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The Hevea Project

Francis Lazarus Boris Thibert Saïd Jabrane
Gipsa-Lab, Grenoble LJK, Grenoble ICJ, Lyon

• The Gromov Convex Integration and the h-principle philosophy
provided an overall perspective of the Nash-Kuiper Theorem.

• However a question remained open : what is the geometry of
Nash-Kuiper isometric maps?

• During the period 2007-2012, a multidisciplinary team (the Hevea
Project) used the Gromov Convex Integration Theory to explicitly
construct a C1 isometric embedding of a Flat Torus inside E3 in order
to answer to this question.
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Construction of an Isometric Embedding of the Flat
Torus

Definition.– A (two dimensional) Flat Torus is the quotient of E2 by a
lattice Λ = Ze1 ⊕ Ze2 where {e1,e2} is a basis of E2. We denote by TΛ

the flat torus E2/Λ.

• Two flat tori TΛ1 and TΛ2 are isometric if and only if there exists an
isometry of E2 which sends the lattice Λ1 on the lattice Λ2.

•We denote by Iso(TΛ) the isometry group of TΛ and IsoO(TΛ) its
isotropy group at the origine O, i. e. the subgroup of isometry Φ of TΛ

such that Φ(O) = O. We have the following exact sequence

0 −→ IsoO(TΛ) −→ Iso(TΛ) −→ TΛ −→ 0

where Iso(TΛ) −→ TΛ is Φ 7−→ Φ(O).
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Construction of an Isometric Embedding of the Flat
Torus

• Let v1 be a shortest vector of Λ \ {O} and v2 be a shortest vector of
Λ \ Zv1. It is easy to see that v1 and v2 spans Λ.

• The green domain is the space of similarity classes of flat tori
(=classification of flat tori up to isometries and homotheties).
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Construction of an Isometric Embedding of the Flat
Torus

See p. 60 to 63 for more details
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Construction of an Isometric Embedding of the Flat
Torus

A hexagonal lattice

If Λ is a hexagonal lattice then IsoO(TΛ) is generated by a rotation of
angle π

3 and a reflection r along v1. It has 12 elements.
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Construction of an Isometric Embedding of the Flat
Torus

A square lattice

If Λ is a square lattice then IsoO(TΛ) is generated by a rotation of
angle π

2 and r . We thus have |IsoO(TΛ)| = 8.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Construction of an Isometric Embedding of the Flat
Torus

A rectangular lattice

If Λ is a (proper) rectangular lattice then IsoO(TΛ) is generated by
−Id and r and |IsoO(TΛ)| = 4.
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Construction of an Isometric Embedding of the Flat
Torus

A centred rectangular lattice : orthogonal projection of v2 is 1
2 v1. This implies that the yellowed region is a rectangle with as

center a vertex of of the lattice, hence the name.

If Λ is a (proper) centred rectangular lattice then IsoO(TΛ) is
generated by −Id and r and |IsoO(TΛ)| = 4. In particular, the isotropy
group is the same as the one of a rectangular lattice.
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Construction of an Isometric Embedding of the Flat
Torus

A rhombic lattice : the length of v1 is the one of v2 hence the name.

If Λ is a (proper) rhombic lattice then IsoO(TΛ) is generated by −Id
and a reflection s along v1 + v2 and |IsoO(TΛ)| = 4.
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Construction of an Isometric Embedding of the Flat
Torus

• In all the other cases, that is, when Λ is a (proper) parallelogrammic
lattice, then the triangle defined by O, O + v1 and O + v2 is scalene
and IsoO(TΛ) = {Id ,−Id}. In particular, there is no isometry that
reverses the orientation.
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Construction of an Isometric Embedding of the Flat
Torus

• The Hexagonal torus has the largest isotropy group amongs all flat
tori, the Square torus has the second largest isotropy group. We are
going to build an explicit isometric embedding of the square flat torus.
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Construction of an Isometric Embedding of the Flat
Torus

Three fundamental domains Domi , i ∈ {1, 2, 3}, of the same square flat torus T2.

Exercise.– Let (e1,e2) be an orthonormal basis of E2. Show that the
quotients E2/ZU(i)⊕ ZV (i), i ∈ {1,2,3} with

U(1) = e1 U(2) = 1
5(e1 + 2e2) U(3) = 1

5(e1 − 2e2)
V (1) = e2 V (2) = −2e1 + e2 V (3) = 2e1 + e2

define the same square flat torus (up to isometries).
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Construction of an Isometric Embedding of the Flat
Torus

The initial map.– Let R > r > 0. We define

f0 : T2 = E2/Ze1 ⊕ Ze2 −→ E3

(u, v) 7−→



1
2π

(R + r cos 2πu) cos 2πv

1
2π

(R + r cos 2πu) sin 2πv

r
2π

sin 2πu

• A straightforward computation shows that

f ∗0 〈., .〉E3 = r2du2 + (R + r cos 2πu)2dv2.

