V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

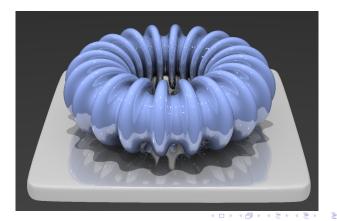
The one dimensiona case

How to deal with a closed relation?

The H-principle for Isometric Embeddings

Vincent Borrelli

Université Lyon 1



200

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Isometric Maps

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition. A map $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ is an *isometry* if $f^* \langle ., . \rangle = g$.

The length of curves is preserved by an isometric map.

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Isometric Maps

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition. A map $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ is an *isometry* if $f^* \langle ., . \rangle = g$.

The length of curves is preserved by an isometric map. In a local coordinate system $x = (x_1, ..., x_n)$:

$$1 \leq i \leq j \leq n, \quad \langle \frac{\partial f}{\partial x_i}(x), \frac{\partial f}{\partial x_j}(x) \rangle = g_{ij}(x)$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Definition. A map $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ is an *isometry* if $f^* \langle ., . \rangle = g$.

Isometric Maps

A D F A 同 F A E F A E F A Q A

The length of curves is preserved by an isometric map. In a local coordinate system $x = (x_1, ..., x_n)$:

$$1 \leq i \leq j \leq n$$
, $\langle \frac{\partial f}{\partial x_i}(x), \frac{\partial f}{\partial x_j}(x) \rangle = g_{ij}(x)$

The Janet dimension :

$$\mathbf{s}_n = \frac{n(n+1)}{2}.$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Definition.– A map $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ is called *strictly short*

if $f^*\langle .., . \rangle < g$.

Nash-Kuiper Theorem

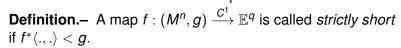
V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?



John Forbes Nash

Nicolaas Kuiper

Theorem (1954-55-86).— Let M^n be a compact Riemannian manifold and $f_0 : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ be a strictly short embedding. Then, for every $\epsilon > 0$, there exists a C^1 isometric embedding $f : (M^n, g) \longrightarrow \mathbb{E}^q$ such that $\|f - f_0\|_{C^0} \le \epsilon$.

V.Borrelli

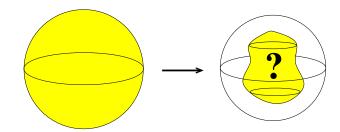
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Nash-Kuiper Spheres



Nash-Kuiper Spheres.– Let 0 < r < 1. There exists a C^1 -isometric embedding of the unit sphere of \mathbb{E}^3 in a ball of radius r.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Sphere Eversion

Sphere Eversion.– The sphere $\mathbb{S}^2 \subset \mathbb{E}^3$ can be turned inside out by a regular homotopy of isometric C^1 immersions.

Flat Tori

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

İsometric Embeddings V.Borrelli

The *H*-principle for

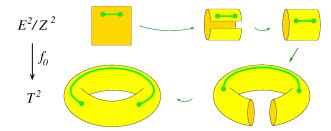
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Definition.– Any quotient \mathbb{E}^2/Λ of the Euclidean 2-space by a lattice $\Lambda \subset \mathbb{E}^2$ is called a *flat torus*



Flat Tori

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The H-principle for Isometric Embeddings

V.Borrelli

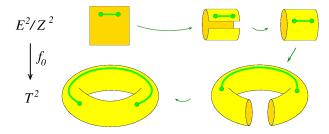
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Definition.– Any quotient \mathbb{E}^2/Λ of the Euclidean 2-space by a lattice $\Lambda \subset \mathbb{E}^2$ is called a *flat torus*



Flat Tori.– Any flat torus \mathbb{E}^2/Λ admits a C^1 isometric embedding in \mathbb{E}^3 .

Our Goal

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Embeddings V.Borrelli

The *H*-principle for

Isometric

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

Goal of this talk.– To recover the Nash-Kuiper result on C^1 isometric embeddings from the machinery of the Gromov Integration Theory.

Our main ingredient.- The Gromov Theorem :

Let $\mathcal{R} \subset J^1(M, N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric h-principle i. e.

 $J:\mathcal{Sol}(\mathcal{R})\longrightarrow \Gamma(\mathcal{R})$

is a weak homotopy equivalence.

