is possible to choose the family of loops

~v: C x [0,1] — 8™ such that, for all c € Op;(K), we have

_ o
 Ocm

(c,) (c).
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Sketch of the Proof of Gromov Theorem

e Since A\ is 0 over C\ Op¢(K), for every c € C\ Op;(K), we have

F = f1 and thus F
ofy OF4
8cm(c) 8cm(c) = 0.

e Over Op(K), we admit that it is possible to choose the family of loops

~v: C x [0,1] — 8™ such that, for all c € Op;(K), we have

ofy
O0Cm

(c,.) = o ==(c).

e Thus, for all ¢ € Op;(K) we have

OF;
OCm

O (g

c Ci, -y Cm—1,Cm, NiCm) =
——(¢) =(c m—1,Cm, Ny Cm) e,

and the difference — O _ OF vanishes over Op;(K).
acm  Ocm
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Sketch of the Proof of Gromov Theorem

ofy  0F
9cn  9cm
OPz( ) Op1(K
Op(K
o |t follows that y .
ory
3@ (o) - 5t c))
vanishes for all ¢ € Op(K) and thus
ofy

S1:cr— (¢ fi(c), vi(C), ..., Vm-1(C), 5 —(C)) € RoRn-

)
dCm
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