Therefore f ∗0 〈., .〉E3 < du2 + dv2 iff R + r < 1.
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Construction of an Isometric Embedding of the Flat
Torus
•We choose R and r such that R + r < 1. This implies that f0 is a
strictly short embedding.

• Let
∆ := 〈., .〉E2 − f ∗0 〈., .〉E3

be the isometric default of f0.

• The image of

∆ : T2 −→ S+
2 (R2)

(u, v) 7−→ (1− r2)du2 + (1− R − r cos 2πu)2dv2

is a segment lying inside the positive cone of inner products of R2 :

S+
2 (R2) = {Edu2 + 2Fdudv + Gdv2 | E > 0,EG − F 2 > 0} ⊂ R3.
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Construction of an Isometric Embedding of the Flat
Torus

• Let `1, `2 and `3 be the three linear forms of E2 defined by

∀ i ∈ {1,2,3}, `i(.) =
〈 U(i)
‖U(i)‖E2

, .
〉
E2

that is

`1 = du, `2 =
1√
5

(du + 2dv) and `2 =
1√
5

(du − 2dv).
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Construction of an Isometric Embedding of the Flat
Torus

• Let `1, `2 and `3 be the three linear forms of E2 defined by

∀ i ∈ {1,2,3}, `i(.) =
〈 U(i)
‖U(i)‖E2

, .
〉
E2

• Observe that

`i(U(i)) = ‖U(i)‖E2 ( 6= 1 for i ∈ {2,3}).
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Construction of an Isometric Embedding of the Flat
Torus
• Let C be the positive cone spanned by the `i ⊗ `i ’s :

C := {ρ1`1 ⊗ `1 + ρ2`2 ⊗ `2 + ρ3`3 ⊗ `3 | ρ1 > 0, ρ2 > 0, ρ3 > 0},

• A straightforward computation shows that if

B = Bxx dx ⊗ dx + Bxy (dx ⊗ dy + dy ⊗ dx) + Byy dy ⊗ dy

then

ρ1 = Bxx −
1
4

Byy , ρ2 =
5
4

(
1
2

Byy + Bxy ), ρ3 =
5
4

(
1
2

Byy − Bxy ).

• It is then easily checked that ∆(T2) lies inside C. In other words,
there exist three positive functions ρ1(∆0), ρ2(∆0) and ρ3(∆) such that

∆ = ρ1(∆)`1 ⊗ `1 + ρ2(∆)`2 ⊗ `2 + ρ3(∆)`3 ⊗ `3.
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Construction of an Isometric Embedding of the Flat
Torus
• In order to divide the value of the three coefficients of the isometric
default ∆ approximately by two, we proceed by three successive
convex integrations.

• More precisely, we first set

µ1,1 := f ∗0 〈·, ·〉R3 +
3
4
ρ1(∆1,1)`1 ⊗ `1 with ∆1,1 := ∆,

and we define a quasi-isometric map F1,1 : ([0,1]× S1, µ1,1) −→ E3 via
a convex integration in the direction U(1) = e1 :

F1,1 := CIγ(f ,U(1),N1,1)

and with the family of loops γ used in the Lecture 2 to solve the "Step 2
problem" in codimension 1.
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Construction of an Isometric Embedding of the Flat
Torus

The function w.

• The map F1,1 : [0,1]× S1 7→ E3 does not descend to the quotient T2

in general.

• Let w : [0,1] 7→ [0,1] be any S-shaped function satisfying

w(0) = 0, w(1) = 1 and ∀k ∈ N∗, w (k)(0) = w (k)(1) = 0.
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Construction of an Isometric Embedding of the Flat
Torus
• For all (u, v) ∈ [0,1]× S1, we set

f1,1(u, v) := F1,1(u, v)− w(u)
(
F1,1(1, v)− F1,1(0, v)

)
.

• The map f1,1 descends to the quotient T2 and induces a quasi
isometric map (still denoted by f1,1) between (S1 × S1, µ1,1) and E3.

•We have

f1,1(u, v)− F1,1(u, v) = −w(u)
(
F1,1(1, v)− F1,1(0, v)

)
= −w(u)

(
F1,1(1, v)− f0(0, v)

)
= −w(u)

(
F1,1(1, v)− f0(1, v)

)
.

Thus

‖f1,1 − F1,1‖C0 ≤ ‖F1,1 − f0‖C0 = O
(

1
N1,1

)
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Construction of an Isometric Embedding of the Flat
Torus
• Similarly

∂v f1,1(u, v)− ∂v F1,1(u, v) = −w(u)
(
∂v F1,1(1, v)− ∂v f0(1, v)

)
thus

‖∂v f1,1 − ∂v F1,1‖C0 ≤ ‖∂v F1,1 − ∂v f0‖C0 = O
(

1
N1,1

)
.

