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In this document we move from the one to the multi-dimensional h-
principle (the usual one). We state the Gromov theorem regarding ample
and open differential relation and we give the main ideas of its proof. We
then focus on closed differential relations and see, through the example of
isometric immersions, how to deal with some of them.

1 Ample differential relations

Let A ⊂ Rn, recall that we denote by IntConv(A, a) the interior of the
convex hull of the component of A to which a belongs. The subset A ⊂ Rn
is said to be ample if for every a ∈ A we have IntConv(A, a) = Rn. In
particular, A = ∅ is ample.

Let M and N be two manifolds. We denotes by J1(M,N) the 1-jet space
of maps from M to N. This space is a natural fiber bundle over M ×N

L(TxM,TyN) −→ J1(M,N)
p−→M ×N.

We denote by J the natural inclusion

J : C1(M,N) −→ J1(M,N)
f 7−→ j1f.

Ample relations in J1(M,N). – Locally, we identify J1(M,N) with

J1(U ,V) = U × V × L(Rm,Rn) = U × V ×
m∏
i=1

Rn,

where U and V are charts of M and N. We denote by (x, y, v1, ..., vm) an
element of J1(U ,V) and we set:

J1(U ,V)⊥ := {(x, y, v1, ..., vm−1)},
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thus J1(U ,V) = J1(U ,V)⊥ × Rn. We denote by p⊥ the projection over the
first factor and by RU ,V ⊂ J1(U ,V) the image of R ⊂ J1(M,N) by our local
identification. In a diagram, we have

RU ,V −→ J1(U ,V)
↓ p⊥

J1(U ,V)⊥.

Finally, if z ∈ J1(U ,V)⊥, we set R⊥z = (p⊥)−1(z)∩RU ,V . Note that R⊥ is a

differential relation of the bundle J1(U ,V)
p⊥−→ J1(U ,V)⊥.

Definition. – A differential relation R ⊂ J1(M,N) is ample if for every
local identification J1(U ,V) and for every z ∈ J1(U ,V)⊥, the space R⊥z is
ample in (p⊥)−1(z) ' Rn.

Remark. – Obviously, this definition does not depend on the chosen chart
since we take them all...

Proposition. – The differential relation I of immersions from Mm to Nn

is ample if n > m.

Proof. – Let us reprent locally J1(M,N) by J1(U ,V) = U ×V ×
∏m
i=1Rn.

We have

(x, y, v1, ..., vm) ∈ RU ,V ⇐⇒ (v1, ..., vm) est libre dans Rn.

Let z = (x, y, v1, ..., vm−1) ∈ J1(U ,V)⊥.

• If (v1, ..., vm−1) are linearly independent then

vm ∈ (p⊥)−1(z) lies inside RU ,V ⇐⇒ vm 6∈ V ect(v1, ..., vm−1) =: Π
⇐⇒ vm ∈ Rn \Π.

Therefore R⊥z = RU ,V ∩ (p⊥)−1(z) = Rn \ Π. Since the codimension of Π is
n− (m− 1) ≥ 2, it ensues that R⊥p is ample.

• If (v1, ..., vm−1) are linearly dependent thenR⊥p = ∅ and thus R⊥p is
ample. �
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2 H-principle for ample relations

Theorem (Gromov 69-73 [2]). – Let R ⊂ J1(M,N) be an open and
ample differential relation. Then R satisfies the parametric h-principle i. e.

J : Sol(R) −→ Γ(R)

is a weak homotopy equivalence.

One immediate consequence.– It ensues from the above proposition
and from this theorem that the parametric h-principle holds for the differ-
ential relation of immersions of Mm into Nn with n > m. A homotopic
computation shows that if Mm = S2 and Nn = R3 then

π0(I(S2,R3)) = π2(Gl+(3,R)) = 0.

Thus there is only one class of immersions of the sphere inside the three
dimensional space and in particular, the sphere can be everted among im-
mersions (Smale’s paradox, [6]).

Guidelines of the proof.– We first work locally over a cubic chart C =
[0, 1]m of M and an open V ≈ Rn of N. A section σ ∈ RC,Rn ⊂ J1(C,Rn)
has the following expression

σ : c 7−→ (c, f0(c), v1(c), ..., vm(c)) ∈ RC,Rn .

Let us denote by p⊥m the projection

(c, y, v1, ..., vm) 7−→ (c, y, v1, ..., vm−1)

thenR⊥m
z = RC,Rn∩(p⊥m)−1(z) for every z = (b, y, v1, ..., vm−1) ∈ J1(C,Rn)⊥m .

