Le h-principe pour les relations amples

Vincent Borrelli

May 9, 2011

1 Amplitude d'une relation différentielle

Rappelons que si $A \subset \mathbb{R}^n$, on note $IntConv(A, \alpha)$ l'intérieur de l'enveloppe convexe de la composante connexe de A qui contient α . On dit que $A \subset \mathbb{R}^n$ est ample si pour tout $\alpha \in A$ on a $IntConv(A, \alpha) = \mathbb{R}^n$. En particulier $A = \emptyset$ est ample

Soient M et N deux variétés. On note $J^1(M,N)$ l'espace des 1-jets de M dans N, c'est-à-dire l'espace des morphismes Hom(TM,TN). Cette espace fibre naturellement sur $M \times N$:

$$\mathcal{L}(T_xM, T_yN) \longrightarrow Hom(TM, TN) \stackrel{p}{\longrightarrow} M \times N.$$

On note J l'inclusion naturelle

$$\begin{array}{cccc} J: & C^1(M,N) & \longrightarrow & J^1(M,N) \\ f & \longmapsto & j^1f. \end{array}$$

Amplitude d'une relation $\mathcal{R} \subset J^1(M,N)$. – Localement $J^1(M,N)$ s'identifie à :

$$J^1(\mathcal{U},\mathcal{V}) = \mathcal{U} imes \mathcal{V} imes \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n) = \mathcal{U} imes \mathcal{V} imes \prod_{i=1}^m \mathbb{R}^n,$$

où $\mathcal U$ et $\mathcal V$ sont des cartes de M et N. On note $(x,y,v_1,...,v_m)$ un élément de $J^1(\mathcal U,\mathcal V)$ et on pose :

$$J^{1}(\mathcal{U}, \mathcal{V})^{\perp} = \{(x, y, v_{1}, ..., v_{m-1})\},\$$

ainsi $J^1(\mathcal{U}, \mathcal{V}) = J^1(\mathcal{U}, \mathcal{V})^{\perp} \times \mathbb{R}^n$. On note p^{\perp} la projection sur le premier facteur et $\mathcal{R}_{\mathcal{U},\mathcal{V}} \subset J^1(\mathcal{U},\mathcal{V})$ l'image de $\mathcal{R} \subset J^1(M,N)$ par l'identification

locale. Schématiquement, on a :

$$\begin{array}{ccc} \mathcal{R}_{\mathcal{U},\mathcal{V}} & \longrightarrow & J^1(\mathcal{U},\mathcal{V}) \\ & & \downarrow p^{\perp} \\ & & J^1(\mathcal{U},\mathcal{V})^{\perp}. \end{array}$$

Enfin, si $z \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$, on pose : $\mathcal{R}_z^{\perp} = (p^{\perp})^{-1}(z) \cap \mathcal{R}_{\mathcal{U}, \mathcal{V}}$. Notons que la relation \mathcal{R}^{\perp} est une relation différentielle du fibré $J^1(\mathcal{U}, \mathcal{V}) \xrightarrow{p^{\perp}} J^1(\mathcal{U}, \mathcal{V})^{\perp}$.

Définition. – Une relation différentielle $\mathcal{R} \subset J^1(M,N)$ est *ample* si pour toute identification locale $J^1(\mathcal{U},\mathcal{V})$, et pour tout $z \in J^1(\mathcal{U},\mathcal{V})^{\perp}$, \mathcal{R}_z^{\perp} est ample dans $(p^{\perp})^{-1}(z) \simeq \mathbb{R}^n$.

Remarque. – Evidemment, cette définition ne dépend pas de la carte choisie puisqu'on les prend toutes...

Proposition. – La relation différentielle \mathcal{I} des immersions de M^m dans N^n est ample si n > m.

Démonstration. – Soit $J^1(\mathcal{U}, \mathcal{V}) = \mathcal{U} \times \mathcal{V} \times \prod_{i=1}^m \mathbb{R}^n$ une représentation locale. Alors

$$(x, y, v_1, ..., v_m) \in \mathcal{R}_{\mathcal{U}, \mathcal{V}} \iff (v_1, ..., v_m) \text{ est libre dans } \mathbb{R}^n.$$

Soit $z = (x, y, v_1, ..., v_{m-1}) \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$.