• Regarding the ∂u derivative we have :

∂uf1,1(u, v)− ∂uF1,1(u, v) = −w ′(u)
(
F1,1(1, v)− f0(1, v)

)
thus

‖∂uf1,1 − ∂uF1,1‖C0 ≤ ‖w ′‖C0‖F1,1 − f0‖C0 = O
(

1
N1,1

)
.
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Construction of an Isometric Embedding of the Flat
Torus

• To sum up, we have

‖f1,1 − F1,1‖C1 = O
(

1
N1,1

)
.

Thus, if F1,1 : ([0,1]× S1, µ1,1) −→ E3 is a quasi-isometric map i. e.

µ1,1 − F ∗1,1〈·, ·〉R3 = O
(

1
N1,1

)
then so is f1,1 : (S1 × S1, µ1,1) −→ E3, i. e.

µ1,1 − f ∗1,1〈·, ·〉R3 = O
(

1
N1,1

)
.
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Construction of an Isometric Embedding of the Flat
Torus

The foliation of T2 in the U(1) direction and the image of a small
portion of T2 by f0
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Construction of an Isometric Embedding of the Flat
Torus

The foliation of T2 in the U(1) direction and the image of a small
portion of T2 by f1,1
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Construction of an Isometric Embedding of the Flat
Torus

• The new isometric default

∆1,2 := 〈., .〉E2 − f ∗1,1〈·, ·〉R3

= ρ1(∆1,2) `1 ⊗ `1 + ρ2(∆1,2) `2 ⊗ `2 + ρ3(∆1,2) `3 ⊗ `3

satisfies

ρ1(∆1,2) =
1
4
ρ(∆1,1) + O

(
1

N1,1

)
and

ρ2(∆1,2) = ρ2(∆1,1) + O
(

1
N1,1

)
, ρ3(∆1,2) = ρ3(∆1,1) + O

(
1

N1,1

)
.

In particular ρ2(∆1,3) > 0 for N1,1 large enough.
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Construction of an Isometric Embedding of the Flat
Torus

The convex integration is done along parallel curves to the U(2) direction.

•We next set

µ1,2 := f ∗1,1〈·, ·〉R3 +
3
4
ρ2(∆1,2)`2 ⊗ `2,

and build a quasi isometry f1,3 : (S1 × S1, µ1,3) 7→ E3 via a convex
integration CIγ(f1,2,U(3),N1,3) along the U(3) direction which is then
corrected to descend to the quotient.
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Construction of an Isometric Embedding of the Flat
Torus

The foliation of T2 in the U(2) direction and the image of a small
portion of T2 by f1,2
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Construction of an Isometric Embedding of the Flat
Torus

• The new isometric default

∆1,3 := 〈., .〉E2 − f ∗1,2〈·, ·〉R3

= ρ1(∆1,3) `1 ⊗ `1 + ρ2(∆1,3) `2 ⊗ `2 + ρ3(∆1,3) `3 ⊗ `3

satisfies

ρ2(∆1,3) =
1
4
ρ2(∆1,2) + O

(
1

N1,2

)
and

ρ1(∆1,3) = ρ1(∆1,2) + O
(

1
N1,2

)
, ρ3(∆1,3) = ρ3(∆1,2) + O

(
1

N1,2

)
.

In particular ρ3(∆1,2) > 0 for N1,2 large enough.
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Construction of an Isometric Embedding of the Flat
Torus

The convex integration is done along parallel curves to the U(2) direction.

•We next set

µ1,3 := f ∗1,2〈·, ·〉R3 +
3
4
ρ3(∆1,3)`3 ⊗ `3,

and build a quasi isometry f1,3 : (S1 × S1, µ1,3) 7→ E3 via a convexFor
N1,1 large enough integration CIγ(f1,2,U(3),N1,3) along the U(3)
direction which is then corrected to descend to the quotient.
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Construction of an Isometric Embedding of the Flat
Torus

The foliation of T2 in the U(3) direction and the image of a small
portion of T2 by f1,3
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Construction of an Isometric Embedding of the Flat
Torus
• The new isometric default

∆2,1 := 〈., .〉E2 − f ∗1,3〈·, ·〉R3

= ρ1(∆2,1) `1 ⊗ `1 + ρ2(∆2,1) `2 ⊗ `2 + ρ3(∆2,1) `3 ⊗ `3

satisfies

ρi(∆2,1) =
1
4
ρi(∆1,1) + O

(
1

N1,1

)
+

(
1

N1,2

)
+

(
1

N1,3

)
for all i ∈ {1,2,3}.