Our main obstacles.-

- The isometric relation is not ample
- The isometric relation is closed

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Decomposition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- For simplicity $M^n = [0, 1]^n$.
- The image of the metric distorsion

$$\Delta:=g-\mathit{f}_{0}^{*}\langle.,.
angle_{\mathbb{E}^{q}}$$

lies inside the positive cone \mathcal{M} of inner products of \mathbb{E}^n .

• There exist $S \geq \frac{n(n+1)}{2}$ linear forms $\ell_1, \ldots \ell_S$ of \mathbb{E}^n such that

$$g-f_0^*\langle .,.
angle_{\mathbb{R}^q}=\sum_{j=1}^{S}
ho_j\ell_j\otimes\ell_j$$

where $\rho_i > 0$.

V Borrelli

Adapting the Gromov machinery

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Maps How to deal

with the nonampleness?

The one dimensional case

How to deal with a closed relation?

The strategy is to do the successive convex integrations along the *S* directions corresponding to the *S* linear forms $\ell_1, ..., \ell_S$.

rather than

along the *n* directions of the coordinates in $[0, 1]^n$.

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Adapting the Gromov machinery

• This will produce S intermediary maps

$$f_1, ..., f_S$$

such that

$$\begin{array}{ll} g-f_1^*\langle .,.\rangle_{\mathbb{E}^q} &\approx \rho_2 \ell_2^2 + \rho_3 \ell_3^2 + \ldots + \rho_S \ell_S^2 \\ g-f_2^*\langle .,.\rangle_{\mathbb{E}^q} &\approx \qquad \rho_3 \ell_3^2 + \ldots + \rho_S \ell_S^2 \\ &\vdots &\vdots \\ g-f_{S-1}^*\langle .,.\rangle_{\mathbb{E}^q} &\approx \qquad \rho_S \ell_S^2 \\ g-f_S^*\langle .,.\rangle_{\mathbb{E}^q} &\approx \qquad 0. \end{array}$$

• The map $f := f_S$ is then a solution of $\widetilde{\mathcal{R}} = Op(\mathcal{R})$.

V Borrelli

How to deal with the non-ampleness?

Adapting the Gromov machinery

We have

$$egin{aligned} & f_j^*\langle.,.
angle_{\mathbb{E}^q}-f_{j-1}^*\langle.,.
angle_{\mathbb{E}^q}=&(oldsymbol{g}-f_{j-1}^*\langle.,.
angle_{\mathbb{E}^q})-(oldsymbol{g}-f_j^*\langle.,.
angle_{\mathbb{E}^q})\ &pprox\ &
ho_j\ell_j\otimes\ell_j. \end{aligned}$$

Hence, the fundamental problem is the following :

Fundamental Problem.– Given a positive function ρ , a linear form $\ell \neq 0$ and an embedding f_0 how to build an other embedding f such that

$$f^*\langle .,.
angle_{\mathbb{E}^q}pprox \mu$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where $\mu := f_0^* \langle ., . \rangle_{\mathbb{E}^q} + \rho \, \ell \otimes \ell$?

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

The one dimensional case

One dimensional fundamental problem.- Let

 $f_0: [0, 1] \longrightarrow \mathbb{E}^q$ be an embedding, ρ a positive function, $\ell \neq 0$ a linear form on \mathbb{R} , how to build an other embedding $f: [0, 1] \longrightarrow \mathbb{E}^q$ such that

$$\forall u \in [0, 1], \quad \|f'(u)\|^2 \approx \|f'_0(u)\|^2 + \rho(u)\ell^2(\partial_u)$$
 ?

• For short, we set

$$r(u) := \sqrt{\|f'_0(u)\|^2 + \rho(u)\ell^2(\partial_u)}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

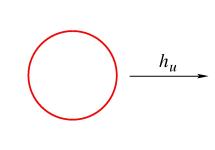
V.Borrelli

Isometric Maps

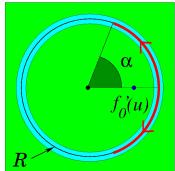
How to deal with the non ampleness 3

The one dimensional case

How to deal with a closed relation?



Choosing the Loops



with

 $orall oldsymbol{s} \in \mathbb{R}/\mathbb{Z}, \qquad h_u(oldsymbol{s}) := r(u) \mathbf{e}^{i lpha(u) \cos(2\pi s)}$

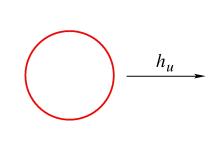
V.Borrelli

Isometric Maps

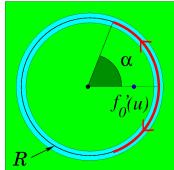
How to deal with the non ampleness ?