• Si $(v_1, ..., v_{m-1})$ sont linéairement indépendants alors :

$$v_m \in (p^{\perp})^{-1}(z)$$
 est dans $\mathcal{R}_{\mathcal{U},\mathcal{V}} \iff v_m \not\in Vect(v_1,...,v_{m-1}) =: \Pi$ $\iff v_m \in \mathbb{R}^n \setminus \Pi.$

Ainsi : $\mathcal{R}_z^{\perp} = \mathcal{R}_{\mathcal{U},\mathcal{V}} \cap (p^{\perp})^{-1}(z) = \mathbb{R}^n \setminus \Pi$. Or la codimension de Π est $n - (m-1) \geq 2$, donc \mathcal{R}_p^{\perp} est ample.

• Si $(v_1,...,v_{m-1})$ sont liés alors $\mathcal{R}_p^{\perp}=\emptyset$ et donc \mathcal{R}_p^{\perp} est ample. \square

2 Un h-principe pour les relations amples

Théorème (Gromov 69-73). – $Si \mathcal{R}$ est ouverte et ample, alors \mathcal{R} satisfait au h-principe paramétrique i.e.

$$J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$$

est une équivalence d'homotopie faible.

Une conséquence immédiate.— Il découle de la proposition précédente et de ce théorème que la relation différentielle des immersions de M^m dans N^n avec n>m satisfait au h-principe paramétrique. Un calcul homotopique montre que si $M^m=\mathbb{S}^2$ et $N^n=\mathbb{R}^3$ alors

$$\pi_0(I(\mathbb{S}^2, \mathbb{R}^3)) = \pi_2(Gl_+(3, \mathbb{R})) = 0.$$

Lignes directrices de la démonstration.— On travaille d'abord localement sur un cube $C = [0,1]^m$ de M et un ouvert $\mathcal{V} \approx \mathbb{R}^n$ de N. Une section $\sigma \in \mathcal{R}_{C,\mathbb{R}^n} \subset J^1(C,\mathbb{R}^n)$ s'écrit :

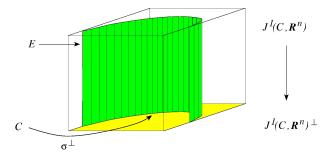
$$\sigma: c \longmapsto (c, f_0(c), v_1(c), ..., v_m(c)) \in \mathcal{R}_{C\mathbb{R}^n}.$$

Notons π^{\perp_m} la projection

$$(c, y, v_1, ..., v_m) \longmapsto (c, y, v_1, ..., v_{m-1})$$

puis $\mathcal{R}_z^{\perp_m} = \mathcal{R}_{C,\mathbb{R}^n} \cap (p^{\perp_m})^{-1}(z)$ pour tout $z = (b,y,v_1,...,v_{m-1}) \in J^1(C,\mathbb{R}^n)^{\perp_m}$. On pose

$$\sigma^{\perp_m}: C \longrightarrow J^1(C, \mathbb{R}^n)^{\perp_m}
c \longmapsto (c, f_0(c), v_1(c), ..., v_{m-1}(c))$$



et on note E le tiré en arrière du fibré $(p^{\perp_m},J^1(C,\mathbb{R}^n),J^1(C,\mathbb{R}^n)^{\perp_m})$:

$$\begin{array}{ccc} E & \longrightarrow & J^1(C, \mathbb{R}^n) \\ \pi \downarrow & & \downarrow p^{\perp_m} \\ C & \stackrel{\sigma^{\perp_m}}{\longrightarrow} & J^1(C, \mathbb{R}^n)^{\perp_m} \end{array}$$

Soit $\mathcal{S}^m \subset E$ le tiré en arrière de \mathcal{R}^{\perp_m} . La relation \mathcal{S}^m est évidemment ouverte et ample. D'autre part $v_m : C \longrightarrow \mathbb{R}^n$ fournit une section de \mathcal{S}^m au dessus de C. On utilise maintenant le lemme fondamental à paramètre (et

 C^{∞}), l'espace des paramètres étant $C:=[0,1]^m$ et la relation différentielle \mathcal{S}^m . Il existe donc $h:C\times[0,1]\stackrel{C^{\infty}}{\longrightarrow}\mathcal{S}^m$ telle que :

$$h(.,0) = h(.,1) = v_m \in \Gamma^{\infty}(\mathcal{S}^m), \quad \forall c \in C, \ h(c,.) \in \Omega^{AR}_{v_m(c)}(\mathcal{S}^m_c)$$

et

$$\forall c \in C, \ \int_0^1 h(c,s)ds = \frac{\partial f_0}{\partial c_m}(c).$$

On pose

$$F_1(c) := f_0(c_1, ..., c_{m-1}, 0) + \int_0^{c_m} h(c_1, ..., c_{m-1}, s, N_1 s) ds.$$

