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1 From the Convex Integration Theory to the Nash-
Kuiper Theorem

The goal of this text is to recover the Nash-Kuiper result on C1 isometric
embeddings from the machinery of the Gromov Integration Theory.

Theorem (Nash 54, Kuiper 55).– Let Mn be a compact1 Rieman-

nian manifold and f0 : (Mn, g)
C1

−→ Eq be a strictly short embedding (i.e
∆ := g − f∗0 〈·, ·〉Eq is a Riemannian metric). Then, for every ε > 0, there
exists a C1 isometric embedding f : (Mn, g) −→ Eq such that ‖f−f0‖C0 ≤ ε.

Nevertheless, there are three major obstacles to apply the Gromov Theorem
for Ample relations here. First, the isometric relation is closed, second, it is
not ample, third the convex integration process produces non-injective maps
in general. We have seen previously that the first obstacle can be circum-
vented by iteratively applying the Gromov Theorem. But to deal with the
two other obtacles, we will have to adapt the Gromov machinery. Let us see
why.

Assume, for a practical presentation, that our manifold M is a Riemannian
square ([0, 1]2, g) where g is any metric and that q = 3. Our goal is to
produce a map f : ([0, 1]2, g) −→ E3 which is ε-isometric for a given ε > 0.
Thus, our 1-jet space is

J1([0, 1]2,E3) = [0, 1]2 × E3 × (E3)2

and our (open) differential relation Rε is

Rε = {(c, y, v1, v2) | gij(c)− ε ≤ 〈vi, vj〉 ≤ gij(c) + ε, 1 ≤ i, j ≤ 2}.
1This compactness hypothesis is not essential but it will help simplifying the exposition.
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Let f0 : ([0, 1]2, g) −→ E3 be a strictly short map. To apply the Gromov
machinery for ample relations we need to extend it to a section σ of our
differential relation Rε

σ : [0, 1]2 −→ Rε ⊂ J1([0, 1]2,E3)
c = (c1, c2) 7−→ (c, f0(c), v1(c), v2(c)).

Since the topology of the base manifold is trivial, finding such a section is
easy. In fact, there is a considerable latitude for the choice of (v1, v2) since
the constraints are underdetermined : v1(c) and v2(c) must be of length
approximatively

√
g11(c) and

√
g22(c) and the angle between then is ap-

proximatively α = arccos

(
g12(c)√

g11(c)
√
g22(c)

)
.

The first step of the machinery is to perform a convex integration in the
direction of the c2 variable. We denote by p⊥2 the projection

(c, y, v1, v2) 7−→ (c, y, v1)

and we set R⊥2
z = Rε ∩ (p⊥2)−1(z) for every z = (c, y, v1). The space R⊥2

z

is a thickening of a circle.

The space R⊥2
z in E3. The angle of the cone with basis R⊥2

z is approximatively α.

We have denoted v for ∂f0
∂c2

(c).

Even if f0 is strictly short, there is no reason why the vector
∂f0
∂c2

(c) should

be in the convex hull of R⊥2

z(c) with z(c) = (c, f0(c), v1(c)), c ∈ [0, 1]2. Note
also that the natural choice

v1(c) :=
√
g11(c)

∂f0
∂c1

(c)

‖∂f0∂c1
(c)‖
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is of no help since
∂f0
∂c2

(c) will then lies in the convex hull of the cone with

basis R⊥2

z(c) but not in the convex hull of R⊥2

z(c) in general. In short, a direct
application of the Gromov Theorem for Ample Relations fails.

2 A strategy to solve the relation of isometric maps

Recall that we already have found a strategy to solve the closed relation of
isometric maps R by iteratively solving a sequence (R̃k)k∈N∗ of open differ-
ential relations converging toward R.

Let ∆ := g − f∗0 〈·, ·〉Eq and (δk)k∈N∗ be a strictly increasing sequence of
positive numbers converging toward 1. We set

gk := f∗0 〈·, ·〉Eq + δk∆.