We set
σ⊥m : C −→ J1(C,Rn)⊥m

c 7−→ (c, f0(c), v1(c), ..., vm−1(c))

and we denote by E the pull-back bundle (p⊥m , J1(C,Rn), J1(C,Rn)⊥m):

E −→ J1(C,Rn)
π ↓ ↓ p⊥m

C
σ⊥m

−→ J1(C,Rn)⊥m
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The pull-back bundle E

Let Sm ⊂ E be the pull-back of the relation R⊥m . The relation Sm is ob-
viously open and ample. Note also that vm : C −→ Rn provides a section
of Sm over C. We now use the C∞-parametric Fundamental Lemma with
C := [0, 1]m as parameter space and with Sm as differential relation. There

exists h : C × [0, 1]
C∞−→ Sm such that

h(., 0) = h(., 1) = vm ∈ Γ∞(Sm), ∀c ∈ C, h(c, .) ∈ ΩAR
vm(c)(S

m
c )

and

∀c ∈ C,
∫ 1

0
h(c, s)ds =

∂f0
∂cm

(c).

We set

F1(c) := f0(c1, ..., cm−1, 0) +

∫ cm

0
h(c1, ..., cm−1, s,N1s)ds.

We then have

‖F1 − f0‖ = O(
1

N1
)

and even more,

‖F1 − f0‖C1,m̂ = O(
1

N1
)

where

‖f‖C1,m̂ = max(‖f‖C0 , ‖
∂f

∂c1
‖C0 , ..., ‖

∂f

∂cm−1
‖C0)

is the C1 norm without the ‖ ∂f
∂cm
‖C0 term. This last subtlety will help us

at the next step. By the very definition of Sm, the section

c 7→ (c, f0(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

4



lies inside the relation RC,Rn . Since RC,Rn is open and F1 is C0-close to f0,
even if it means to increase N1, we can assume that

c 7→ (c, F1(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

is a section of RC,Rn . We then repeat the same process with respect to the
next to last variable to obtain

c 7→ (c, F1(c), v1(c), ..., vm−2(c),
∂F2

∂cm−1
(c),

∂F1

∂cm
(c)) ∈ RC,Rn .

Noticing that RC,Rn is open and that F2 and F1 are (C1, ĉm−1)-close, we
can assume that:

c 7→ (c, F2(c), v1(c), ..., vm−2(c),
∂F2

∂cm−1
(c),

∂F2

∂cm
(c)) ∈ RC,Rn ,

and so on until the section is completly holonomic, that is, until a solution
F := Fm over C and C0-close to f0 is obtained:

‖F − f0‖C0 = O(
1

N1
+ ...+

1

Nm
).

In order to build a solution globally defined over Mm, we first perform a
cubic decomposition of the manifold and we then recursively apply the pre-
ceding process over every cube. Of course the real problem is the one of the
sticking of the solutions together. Precisely if C is an open cube, K a com-
pact subset of C and f0 a solution over an open neighborhood Op(K) of K,
the point is to construct a solution f extending f0 on C. To achieve this goal,
we need to modify every convex integrations F1, ..., Fm. Let λ1 : C −→ [0, 1]
be a compactly supported C∞ function such that

λ1(c) =

{
1 if c ∈ Op1(K) ⊂ Op(K)

0 if c ∈ C \Op(K).

where Op1(K) ⊂ Op(K) is an open neighborhood of K. Let F1 be the
preceding solution over C obtained from

σ : c 7−→ (c, f0(c), v1(c), ..., vm(c)) ∈ RC,Rn .

We set
f1 := F1 + λ1(f0 − F1).
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Let j ∈ {1, ...,m}, we have

∂f1
∂cj

=
∂F1

∂cj
+ λ1.

(
∂f0
∂cj
− ∂F1

∂cj

)
+
∂λ1
∂cj

.(f0 − F1).

Since λ1 is compactly supported, the
∂λ1
∂cj

is bounded for every j ∈ {1, ...,m}.

In the one hand, since F1 and f0 are (C1, m̂)-close, it ensues that for every
j ∈ {1, ...,m− 1}, we have

‖f1 − F1‖C1,m̂ = O(
1

N1
).

In the other hand, regarding the

∂f1
∂cm

− ∂F1

∂cm

term, there is no reason why it could be small in general. But it is the
relevant term if we want

c 7−→
(
c,
∂f1
∂cm

(c)

)

to be a solution of Sm. Indeed, since Sm is open and c 7−→ ∂F1

∂cm
(c) is a

solution of Sm, it would be enough to have
∂f1
∂cm

and
∂F1

∂cm
C0-close together

to conclude. The smallness of∥∥∥∥ ∂f1∂cm
− ∂F1

∂cm

∥∥∥∥
C0

relies on the one of ∥∥∥∥ ∂f0∂cm
− ∂F1

∂cm

∥∥∥∥
over Op(K). It turns out that we can always choose the family of loops h
globally with the extra constraint that, over Op(K), it is equal to the family

of constant loops
∂f0
∂cm

i. e.