On montre alors que

$$||F_1 - f_0|| = O(\frac{1}{N_1})$$

et même, plus encore, que

$$||F_1 - f_0||_{C^1,\widehat{m}} = O(\frac{1}{N_1})$$

οù

$$||f||_{C^{1},\widehat{m}} = \max(||f||_{C^{0}}, ||\frac{\partial f}{\partial c_{1}}||_{C^{0}}, ..., ||\frac{\partial f}{\partial c_{m-1}}||_{C^{0}})$$

est la norme C^1 sans le terme $\|\frac{\partial f}{\partial c_m}\|_{C^0}$. Cette dernière subtilité ne nous servira pas tout de suite, mais à la prochaine étape. Par définition de \mathcal{S}^m , la section

$$c \mapsto (c, f_0(c), v_1(c), ..., v_{m-1}(c), \frac{\partial F_1}{\partial c_m}(c))$$

est dans la relation $\mathcal{R}_{C,\mathbb{R}^n}$. Puisque que $\mathcal{R}_{C,\mathbb{R}^n}$ est ouverte et que F_1 est C^0 -proche de f_0 , quitte à augmenter N_1 , on peut supposer que

$$c \mapsto (c, F_1(c), v_1(c), ..., v_{m-1}(c), \frac{\partial F_1}{\partial c_m}(c))$$

est une section de $\mathcal{R}_{C,\mathbb{R}^n}$. On recommence par rapport à l'avant-dernière variable pour obtenir :

$$c \mapsto (c, F_1(c), v_1(c), ..., v_{m-2}(c), \frac{\partial F_2}{\partial c_{m-1}}(c), \frac{\partial F_1}{\partial c_m}(c)) \in \mathcal{R}_{C,\mathbb{R}^n}.$$

En remarquant que $\mathcal{R}_{C,\mathbb{R}^n}$ est ouverte et que F_2 et F_1 sont $(C^1,\widehat{c_{m-1}})$ -proches, on peut toujours supposer que :

$$c \mapsto (c, F_2(c), v_1(c), ..., v_{m-2}(c), \frac{\partial F_2}{\partial c_{m-1}}(c), \frac{\partial F_2}{\partial c_m}(c)) \in \mathcal{R}_{C,\mathbb{R}^n},$$

et ainsi de suite jusqu'à obtenir une section complètement intégrée, autrement dit une solution $F := F_m$ au dessus de C qui est C^0 -proche de f_0 :

$$||F - f_0||_{C^0} = O(\frac{1}{N_1} + \dots + \frac{1}{N_m}).$$

Pour obtenir une solution définie sur tout M^m , on recouvre la variété de cubes et on applique le procédé précédent récursivement sur chaque cube. Bien sûr, le problème qui se pose est celui du recollement des solutions à chaque étape. Précisément, si C est un ouvert cubique, K un compact de C et si f_0 est déjà solution sur un voisinage ouvert Op(K) de K, il s'agit d'obtenir une solution f qui prolonge f_0 sur C. Pour cela on va devoir modifier chacune des intégrations convexes $F_1, ..., F_m$. Soit $\lambda_1 : C \longrightarrow [0, 1]$ une fonction C^{∞} à support compact telle que

$$\lambda_1(c) = \begin{cases} 1 & \text{si } c \in Op_1(K) \subset Op(K) \\ 0 & \text{si } c \in C \setminus Op(K). \end{cases}$$

où $Op_1(K)$ est un voisinage ouvert de K plus petit que Op(K). Soit F_1 la solution précédente au dessus de C construite à partir de

$$\sigma: c \longmapsto (c, f_0(c), v_1(c), ..., v_m(c)) \in \mathcal{R}_{C,\mathbb{R}^n}.$$

On pose

$$f_1 := F_1 + \lambda_1 (f_0 - F_1).$$

Soit $j \in \{1, ..., m\}$, on a

$$\frac{\partial f_1}{\partial c_j} = \frac{\partial F_1}{\partial c_j} + \lambda_1 \cdot \left(\frac{\partial f_0}{\partial c_j} - \frac{\partial F_1}{\partial c_j} \right) + \frac{\partial \lambda_1}{\partial c_j} \cdot (f_0 - F_1).$$

Puisque λ_1 est à support compact, le terme $\frac{\partial \lambda_1}{\partial c_j}$ est bornée quel que soit $j \in \{1, ..., m\}$. Puisque F_1 et f_0 sont (C^1, \widehat{m}) -proches on en déduit que pour tout $j \in \{1, ..., m-1\}$, on a

$$||f_1 - F_1||_{C^1,\widehat{m}} = O(\frac{1}{N_1}).$$

En revanche le terme

$$\frac{\partial f_1}{\partial c_m} - \frac{\partial F_1}{\partial c_m}$$

n'a aucune raison d'être petit en général, et précisément, c'est lui qui importe si l'on veut que