Obviously (gk)k∈N∗ ↑ g. The relation Rk is defined to be the relation of
gk-isometric maps and R̃k is a thickning of Rk. The strategy is to start
with the strictly short map f0, then to solve R̃1 to get a new map f1 which
is strictly short for R̃2, then to solve R̃2, etc. Let fk−1 be a strictly short
embedding for gk−1, the fundamental step is thus to build a new map fk
such that

1) fk is a solution of R̃k,
2) fk is C0-close to fk−1,
3) ‖fk − fk−1‖C1 is under control,
4) fk is an embedding.

Note that since the sequence of metrics (gk)k∈N∗ is strictly increasing, all
the Rk are disjoint. Thus, provided the thickning R̃k is small enough, the
map fk will be short for gk+1.

In what follows we describe how to buid such a map fk from fk−1 since,
as we have just seen, we can not apply directly the Gromov Theorem for
Ample Relations.

3 How to adapt the Gromov machinery

For simplicity, we first assume that Mn is the cube [0, 1]n. The metric dis-
torsion induced by fk−1 is measured by a field of bilinear forms obtained as
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the difference
∆k := gk − f∗k−1〈., .〉Eq .

This difference is a metric since fk−1 is strictly short, thus the image of the
map

∆k : Mn −→M ⊂ (En ⊗ En)∗

lies inside the positive cone M of inner products of En. There exist Sk ≥
n(n+1)

2 linear forms `k,1, . . . `k,Sk
of En such that

gk − f∗k−1〈., .〉Eq =

Sk∑
j=1

ρk,j`k,j ⊗ `k,j

where the coefficients ρk,j , j ∈ {1, ..., Sk} are positive functions. Indeed,
there exist (constant) inner products I1, ..., ILk

on Rn such that the image
of ∆k lies inside the positive cone generated by the constant bilinear forms
Ij . Each inner product Ij is a sum of primitive forms `i,j ⊗ `i,j , hence the
desired decomposition.

In that illustration the space of symmetric bilinear forms of R3 is identified with

R3 via the basis (e∗1 ⊗ e∗2 + e∗2 ⊗ e∗1, e∗2 ⊗ e∗2, e∗1 ⊗ e∗1). A cone C (grey-white) spanned

by three bilinear forms `i ⊗ `i, i ∈ {1, 2, 3}, is pictured inside the cone of inner

products M (purple).

The way to adapt the Gromov machinery to the isometric relation is to
apply the successive convex integrations not along the n directions of the
coordinates in [0, 1]n but rather along the Sk directions corresponding to the
Sk linear forms `1, ..., `Sk

. This will produce Sk intermediary maps

fk,1, ..., fk,Sk
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such that

gk − f∗k,1〈., .〉Eq ≈ ρk,2`k,2 ⊗ `k,2+ρk,3`k,3 ⊗ `k,3+...+ρk,Sk
`k,Sk

⊗ `k,Sk

gk − f∗k,2〈., .〉Eq ≈ ρk,3`k,3 ⊗ `k,3+...+ρk,Sk
`k,Sk

⊗ `k,Sk

...
...

gk − f∗k,Sk−1〈., .〉Eq ≈ ρk,Sk
`k,Sk

⊗ `k,Sk

gk − f∗k,Sk
〈., .〉Eq ≈ 0.

In orther words, the isometric default ∆k is going to be reduced step by
step by a succession of convex integrations that detroy the coefficients in
the decomposition one by one. The map fk := fk,Sk

is then a solution of

R̃k.

Note that

f∗k,j〈., .〉Eq − f∗k,j−1〈., .〉Eq = (gk − f∗k,j−1〈., .〉Eq)− (gk − f∗k,j〈., .〉Eq)

≈ ρk,j`k,j ⊗ `k,j .

Hence, in that new approach, the fundamental problem is the following :

Fundamental problem.– Given a positive function ρ, a linear form ` 6= 0
and an embedding f0 how to build an other embedding f such that

f∗〈., .〉Eq ≈ µ

where µ := f∗0 〈., .〉Eq + ρ `⊗ ` ?

We are going to solve this problem thanks to a convex integration process
described below.