• In particular, if the N1,i ’s are large enough

‖∆2,1‖ ≤
1
2
‖∆1,1‖ =

1
2
‖∆‖ and ∆2,1(T2) ⊂ C
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Construction of an Isometric Embedding of the Flat
Torus
•We now iterate the process to obtain a sequence

f0, f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, · · ·

such that

‖∆k+1,1‖ ≤
1
2
‖∆k ,1‖ =

1
2k ‖∆‖ and ∆k+1,1(T2) ⊂ C

where we have denoted ∆k ,1 := 〈., .〉E2 − f ∗k ,3〈·, ·〉R3 .

• If this sequence C1 converges then it is obvious that

f∞ = lim
k→+∞

fk ,3

is an isometric map.

• From the Step 4 of the Nash-Kuiper proof (Lecture 1) we know that
f∞ is an embedding provided that the Nk ,i ’s are large enough.
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Construction of an Isometric Embedding of the Flat
Torus

• Thus, the only remaining point is to prove that (fk ,3)k∈N∗ is
C1-converging.

• To do so, we only need to focus on the difference

dfk ,i(U(i))− dfk ,i−1(U(i))

since the other difference

dfk ,i(V (i))− dfk ,i−1(V (i)) = O
(

1
Nk ,i

)
is controlled by Nk ,i .
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Construction of an Isometric Embedding of the Flat
Torus

Lemma.– We have

‖dfk ,i(U(i))− dfk ,i−1(U(i))‖C0 ≤
√

7‖U(i)‖.‖3
4
ρi(∆k ,i)‖

1/2
C0

• Recall that

ρi(∆k ,i) =
1
4
ρi(∆k ,i−1) + O

(
1

N1,1

)
+

(
1

N1,2

)
+

(
1

N1,3

)
thus, if the N ′k ,is are large enough, we have

ρi(∆k ,i) ≤
1
2
ρi(∆k ,i−1) ≤ 1

2k ρi(∆)
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Construction of an Isometric Embedding of the Flat
Torus

• As a consequence, if the N ′k ,is are large enough, we have

‖dfk ,i(U(i))− dfk ,i−1(U(i))‖C0 ≤
1

2k/2

√
21
2
‖U(i)‖.‖ρi(∆)‖1/2

C0

• Therefore, the lemma implies the C1 convergence of the sequence
(fk ,3)k∈N∗ if the N ′k ,is are large enough.

• Let us prove the Lemma!
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Construction of an Isometric Embedding of the Flat
Torus

In the picture f0 stand for fk,i−1, ∂1 for the derivative along U(i) and P = Span(dfk,i−1(V (i))).

• First recall our choice of γ (see Lecture 2, "Step 2 problem" in
codimension 1) :

t 7→ γ(., t) = r(cos(α cos 2πt)−J0(α)) t+r sin(α cos 2πt) n+dfk ,i−1(U(i))
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Construction of an Isometric Embedding of the Flat
Torus

In the picture f0 stand for fk,i−1, ∂1 for the derivative along U(i) and P = Span(dfk,i−1(V (i)))

•With

r2 = µk ,i(U(i),U(i))− ‖π(dfk ,i−1(U(i)))‖2

= ‖dfk ,i−1(U(i))‖2 + 3
4ρi(∆k ,i)`i(U(i))2 − ‖π(dfk ,i−1(U(i)))‖2

= ‖dfk ,i−1(U(i))‖2 + 3
4ρi(∆k ,i)‖U(i)‖2 − ‖π(dfk ,i−1(U(i)))‖2
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Construction of an Isometric Embedding of the Flat
Torus

In the picture f0 stand for fk,i−1, ∂1 for the derivative along U(i) and P = Span(dfk,i−1(V (i))).

• And with

α = J−1
0

(
‖dfk ,i−1(U(i))− π(dfk ,i−1(U(i)))‖

r

)
∈ [0, z]

where z ≈ 2.40 is the first positive root of J0.
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Construction of an Isometric Embedding of the Flat
Torus

Proof of the Lemma.– Let p = (u, v) be a point of T2. We denote by
p = (u, v) its coordinates in the frame (O; U(i),V (i)). We have

dfk ,i(U(i))(p)− dfk ,i−1(U(i))(p) = γ(p,Nk ,iu)− dfk ,i−1(U(i))(p)

= r(cos θ − J0(α)) t + r sin(θ) n

with θ = α(p) cos 2πNk ,iu.

• Thus

‖dfk ,i(U(i))(p)− dfk ,i−1(U(i))(p)‖2 = ‖r(cos θ − J0(α)) t + r sin(θ) n‖2

= r2(1 + J0(α)2 − 2J0(α) cos θ)

• To continue, we need a sublemma...
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Construction of an Isometric Embedding of the Flat
Torus
Sublemma.– The inequality

1 + J2
0 (α)− 2J0(α) cos(α) ≤ 7(1− J2

0 (α))

holds for every α ∈ [0, z] where z ≈ 2.40 is the first positive root of J0.