 $c \longmapsto \left(c, \frac{\partial f_1}{\partial c_m}(c)\right)$

soit une solution de \mathcal{S}^m . En effet, \mathcal{S}^m étant ouverte et $c \longmapsto \frac{\partial F_1}{\partial c_m}(c)$ étant déjà une solution de \mathcal{S}^m , il suffirait que $\frac{\partial f_1}{\partial c_m}$ et $\frac{\partial F_1}{\partial c_m}$ soient C^0 -proches pour conclure. La petitesse de

$$\left\| \frac{\partial f_1}{\partial c_m} - \frac{\partial F_1}{\partial c_m} \right\|_{C^0}$$

dépend de celle de

$$\left\| \frac{\partial f_0}{\partial c_m} - \frac{\partial F_1}{\partial c_m} \right\|$$

sur Op(K). On montre alors que l'on peut toujours choisir la famille de chemins h globalement avec pour contrainte qu'au dessus de Op(K) elle soit égal à la famille des chemins constants $\frac{\partial f_0}{\partial c_m}$ i. e.

$$\forall c \in Op(K), \ h(c,s) = \frac{\partial f_0}{\partial c_m}(c).$$

Puisque

$$\begin{array}{lcl} \frac{\partial F_1}{\partial c_m}(c) & = & h(c_1,...,c_{m-1},c_m,N_1c_m) \\ \\ & = & \frac{\partial f_0}{\partial c_m}(c) \end{array}$$

la différence $\frac{\partial f_0}{\partial c_m} - \frac{\partial F_1}{\partial c_m}$ est nulle au dessus de Op(K) et donc $\left\| \frac{\partial f_1}{\partial c_m} - \frac{\partial F_1}{\partial c_m} \right\|_{C^0}$ est petit. Pour plus de détails, voir [6] p. 51-60.

Il n'y a aucune difficulté à passer d'un h-principe à un h-principe paramétrique.

Théorème (Gromov). – Soit $\mathcal{R} \subset J^1(M,N)$ ouverte et ample, alors \mathcal{R} satisfait au h-principe C^0 -dense.

Cela signifie que si P est une variété compacte vue comme un espace de paramètres et $\sigma: P \longrightarrow \Gamma(\mathcal{R})$, alors pour tout $\epsilon > 0$ il existe une homotopie $\sigma_u: [0,1] \times P \longrightarrow \Gamma(\mathcal{R})$ telle que $\sigma_0 = \sigma$ et

$$\begin{array}{ccc} \sigma_1: & P & \longrightarrow & J(\mathcal{S}ol(\mathcal{R})) \subset \Gamma(\mathcal{R}) \\ & p & \longmapsto & j^1 f_p. \end{array}$$

De plus : $\max_{p \in P} \|g_p - f_p\|_{C^0} < \epsilon$, où $g_p = bs(\sigma) : P \longrightarrow C^{\infty}(M, N)$.

3 h-principe pour des relations fermées

Je ne traite ici que le cas que je connais bien : celui du théorème de Nash sur les immersions C^1 -isométriques. Néanmoins, l'approche intégration convexe de ce théorème se prête facilement à la généralisation, les deux points clés sont les suivants : il faut posséder une sous-solution de la relation différentielle (ici une immersion strictement courte) ainsi qu'un contrôle de la norme C^1 des applications construites par l'intégration convexe. Voyons cela un peu plus dans le détail.

Théorème (Nash 54, Kuiper 55).— Soit $f_0:(M^m,g)\longrightarrow \mathbb{E}^q\ (q>n)$ une immersion strictement courte (i. e. $\Delta:=g-f_0^*\langle\cdot,\cdot\rangle_{E^q}$ est une métrique) alors il existe une immersion C^1 -isométrique $f:(M^m,g)\longrightarrow \mathbb{E}^q$ qui est C^0 -proche de f_0 .