4 The one dimensional case

In the above fundamental problem, the embedding f0 is isometric in the
directions lying inside ker ` and short in the directions transverse to ker `.
We redress this defect by elongating f0 in a direction transverse to ker `. The
elongation is generated by a normal deformation which gives to the image
submanifold a corrugated shape.
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A plane and a corrugated plane.

One difficulty in the construction of f rests in the choice of a good transversal
direction to perform the convex integration process. This difficulty obviously
vanishes in the case n = 1, that is why we begin by considering this case first.

One dimensional fundamental problem.– Let f0 : [0, 1] −→ Eq be an
embedding, ρ a positive function, ` 6= 0 a linear form on R, how to build an
other embedding f such that

∀c ∈ [0, 1], ‖f ′(c)‖2 ≈ ‖f ′0(c)‖2 + ρ(c)`2(∂c) ?

Of course that one dimensional problem is trivial, even if the approxima-
tion symbol (≈) is replaced by a true equality (=). But the interest lies
elsewhere: the convex integration theory offers a way to solve that problem
that can be generalized to any dimension.

Note that the differential relation S of that problem depends on the point
c ∈ [0, 1], precisely

S = {(c, y, v1) | ‖v1‖ = r(c)} ⊂ J1([0, 1],Rq)

where r(c) :=
√
‖f ′0(c)‖2 + ρ(c)`2(∂c). We thus have to find a family of loops

(hc)c∈[0,1]:

hc : [0, 1] −→ Sq−1(r(c)) ⊂ Eq

such that

f ′0(c) =

∫ 1

0
hc(s)ds.

Let n : [0, 1] −→ Eq a unit normal to the curve f0. We set

hc(s) := r(c)eiα(c) cos 2πs
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where eiθ := cos θ t + sin θ n and t :=
f ′0
‖f ′0‖

. It is easily checked that∫ 1

0
r(c)eiα(c) cos 2πsds = r(c)J0(α(c)) t(c)

where J0 is the Bessel function of order 0. We thus have to choose

α(c) := J−10

(
‖f ′0(c)‖
r(c)

)
(recall that J0 is invertible on [0, κ] where κ ≈ 2.4 is the smallest positive
root of J0).

The loop hc.

We now define f by the following one dimensional convex integration
formula:

f(c) := f0(0) +

∫ c

0
r(u)eiα(u) cos 2πNu du.

with N ∈ N∗.

Observation.– We call N the number of corrugations of the convex inte-
gration formula.

Lemma.– The map f solves the one dimensional fundamental problem. Its
speed ‖f ′‖ is equal to the given function r = (‖f ′0‖2 + ρ`2(∂c))

1
2 . Moreover

‖f − f0‖C0 = O
(
1
N

)
and if N is large enough f is an embedding.

Proof.– The relation ‖f ′‖2 = ‖f ′0‖2 + ρ`2(∂c) ensues from the very defini-
tion of f. If N is large enough, the image of f lies inside a small tubular
neighborhood of f0. Since f is a normal deformation of f0, it is embedded.
�.
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A short curve f0 (black) and the curve f obtained with the one dimensional

convex integration formula (grey, N = 9 and N = 20).

5 A Kuiper-like convex integration process

5.1 A first attempt

We now come back to the n-dimensional case and we assume for simplicity
that ker ` = Span(e2, ..., en) and `(e1) = 1 where (e1, ..., en) is the stan-
dard basis of [0, 1]n. The previous convex integration formula can be easily
generalized to the n-dimensional case by setting:

f(s, c) := f0(0, c) +

∫ s

0
r(u, c)eiα(u,c) cos 2πNu du

with s ∈ [0, 1], c = (c2, ..., cn) ∈ [0, 1]n−1, N ∈ N∗, r =
√
µ(e1, e1) =√

‖f ′0‖2 + ρ, α = J−10

(
‖df0(e1)‖

r

)
, eiθ = cos θ t + sin θ n, t = df0(e1)

‖df0(e1)‖ and n

is any unit normal to f0.