Proof of the Sublemma.– Subtracting the right hand side from the
left hand side, we rewrite this inequality as

4J2
0 (α)− J0(α) cos(α)− 3 ≤ 0.

• By considering the alternating Taylor series of J0 and cos, we get

J0(α) ≤ 1− α2

4
+
α4

64
and cos(α) ≥ 1− α2

2
.

•Whence

0 ≤ 4J0(α)− cos(α) ≤ 3− α2

2
+
α4

16
≤ 3 +

α2

2
,

where the last inequality follows from −α2

2 + α4

16 ≤
α2

2 for all α ∈ [0, z].
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Construction of an Isometric Embedding of the Flat
Torus

•We can now write

4J2
0 (α)− J0(α) cos(α)− 3 = J0(α)(4J0(α)− cos(α))− 3

≤ (1− α2

4
+
α4

64
)(3 +

α2

2
)− 3.

Putting x = α2/4, this last polynomial can be rewritten

(1− x +
x2

4
)(3 + 2x)− 3 =

x
2

(x − x1)(x − x2),

where x1 < 0 < z2/4 < x2. It ensues that this polynomial is negative
for α ∈ [0, z]. �
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Construction of an Isometric Embedding of the Flat
Torus
Back to the proof of the Lemma.– We have stated that

‖dfk ,i(U(i))(p)− dfk ,i−1(U(i))(p)‖2 = r2(1 + J0(α)2 − 2J0(α) cos θ)

• Since cos θ = cos(α cos 2πNk ,iu) ≥ cosα for α ∈ [0, z], by the
sublemma we have

‖dfk ,i(U(i))(p)− dfk ,i−1(U(i))(p)‖2 ≤ 7r2(1− J2
0 (α))

• Since

α = J−1
0

(
‖dfk ,i−1(U(i))− π(dfk ,i−1(U(i)))‖

r

)
∈ [0, z]

we have
r2J2

0 (α) = ‖dfk ,i−1(U(i))− π(dfk ,i−1(U(i)))‖2
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Construction of an Isometric Embedding of the Flat
Torus
• By definition of r we have

r2 = ‖dfk ,i−1(U(i))‖2 − ‖π(dfk ,i−1(U(i)))‖2 +
3
4
ρi(∆k ,i)‖U(i)‖2

thus

r2 − r2J2
0 (α) = ‖dfk ,i−1(U(i))‖2− ‖π(dfk ,i−1(U(i)))‖2+

3
4
ρi(∆k ,i)‖U(i)‖2

−‖dfk ,i−1(U(i))− π(dfk ,i−1(U(i)))‖2

• By the Pythagorean theorem we have

r2 − r2J2
0 (α) =

3
4
ρi(∆k ,i)‖U(i)‖2

thus

‖dfk ,i(U(i))(p)− dfk ,i−1(U(i))(p)‖2 ≤ 7‖U(i)‖2 3
4
ρi(∆k ,i)(p)

�
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Construction of an Isometric Embedding of the Flat
Torus

•We have constructed a sequence of maps (fk ,3)k∈N∗ that
C1-converges toward an isometric embedding.

• Only one chart and one single set of three linear forms `1, `2 and `3
are used.

• The difference Fk ,i(1, v)− Fk ,i(0, v) that prevents Fk ,i to be defined
on S1 × S1 is fixed by spreading the gap on the whole torus. Local
constructions are avoided.

• The numbers Nk ,i are not given a priori but can be computerized. It is
observed that the Nk ,i increase exponentially.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Construction of an Isometric Embedding of the Flat
Torus

•We have constructed a sequence of maps (fk ,3)k∈N∗ that
C1-converges toward an isometric embedding.

• Only one chart and one single set of three linear forms `1, `2 and `3
are used.

• The difference Fk ,i(1, v)− Fk ,i(0, v) that prevents Fk ,i to be defined
on S1 × S1 is fixed by spreading the gap on the whole torus. Local
constructions are avoided.

• The numbers Nk ,i are not given a priori but can be computerized. It is
observed that the Nk ,i increase exponentially.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Construction of an Isometric Embedding of the Flat
Torus

•We have constructed a sequence of maps (fk ,3)k∈N∗ that
C1-converges toward an isometric embedding.

• Only one chart and one single set of three linear forms `1, `2 and `3
are used.

• The difference Fk ,i(1, v)− Fk ,i(0, v) that prevents Fk ,i to be defined
on S1 × S1 is fixed by spreading the gap on the whole torus. Local
constructions are avoided.

• The numbers Nk ,i are not given a priori but can be computerized. It is
observed that the Nk ,i increase exponentially.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Construction of an Isometric Embedding of the Flat
Torus

•We have constructed a sequence of maps (fk ,3)k∈N∗ that
C1-converges toward an isometric embedding.