Lignes directrices de la démonstration.— On suppose M^m compacte pour simplifier l'exposition. Notons \mathcal{R} la relation différentielle des isométries et $(\delta_k)_k$ une suite strictement croissante de nombres strictement positifs, convergeant vers 1 et posons :

$$g_k := f_0^* \langle \cdot, \cdot \rangle_{E^q} + \delta_k \Delta.$$

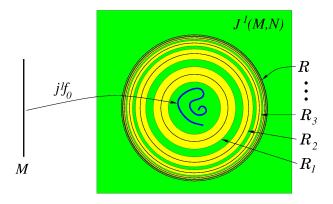
Bien sûr $(g_k)_k \uparrow g$. On définit ensuite une suite de relations différentielles ouvertes $(\mathcal{R}_k)_k$ par les inéquations

$$g_k - \epsilon_k \Delta < f_0^* \langle \cdot, \cdot \rangle_{E^q} < g_k + \epsilon_k \Delta$$

avec $\epsilon_k = \frac{\delta_{k+1} - \delta_k}{3}$. Observons que la suite $(\mathcal{R}_k)_k$ converge vers \mathcal{R} (pour la distance de Hausdorff) et que les \mathcal{R}_k sont tous disjoints deux à deux.

Quitte à modifier la suite $(\delta_k)_k$, on peut toujours supposer que f_0 est stritement courte pour g_1 . La relation \mathcal{R}_1 (comme tous les \mathcal{R}_k d'ailleurs) n'est

pas ample mais le caractère strictement court de f_0 permet de se passer de cette hypothèse : en effet cette condition assure que le 1-jet de f_0 est dans l'enveloppe convexe de la trace de \mathcal{R}_1 dans un certain sous-fibré.



La machinerie du h-principe pour les relations amples s'applique et on obtient, après un certain nombre d'intégrations convexes, une nouvelle immersion f_1 telle que :

1) f_1 est une solution de \mathcal{R}_1 i.e. $f_1^*\langle \cdot, \cdot \rangle_{E^q} \approx g_1$

2)
$$||f_1 - f_0||_{C^0} = O(\frac{1}{N_1})$$

où N_1 est un nombre d'oscillations associé à f_1 . En choisissant judicieusement les chemins h qui construisent l'intégration convexe, on arrive à contrôler la norme C^1 : il existe une constante C universelle (i.e. indépendante du nombre d'oscillations, de f_0 , du choix des δ_k) telle que :

3)
$$||f_1 - f_0||_{C^1} \le C\sqrt{\delta_1}$$
.

Du 1) on déduit que f_1 est strictement courte pour g_2 . On applique une nouvelle fois la machinerie de l'intégration convexe pour construire f_2 telle que :

- 1) f_2 est une solution de \mathcal{R}_2 i.e. $f_2^*\langle\cdot,\cdot\rangle_{E^q}\approx g_2$
- 2) $||f_2 f_1||_{C^0} = O(\frac{1}{N_2})$
- 3) $||f_2 f_1||_{C^1} \le C\sqrt{\delta_2 \delta_1}$.

On construit ainsi une suite d'applications $(f_k)_k$ qui converge C^0 si les $(N_k)_k$

¹C'est-à-dire en fait naturellement et sans fioriture...

croissent suffisamment vite, et qui converge C^1 si

$$\sum_{k} \sqrt{\delta_{k+1} - \delta_k} < +\infty.$$

Augmenter les $(N_k)_k$ ne coûtant rien, et le choix de la suite $(\delta_k)_k$ étant libre dans la démonstration, on peut toujours supposer que la suite $(f_k)_k$ converge C^1 vers une certaine application f qui sera nécessairement une solution de \mathcal{R} et donc une immersion isométrique C^1 .

Pour plus de détails, on peut lire ou consulter [5], [4], [2] p. 189-197, [3] p. 201-207, [6] p. 194-199. \Box

Remarque.— La croissance des N_k contrôle la régularité de l'immersion finale. Dans [1], Conti, De Lellis et Szekelyhidi montrent que si $\delta_k := 1 - e^{-\gamma k}$ avec $\gamma > 0$ alors les N_k croissent exponentiellement.

References

- [1] S. Conti, C. De Lellis et L. Szekelyhidi, h-principle and rigidity for $C^{1,\alpha}$ -isometric embeddings, arXiv:0905.0370, 4 may 2009.
- [2] Y. ELIAHSBERG ET N. MISHACHEV, *Introduction to the h-principle*, Graduate Studies in Mathematics, vol. 48, A. M. S., Providence, 2002.
- [3] M. Gromov, Partial Differential Relations, Springer-Verlag, 1986.
- [4] N. Kuiper, On C^1 -isometric imbeddings I, II, Indag. Math. 17 (1955), 545-556, 683-689.
- [5] F. NASH, C¹-isometric imbeddings, Ann. Math. 63 (1954), 384-396.
- [6] D. Spring, Convex Integration Theory, Monographs in Mathematics, Vol. 92, Birkhäuser Verlag, 1998.