But surprisingly the resulting map f does not solve the fundamental
problem. Let us see why. The isometric relation

f∗〈., .〉Eq = f∗0 〈., .〉Eq + ρ `⊗ `
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is equivalent to the following system of equations:

〈df(e1), df(e1)〉Eq = 〈df0(e1), df0(e1)〉Eq + ρ
〈df(e1), df(ej)〉Eq = 〈df0(e1), df0(ej)〉Eq if j 6= 1
〈df(ei), df(ej)〉Eq = 〈df0(ei), df0(ej)〉Eq with i > 1 and j > 1.

In the one hand we have

∂f

∂s
(s, c) = r(s, c)eiα(s,c) cos 2πNs

thus ‖df(e1)‖2 = r2(s, c) and the first equation is fulfilled. In the other

hand, the C1,1̂ closeness of f to f0:

‖f − f0‖C1,1̂ = O

(
1

N

)
implies that ‖df(ej)− df0(ej)‖ = O

(
1
N

)
for every j 6= 1. In particular

〈df(ei), df(ej)〉Eq = 〈df0(ei), df0(ej)〉Eq +O

(
1

N

)
for every i > 1, j > 1. The problem arises with the mixted term 〈df(e1), df(ej)〉Eq ,
j > 1. Indeed

〈df(e1), df(ej)〉Eq = 〈df(e1), df0(ej)〉Eq +O
(
1
N

)
= 〈r(s, c)eiα(s,c) cos 2πNs, df0(ej)〉Eq +O

(
1
N

)
= 〈r(s, c) cos(α(s, c) cos 2πNs)t, df0(ej)〉Eq +O

(
1
N

)
= r(s,c)

‖df0(e1)‖ cos(α(s, c) cos 2πNs)〈df0(e1), df0(ej)〉Eq +O
(
1
N

)
Thus, unless µ(e1, ej) = 〈df0(e1), df0(ej)〉Eq is null, there is no reason why
〈df(e1), df(ej)〉Eq should be equal to 〈df0(e1), df0(ej)〉Eq .

5.2 Adjusting the convex integration formula

To correct this default we need to adjust our convex integration formula:
rather than performing the normal deformation along straight lines we are
going to follow the integral lines of some well chosen vector field. Let

W (s, c) := e1 +

n∑
j=2

ζj(s, c)ej
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be a vector field µ-orthogonal to ker `, that is µ(W, ej) = 0 for j ∈ {2, ..., n}.
Let s 7→ ϕ(s, c) be the integral curve of W issuing from (0, c) that is

∂ϕ

∂s
(s, c) = W (ϕ(s, c)) and ϕ(0, c) = (0, c).

We now define f by the following convex integration formula:

f(ϕ(s, c)) := f0(c) +

∫ s

0
r(ϕ(u, c))eiθ(ϕ(u,c)),u) du

with N ∈ N∗, θ(q, u) := α(q) cos(2πNu), t = df0(W )
‖df0(W )‖ , n is any unit normal

to f0 and c = (c2, ..., cn). By differentiating this formula with respect to s
we get

‖df(W )‖2Eq = r2

hence we must choose r =
√
µ(W,W ) and α = J−10

(
‖df0(W )‖

r

)
. Of course,

these expressions should be considered at the point ϕ(u, c) (or ϕ(s, c)). The
above formula defines f over [0, 1]n as long as

ϕ : [0, 1]× [0, 1]n−1 −→ [0, 1]n

is a diffeomorphism. We will ignore this technicality here and will assume
that ϕ is indeed a diffeomorphism.

Proposition.– The map f solves the fundamental problem. Precisely

‖f∗〈., .〉Eq − µ‖ = O

(
1

N

)
where µ = f∗0 〈., .〉Eq + ρ `⊗ `. Moreover

1) ‖f − f0‖C0 = O
(
1
N

)
,

2) ‖df − df0‖C0 ≤ Cte
N +

√
7ρ

1
2 |`(W )|,

and if N is large enough, f is an embedding.