• Only one chart and one single set of three linear forms `1, `2 and `3
are used.

• The difference Fk ,i(1, v)− Fk ,i(0, v) that prevents Fk ,i to be defined
on S1 × S1 is fixed by spreading the gap on the whole torus. Local
constructions are avoided.

• The numbers Nk ,i are not given a priori but can be computerized. It is
observed that the Nk ,i increase exponentially.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Construction of an Isometric Embedding of the Flat
Torus
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The initial map f0
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The map f1,1 (N1,1 = 12)
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The map f1,2 (N1,2 = 80)
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The map f1,3 (N1,3 = 500)
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The map f2,1 (N2,1 = 9000)
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And so on... up to the Flat Torus
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Zoom!

The initial map (detail)
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Zoom!

f1,1 : 8 oscillations
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Zoom!

f1,2 : 64 oscillations
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Zoom!

f1,2 : 64 oscillations
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Zoom!

More closely
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Zoom!

f1,3 : 4096 oscillations
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Zoom!

f1,3 : 4096 oscillations
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Zoom!

More closely
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Zoom!

More closely
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Zoom!

f2,1 : 524 288 oscillations
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Zoom!

f2,1 : 524 288 oscillations
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Zoom!

f2,1 : 524 288 oscillations
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Zoom!

f2,2 : 2 097 152 oscillations
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Zoom!

f2,2 : 2 097 152 oscillations
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Zoom!

f2,2 : 2 097 152 oscillations
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Zoom!

f2,3 : 16 777 216 oscillations
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Zoom!

More closely
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Zoom!

More closely
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Zoom!

f3,1 : 536 870 912 oscillations
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Zoom!

• At each scale, we approximately see the same picture.

• BUT, the relative amplitude of the corrugation is not constant. It is
decreasing.

• In the very begining, the corrugation are quite strong and visible, but
while adding the corrugations, this relative amplitude becomes less
and less strong. The oscillations flatten.

• Fortunately ! If not, the resulting object would be a fractal, it would not
be C1.

•We are going to understand this unusual geometry by looking at the
situation in a 1-dimensional setting.
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Nash-Kuiper in a 1D setting

•We consider an initial short embedding f0 : S1 = E/Z→ C such that :

(Cond 1) f0 is of constant speed : x 7→ |f ′0(x)| ≡ r0 < 1
(Cond 2) f0 is radially symmetric that is : ∂f0

∂x (x + 1
2) = −∂f0

∂x (x).

and the goal is to build an "isometric" map f∞ :

∀x ∈ S1, |f∞(x)| = 1

by using the Nash-Kuiper approach.

• Precisely, given a sequence of numbers (rk )k∈N such that rk ↑ 1, we
would like to build, by using convex integration, a sequence of maps
(fk )k∈N such that

x 7→ |fk (x)| ≡ rk
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Nash-Kuiper in a 1D setting

• At the k -th step, the differential relation is a circle of radius rk . We
choose the following family of loops

γk (x , t) := rk (cos θk (x , t) tk−1(x) + sin θk (x , t) nk−1(x))

with tk−1 =
f ′k−1
‖f ′k−1‖

and nk−1 = itk−1 and θk (x , t) = αk (x) cos 2πt .

Vincent Borrelli L5 - Constructions of C1-isometric maps



Nash-Kuiper in a 1D setting

• The angle α(x) should be chosen so that the average condition
holds : ∫ 1

0
γk (x , t)dt = f ′k−1(x)
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Nash-Kuiper in a 1D setting

• A straightforward computation shows that∫ 1

0
γk (x , t)dt = rkJ0(αk (x))tk−1(x)
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Nash-Kuiper in a 1D setting

• Thus the average condition is fulfilled iff

rkJ0(αk (x))

|f ′k−1(x)|
= 1 i.e. αk (x) = J−1

0

(
rk−1

rk

)
In particular αk does not depend on x .
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Nash-Kuiper in a 1D setting

•We introduce the following (abuse of) notation

eiθ := cos θ tk−1 + sin θ nk−1

so that
γk (x , t) := rkeiαk cos 2πt with αk =

rk−1

rk
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Nash-Kuiper in a 1D setting

• Let fk = CIγk (fk−1, ∂x ,Nk ). We thus have

fk (x) = fk−1(0) +

∫ x

0
rkeiαk cos 2πNk sds
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Nash-Kuiper in a 1D setting

Lemma.– Let (Nk )k∈N∗ be any sequence of natural even integers and
f0 : S1 = E/Z→ E2 be a short embedding satisfying conditions
(Cond 1) and (Cond 2). For every k ∈ N∗, let fk : [0,1]→ E2 be
defined inductively by

fk (x) := fk−1(0) +

∫ x

0
rkeiαk cos 2πNk sds.