The one dimensional case

How to deal with a closed relation?



Choosing the Loops



with

$$orall oldsymbol{s} \in \mathbb{R}/\mathbb{Z}, \qquad h_u(oldsymbol{s}) := r(u) oldsymbol{e}^{i lpha(u) \cos(2\pi s)}$$

and $\alpha(u) > 0$ is such that

$$\int_0^1 r(u) \mathbf{e}^{i\alpha(u)\cos(2\pi s)} \,\mathrm{d}s = f_0'(u).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

Our Convex Integration Process

• The convex integration formula :

$$f(t) := f_0(0) + \int_0^t r(u) \mathbf{e}^{i\alpha(u)\cos 2\pi \mathbf{N} u} \,\mathrm{d} u.$$

where $\mathbf{e}^{i\theta} := \cos \theta \mathbf{t} + \sin \theta \mathbf{n}$ with $\mathbf{t} := \frac{f'_0}{\|f'_0\|}$ and \mathbf{n} is a unit normal to the curve f_0 .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

Our Convex Integration Process

• The convex integration formula :

$$f(t) := f_0(0) + \int_0^t r(u) \mathbf{e}^{i\alpha(u)\cos 2\pi \mathbf{N} u} \,\mathrm{d} u.$$

where $\mathbf{e}^{i\theta} := \cos \theta \mathbf{t} + \sin \theta \mathbf{n}$ with $\mathbf{t} := \frac{t'_0}{\|t'_0\|}$ and \mathbf{n} is a unit normal to the curve f_0 .

Lemma.– The map *f* solves the one dimensional fundamental problem. Its speed ||f'|| is equal to the given function $r = (||f'_0||^2 + \rho \ell^2(\partial_c))^{\frac{1}{2}}$. Moreover

$$\|f-f_0\|_{C^0}=O\left(\frac{1}{N}\right)$$

(日) (日) (日) (日) (日) (日) (日)

and if N is large enough f is an embedding.

V.Borrelli

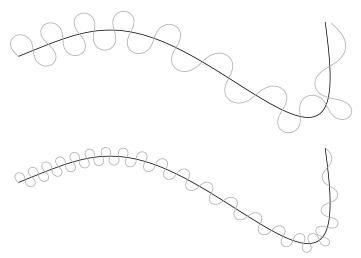
Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

Our Convex Integration Process



A short curve f_0 (black) and the curve f obtained with the one dimensional convex integration formula (grey, N = 9 and N = 20).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• We assume for simplicity that ker $\ell = Span(e_2, ..., e_n)$ and $\ell(e_1) = 1$.

• Let
$$s \in [0,1]$$
 and $c = (c_2,...,c_n) \in [0,1]^{n-1},$ we set

$$f(s,c) := f_0(0,c) + \int_0^s r(u,c) \mathbf{e}^{ilpha(u,c)\cos 2\pi N u} \, \mathrm{d} u$$

with
$$r = \sqrt{\mu(e_1, e_1)} = \sqrt{\|df_0(e_1)\|^2 + \rho}$$
.

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• We assume for simplicity that ker $\ell = Span(e_2, ..., e_n)$ and $\ell(e_1) = 1$.

• Let
$$s \in [0,1]$$
 and $c = (c_2,...,c_n) \in [0,1]^{n-1},$ we set

$$f(s,c) := f_0(0,c) + \int_0^s r(u,c) \mathbf{e}^{i lpha(u,c) \cos 2\pi N u} \, \mathrm{d} u$$

with
$$r = \sqrt{\mu(e_1, e_1)} = \sqrt{\|df_0(e_1)\|^2 + \rho}$$
.

• The map *f* is **not** a solution of our Fundamental Problem. We do not have

$$\|f^*\langle .,.\rangle_{\mathbb{E}^q}-\mu\|_{\mathcal{C}^0}=O\left(rac{1}{N}
ight)$$

with $\mu := f_0^* \langle ., . \rangle_{\mathbb{E}^q} + \rho \, \ell \otimes \ell$.