Proof.– Let us check that the mixed term vanishes when performing a
convex integration along the integral lines of W. We have

〈d(f ◦ ϕ)(e1), d(f ◦ ϕ)(ej)〉Eq = 〈d(f ◦ ϕ)(e1), d(f0 ◦ ϕ)(ej)〉Eq +O
(
1
N

)
= 〈r(ϕ(s, c))eiα(ϕ(s,c)) cos 2πNs, d(f0 ◦ ϕ)(ej)〉Eq +O

(
1
N

)
= λ〈d(f0 ◦ ϕ)(e1), d(f0 ◦ ϕ)(ej)〉Eq +O

(
1
N

)
= λ f∗0 〈., .〉Eq(dϕ(e1), dϕ(ej)) +O

(
1
N

)
10



where λ = r(ϕ(s,c))
‖d(f0◦ϕ)(e1)‖ cos(α(ϕ(s, c)) cos 2πNs). From the definition of W

we deduce that ϕ(s, c) = se1 + ψ(s, c) with ψ(s, c) ∈ ker `. Therefore

∀ j ∈ {2, ..., n}, dϕ(ej) ∈ ker `.

In particular

f∗0 〈., .〉Eq(dϕ(e1), dϕ(ej)) = µ(dϕ(ej), dϕ(e1))

and since dϕ(e1) = W which is µ-orthogonal to ker ` we have

µ(dϕ(ej), dϕ(e1)) = 0.

As a consequence 〈d(f ◦ ϕ)(e1), d(f ◦ ϕ)(ej)〉Eq = O
(
1
N

)
and

‖(f ◦ ϕ)∗〈., .〉Eq(e1, ej)− (ϕ∗µ)(e1, ej)‖ = O

(
1

N

)
for j ∈ {2, ..., n}. It is straightforward to check that

‖(f ◦ ϕ)∗〈., .〉Eq(ei, ej)− (ϕ∗µ)(ei, ej)‖ = O

(
1

N

)
for i > 1, j > 1 and the equality ‖df(W )‖2Eq = r2 means that

‖(f ◦ ϕ)∗〈., .〉Eq(e1, e1)− (ϕ∗µ)(e1, e1)‖ = 0.

Therefore

‖(f ◦ ϕ)∗〈., .〉Eq − ϕ∗µ‖ = O

(
1

N

)
and since [0, 1]n is compact

‖f∗〈., .〉Eq − µ‖ = O

(
1

N

)
.

The general theory of convex integration ensures that ‖f−f0‖C1,1̂ = O
(
1
N

)
.

This proves point 1 and reduces point 2 to the proof of the following inequal-
ity:

‖df(W )− df0(W )‖C0 ≤
√

7ρ
1
2 |`(W )|.

The maximum of distance between df(W ) and df0(W ) could be roughly
estimated by using the Pythagorean Theorem (see the figure below).
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The image of the loop s 7−→ h.(s) is the red arc and the differential df(W ) lies

somewhere in this arc. The maximum of the distance between df(W ) and df0(W )

is roughly given by the lenght of the black vertical segment.

The maximum of the square of the difference ‖df(W ) − df0(W )‖2 is of the
order of magnitude of

‖df(W )‖2 − ‖df0(W )‖2 = ρ`2(W ).

A precise computation shows that, in fact, ‖df(W )− df0(W )‖2 ≤ 7ρ`2(W ).
�

6 Proof of the Nash-Kuiper Theorem

We give here the main arguments of the proof setting aside countless details.

6.1 Isometric embeddings of a Riemannian cube Mn = [0, 1]n

With the approach described above, we are now able to produce from a
strictly short embedding fk−1 a sequence

fk,1, ..., fk,Sk

of embeddings such that

‖(gk−f∗k,j〈., .〉Eq)−(ρk,j+1`k,j+1⊗`k,j+1+...+ρk,Sk
`k,Sk
⊗`k,Sk

)‖C0 =

j∑
i=1

O

(
1

Nk,j

)
where Nk,j is the number of corrugations of the map fk,j . In particular

‖gk − f∗k 〈., .〉Eq‖C0 = O

(
1

Nk,1

)
+ ...+O

(
1

Nk,Sk

)
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where we have set fk := fk,Sk
. Since gk < gk+1, the embedding fk,j is strictly

short for gk+1 if
∑j

i=1O
(

1
Nk,j

)
is small enough.

By iterating the process, we generate an infinite sequence of embeddings

f0, f1,1, ..., f1,S1 =: f1, f2,1, ..., f2,S2 =: f2, etc.