Then fk descends to a map fk : E/Z→ E2 which satisfies (Cond 1)
and (Cond 2) and is "isometric" i. e.

∀x ∈ R/Z, |f ′k (x)| = rk .

• The proof is left as an exercise.
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Nash-Kuiper in a 1D setting
• Let (Ak )k∈N∗ be the sequence of functions defined by

∀x ∈ S1, Ak (x) :=
k∑
`=1

α` cos(2πN`x).

Lemma.– We have :
∂fk
∂x

(x) = eiAk (x) rk

r0

∂f0
∂x

(x).

Proof.– We first observe that

eiθ = cos θ tk−1 + sin θ nk−1 = eiθ 1
rk−1

∂fk−1

∂x
Thus

∂fk
∂x

(x) = rkeiαk cos(2πNk x) 1
rk−1

∂fk−1

∂x
(x)

and by induction
∂fk
∂x

(x) = eiAk (x) rk

r0

∂f0
∂x

(x) �
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Nash-Kuiper in a 1D setting !

Lemma.– We have

αk ∼ 2
√

1− rk−1

rk
.

Proof.– By definition αk = J−1
0 (

rk−1
rk

). Recall that the Taylor expansion
of J0(α) up to order 2 is

ξ = 1− α2

4
+ o(α2).

Let y = 1− ξ and X = α2, we have y = X
4 + o(X ) thus X = 4y + o(y)

and so X ∼ 4y . We finally get

α ∼ 2
√

1− ξ and αk ∼ 2
√

1− rk−1

rk
.

�
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Nash-Kuiper in a 1D setting !

Corollary.– If ∑
k

√
1− rk−1

rk
< +∞

then (Ak )k∈N∗ is normally converging toward A := limk Ak and (fk )k∈N∗

is C1-converging toward f∞ := limk fk and

∀ x ∈ S1,
∂f∞
∂x

(x) = eiA(x) 1
r0

∂f0
∂x

(x).

Remark.– Observe that the sequence (Nk )k∈N∗ plays no role in this
corollary. This point is specific to the 1 dimensional setting.
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Nash-Kuiper in a 1D setting !
Proof.– From the previous lemma we deduce that∑

αk < +∞

thus the sequence (Ak )k∈N is normally converging and

A := lim
k→+∞

Ak

is a continuous. Moreover, from the relation

∂fk
∂x

(x) = eiAk (x) rk

r0

∂f0
∂x

(x)

we also deduce that (∂x fk )k∈N is normally converging toward

eiA(x) 1
r0

∂f0
∂x

(x).

Since (fk (0))k∈N obviously converges, we obtain that the sequence
(fk )k∈N is C1-converging toward f∞ = limk→+∞ fk �
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Nash-Kuiper in a 1D setting !
Example 1.– Let γ > 0 such that r0 = 1−e−γ and define (rk ) ↑ 1 to be

rk := 1− e−γ(k+1).

Then

1− rk−1

rk
=

rk − rk−1

rk

rk−1

rk
= e−γk (1− e−γ)

1− e−γ(1+k)
.

Thus √
1− rk−1

rk
∼
√

1− e−γ e−γk/2

and ∑
k

√
1− rk−1

rk
< +∞.

From the corollary, we deduce that (fk )k∈N∗ C1 converges. We also
have

αk ∼ 2
√

1− e−γ e−γk/2.

Vincent Borrelli L5 - Constructions of C1-isometric maps



Nash-Kuiper in a 1D setting !
Example 2.– Let a ∈ ]0,1[ and r0 :=

∏∞
k=1 J0(ak ). We define (rk )k∈N∗

by

rk =
rk−1

J0(ak )
=

r0∏k
`=1 J0(a`)

=

∏∞
k=1 J0(ak )∏k
`=1 J0(a`)

.

Observe that, since J0 is decreasing in [0, z] and J0(0) = 1, the
sequence (rk )k is increasing and bounded from above by 1. The limit
of (rk )k is obviously 1.

•We then have

αk = J−1
0

(
rk−1

rk

)
= ak

and

Ak (x) =
k∑
`=1

a` cos(2πN`x)

for all x ∈ S1. Obviously (Ak )k is normally converging and thus (fk )k is
C1-converging.
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Nash-Kuiper in a 1D setting !
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Nash-Kuiper in a 1D setting !
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Nash-Kuiper in a 1D setting !
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C1-fractal structure
Definition.– The function Wa,b : R→ R defined by

Wa,b(x) =
∞∑

k=1

ak cos(bkx), 0 < a < 1 < ab

is called the Weierstrass Function with parameter a and b.
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C1-Fractal Structure

Theorem (Karl Weierstrass 1872, G. H. Hardy. 1918).– The function
Wa,b is continuous on R but nowhere differentiable.