∀c ∈ Op(K), h(c, s) =
∂f0
∂cm

(c).
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Since
∂F1

∂cm
(c) = h(c1, ..., cm−1, cm, N1cm)

=
∂f0
∂cm

(c)

the difference
∂f0
∂cm

− ∂F1

∂cm
vanishes over Op(K) and thus

∥∥∥∥ ∂f1∂cm
− ∂F1

∂cm

∥∥∥∥
C0

is small. For more details see [7] p. 51-60. Note that there is no difficulty
to move from a h-principle to a parametric h-principle. �

Theorem (Gromov [2], [3]). – Let R ⊂ J1(M,N) be open and ample,
then R satisfies to the C0-dense h-principle .

This means that if P is a compact manifold seen as a parameter space
and if σ : P −→ Γ(R), then for every ε > 0 there exists a homotopy
σu : [0, 1]× P −→ Γ(R) such that σ0 = σ and

σ1 : P −→ J(Sol(R)) ⊂ Γ(R)
p 7−→ j1fp.

Moreover maxp∈P ‖gp − fp‖C0 < ε, where gp = bs(σ) : P −→ C∞(M,N).

3 H-principle for closed relations

I consider here the only example with which I am familiar: the closed dif-
ferential relation of isometric immersion. Nevertheless, the study of this
example gives some idea of what is needed for solving more general closed
relations with a convex integration process. The two key points are the
following: we have to own a subsolution of the differential relation (here a
strictly short immersion) together with a control of the C1 norm of the maps
resulting from the convex integration process. Let us see this more closely
with the celebrated C1 embedding theorem of Nash and Kuiper.

Definition.– Let f : (Mm, g) −→ Eq be an embedding. If g > f∗〈·, ·〉Eq ,
i. e. ∆ := g − f∗〈·, ·〉Eq is a metric, then f is said to be strictly short. If
g = f∗〈·, ·〉Eq , the embedding f is said to be isometric.

Theorem (Nash 54 [5], Kuiper 55 [4]).– Let f0 : (Mm, g) −→ Eq
(q > n) be a strictly short embedding then there exists a C1 isometric em-
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bedding f : (Mm, g) −→ Eq which is C0 close to f0.

A rough sketch of the proof.– To simplify the presentation, we assume
that Mm is compact. Let us denotes by R the isometric differential relation
and by (δk)k an increasing sequence of positive numbers converging toward
1. We set:

gk := f∗0 〈·, ·〉Eq + δk∆.

We have (gk)k ↑ g. We then define a sequence of differential relation (Rk)k
by the following inequations

gk − εk∆ < f∗0 〈·, ·〉Eq < gk + εk∆

with εk =
δk+1−δk

3 . The sequence (Rk)k is converging toward R (for the
Hausdorff distance) and the Rks are pairewise disjoint.

The embedding f0 is strictly short for g1. The differential relation R1 is not
ample (as all of the Rks) but, thanks to the fact that f0 is strictly short
for g1 this obstacle can be circumvented. This will be explained in the next
document. In some sense, the shortness hypothesis ensures that the 1-jet de
f0 lies inside some iterated convex hull extension of R1.

The 1-jet space J1(M,N) (green), the differential relations Rk (yellow) and the

image of j1f0 (blue).

By applying the Gromov machinery to f0, we then obtain a new embedding
f1 such that:

1) f1 is a solution of R1 i. e. f∗1 〈·, ·〉Eq ≈ g1
2) ‖f1 − f0‖C0 = O( 1

N1
)

where N1 ∈ N∗ is a free parameter in the convex integration formula defining
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f1. By an appropriate choice of the family of loops h appearing in that
formula, it is possible to achieve the following control of the C1 norm of f1

3) ‖f1 − f0‖C1 ≤ C
√
δ1.

where C is a universal constant (independent of N1, f0 and (δk)k∈N∗).

The map f1 is a solution of R1. The image of its 1-jet j1f1 (red) lies inside R1

(blue).

From 1) we deduce that f1 is strictly short for g2. We thus apply once again
the integration convex machinery to build a new map f2 such that :

1) f2 is a solution of R2 i. e. f∗2 〈·, ·〉Eq ≈ g2
2) ‖f2 − f1‖C0 = O( 1

N2
)

3) ‖f2 − f1‖C1 ≤ C
√
δ2 − δ1.

The Gromov machinery is applied iteratively producing a sequence of maps f1, f2,

etc.

This builds a sequence of maps (fk)k which is C0 converging if the growth
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of the (Nk)k is fast enough, and which is C1 converging if∑
k

√
δk+1 − δk < +∞.

Raising the (Nk)ks costs nothing, and the choice of the sequence (δk)k is a
free ingredient of the proof, we thus can assume that the sequence (fk)k is
C1 converging toward a map f which is bound to be a solution of R, that
is, a C1 isometric immersion.

Much more details will be given in the next document. The following ref-
erences should be mentionned: [5], [4], [1] p. 189-197, [3] p. 201-207, [7] p.
194-199. �
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