Since

‖fk − fk−1‖C0 = O

(
1

Nk,1

)
+ ...+O

(
1

Nk,Sk

)
this sequence will converge C0 if we choose the Nk,js large enough. Let
f∞ the limit map. The crucial point is that the sequence (fk)k∈N is also
C1-converging. Indeed we have

‖dfk − dfk−1‖C0 ≤
Sk∑
j=1

O

(
1

Nk,j

)
+
√

7

Sk∑
j=1

ρ
1
2
k,j |`k,j(Wk,j)|.

Let us assume that the `k,js and the Wk,js are normalized by requiring, for
instance, that `k,j(.) = 〈Uk,j , .〉En with ‖Uk,j‖En = 1 and Wk,j = Uk,j + Vk,j
with Vk,j ∈ ker `k,j . From the decomposition

gk − f∗k−1〈., .〉Eq =

Sk∑
j=1

ρk,j`k,j ⊗ `k,j

we deduce that there exists a constant K(`1, ..., `Sk
) > 0 depending on the

chosen `1, ..., `Sk
such that

√
7
∑Sk

j=1 ρ
1
2
k,j |`j(Wk,j)| ≤ K(`1, ..., `Sk

)‖gk − f∗k−1〈., .〉Eq‖.

But we also have

‖gk−1 − f∗k−1〈., .〉Eq‖ =

Sk−1∑
j=1

O

(
1

Nk−1,j

)
,

hence

√
7
∑Sk

j=1 ρ
1
2
k,j |`j(Wk,j)| ≤ K(`1, ..., `Sk

)‖gk − gk−1‖+
∑Sk−1

j=1 O
(

1
Nk−1,j

)
≤ K(`1, ..., `Sk

)
√
δk − δk−1‖∆‖+

∑Sk−1

j=1 O
(

1
Nk−1,j

)
.
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In fact, since Mn = [0, 1]n is compact, one can choose a stationnary sequence
of set of linear forms {`k,1, ..., `k,Sk

} so that it is stationnary. In particular,
there exists a uniform upper bound K for all the constants K(`1, ..., `Sk

).
Thus

‖dfk − dfk−1‖C0 ≤ K
√
δk − δk−1‖∆‖+

Sk−1∑
j=1

O

(
1

Nk−1,j

)
.

The sequence (fk)k∈N can be made C1-converging by choosing the sequence
(δk)k∈N∗ such that ∑√

δk − δk−1 < +∞.

For instance, δk = 1− e−kγ with γ > 0 is appropriate.

Once the sequence is C1-converging, it is then straightforward to see that
the limite is an isometry. Indeed from

gk−1 < f∗k 〈., .〉Eq < gk+1

we deduce by taking the limite that

lim
k−→∞

(f∗k 〈., .〉Eq) = g.

From the C1-convergence we have

lim
k−→∞

(f∗k 〈., .〉Eq) = ( lim
k−→∞

fk)
∗〈., .〉Eq

therefore f∗∞〈., .〉Eq = g. Note that f∞ is necessarily an C1 immersion.

The fact that f∞ is an embedding is easily obtained in the codimension one
case. Indeed, f∞ is C0 close to a C1 embedding fk and is such that the
tangent planes to f∞ are C0-close to the corresponding tangent planes of
fk. In codimension one, this implies that f∞ is an embedding. In greater
codimension, the argument is more involved, see [3], p. 393-394.

6.2 Isometric embeddings of a compact manifold

It is enough to perform a cubical decomposition of the manifold and then
to glue the local solutions together with the help of the following relative
version of the proof of the Nash-Kuiper theorem for the cube:
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Isometric embedding of the cube: relative version .– Let ([0, 1]n, g)

be a Riemannian cube, A ⊂ [0, 1]n be a polyhedron2, f0 : ([0, 1]n, g)
C1

−→ Eq
be an embedding which is isometric over an open neighbourhood Op A of
A and is strictly short elsewhere. Then, for every ε > 0, there exists a C1

isometric embedding f : ([0, 1]n, g) −→ Eq such that ‖f − f0‖C0 ≤ ε and
f = f0 over a smaller neighbourhood Op1 A.
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