• The graph of Wa,b exhibits self-similarities. Here is a quote from
Wikipedia : The Weierstrass function could perhaps be described as
one of the very first fractals studied, although this term was not used
until much later.

Theorem (Weixiao Shen, 2018).– If b ≥ 2 and a ∈ ] 1
b ,1[ the Hausdorff

dimension of the graph of Wa,b is 2 + ln(a)/ ln(b).

Definition.– A map f∞ is C1-fractal if it is C1 and the graph of its
derivative is a fractal.

Example 2 (continuing).– If we choose N` = b` for some b ≥ 1/a
then the map f∞ obtained by the Nash-Kuiper process is C1-fractal.
Indeed, the function A is the Weierstrass function Wa,b.
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C1-Fractal Structure
•We express the C1 fractality of f∞ under a form that allows a
generalization to surfaces.

• Let Ck : S1 −→ SO(2) be the matrix valued map such that

∀x ∈ S1,

(
tk (x)
nk (x)

)
= Ck (x) ·

(
tk−1(x)
nk−1(x)

)

• Such a matrix Ck is called a corrugation matrix.
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C1-Fractal Structure
• Corrugation matrices encode the data of the successive convex
integrations :

Ck (x) :=

(
cos θk (x) sin θk (x)
− sin θk (x) cos θk (x)

)
with

θk (x) = αk cos(2πNkx).

• The Gauss map n∞ of the limit embedding is given by the infinite
product : (

t∞
n∞

)
=

( ∞∏
k=1

Ck

)
·
(

t0
n0

)
• Identifying R2 and C, we have( ∞∏

k=1

Ck

)
= e−iA(x) with A(x) =

∑
k

αk cos(2πNkx).
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C1-Fractal Structure

From the circle to the torus.– We denote by Ck ,j the SO(3) matrix
such that :  v⊥k ,j

vk ,j
nk ,j

 = Ck ,j ·

 v⊥k ,j−1
vk ,j−1
nk ,j−1

 .
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C1-Fractal Structure

Let f∞ : T2 −→ E3 be the limit of the maps :

f0, f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, ...

We have  v⊥∞
v∞
n∞

 =
∞∏

k=1

 3∏
j=1

Ck ,j

 ·
 v⊥0

v0
n0



Beware ! – Unlike the 1-dimensional case, the analytic expressions of
the Ck ,j ’s are simply ugly... but fortunately, their asymptotic expressions
are nice.
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A digression : the loss of derivatives

• Here we explain one of the reasons why the 2D case is more
complex than the 1D case : the loss of derivatives.

• In the one dimensional setting we have :

f (t) := f0(0) +

∫ t

0
r(u)eiα(u) cos 2πNu du.

where eiθ := cos θ t + sin θ n and t :=
f ′0
‖f ′0‖

.

• In particular
∂f
∂t

(t) = r(t)eiα(t) cos 2πNt ,

therefore, if f0 is Ck then f is Ck also.
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A digression : the loss of derivatives

• In the two dimensional setting we have :

f (t , s) := f0(0, s) +

∫ t

0
r(u, s)eiα(u,s) cos 2πNu du + gluing term

where eiθ := cos θ t + sin θ n with

t :=
∂t f0
‖∂t f0‖

and n :=
∂t f0 ∧ ∂sf0
‖∂t f0 ∧ ∂sf0‖

• The integral over the variable t can not recover the loss of derivative
due to the presence of the partial derivative ∂sf in the definition of n.
Therefore if f0 is Ck then, generically, f is Ck−1 only.
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C1-Fractal Structure
Corrugation Theorem (∼, Jabrane, Lazarus, Thibert, 2012).– For
every p ∈ T2, we have

Ck ,j+1(p) = Lk ,j+1(p) · Rk ,j(p)

where

Lk ,j+1 :=

 cos θk ,j+1 0 sin θk ,j+1
0 1 0

− sin θk ,j+1 0 cos θk ,j+1

+ O
(

1
Nk ,j+1

)

with θk ,j+1(p) := αk (p) cos(2πNku) and

Rk ,j :=

 − sinβj − cosβj 0
cosβj − sinβj 0

0 0 1

+ O(‖∆k ,j‖)

where ∆k ,j = 〈., .〉E2 − f ∗k ,j〈., .〉E3 is the isometric default.
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C1-Fractal Structure

• This theorem is a first step to understand the geometric structure of
the solutions f∞ generated by the Nash-Kuiper process.

• It says that their normal map looks like a Weierstrass function...

• ... and strongly suggests that f∞ is C1-fractal in the following sense :
it is C1 and the graph of its normal map is fractal.
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More (pictures, articles) on the Hevea Web Site

http ://hevea-project.fr/
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The Hevea Team
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