V.Borrelli

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• By $C^{1,\hat{1}}$ -density we have

$$df(e_j) = df_0(e_j) + O(\frac{1}{N})$$

Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• By $C^{1,\hat{1}}$ -density we have

$$df(e_j) = df_0(e_j) + O(\frac{1}{N})$$

• Thus, for all 1 < i, 1 < j, we have $(f^* \langle ... \rangle_{\mathbb{R}^q})(e_i, e_i) = \langle df(e_i), df(e_i) \rangle$

$$egin{aligned} & {}^*\langle .,.
angle_{\mathbb{E}^q})(m{e}_i,m{e}_j) &= \langle df(m{e}_i),df(m{e}_j)
angle_{\mathbb{E}^q} \ &= \langle df_0(m{e}_i),df_0(m{e}_j)
angle_{\mathbb{E}^q} + O\left(rac{1}{N}
ight) \ &= \mu(m{e}_i,m{e}_j) + O\left(rac{1}{N}
ight) \end{aligned}$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

• By $C^{1,\hat{1}}$ -density we have

$$df(e_j)=df_0(e_j)+O(rac{1}{N})$$

• Thus, for all 1 < i, 1 < j, we have

$$\begin{aligned} (f^* \langle ., . \rangle_{\mathbb{E}^q})(\boldsymbol{e}_i, \boldsymbol{e}_j) &= \langle df(\boldsymbol{e}_i), df(\boldsymbol{e}_j) \rangle_{\mathbb{E}^q} \\ &= \langle df_0(\boldsymbol{e}_i), df_0(\boldsymbol{e}_j) \rangle_{\mathbb{E}^q} + O\left(\frac{1}{N}\right) \\ &= \mu(\boldsymbol{e}_i, \boldsymbol{e}_j) + O\left(\frac{1}{N}\right) \end{aligned}$$

• Therefore

$$\|(f^*\langle .,.\rangle_{\mathbb{E}^q}-\mu)(\boldsymbol{e}_i,\boldsymbol{e}_j)\|_{\boldsymbol{C}^0}=O\left(rac{1}{N}
ight)$$

for all 1 < i, 1 < j.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → ≣ → のへで

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• By definition of f we have

$$df_{(s,c)}(e_1) = r(s,c) \mathbf{e}^{i\alpha(s,c)\cos 2\pi Ns}.$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• By definition of f we have

$$df_{(s,c)}(e_1) = r(s,c) \mathbf{e}^{i\alpha(s,c)\cos 2\pi Ns}.$$

• Thus

$$egin{array}{rll} (f^*\langle.,.
angle_{\mathbb{E}^q})(e_1,e_1)&=&\langle df(e_1),df(e_1)
angle_{\mathbb{E}^q}\ &=&r^2(s,c)\ &=&\mu(e_1,e_1) \end{array}$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• By definition of f we have

$$df_{(s,c)}(e_1) = r(s,c)\mathbf{e}^{i\alpha(s,c)\cos 2\pi Ns}.$$

Thus

$$(f^*\langle .,.
angle_{\mathbb{R}^q})(e_1,e_1) = \langle df(e_1), df(e_1)
angle_{\mathbb{R}^q}$$

 $= r^2(s,c)$
 $= \mu(e_1,e_1)$

• Therefore

$$\|(f^*\langle .,.\rangle_{\mathbb{E}^q}-\mu)(\boldsymbol{e}_1,\boldsymbol{e}_1)\|_{\boldsymbol{C}^0}=0.$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

• The problem arises with the mixted term $\langle df(e_1), df(e_j) \rangle_{\mathbb{E}^q}$, j > 1.

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

- The problem arises with the mixted term $\langle df(e_1), df(e_j) \rangle_{\mathbb{E}^q}$, j > 1.
- Indeed, in the one hand

 $(f^*\langle .,$

$$\begin{aligned} \mathbb{E}_{\mathbb{P}^{q}}(e_{1}, e_{j}) &= \langle df(e_{1}), df(e_{j}) \rangle_{\mathbb{E}^{q}} \\ &= \langle df(e_{1}), df_{0}(e_{j}) \rangle_{\mathbb{E}^{q}} + O\left(\frac{1}{N}\right) \\ &= \langle r \mathbf{e}^{j \bigstar}, df_{0}(e_{j}) \rangle_{\mathbb{E}^{q}} + O\left(\frac{1}{N}\right) \\ &= \langle r \cos(\bigstar) \mathbf{t}, df_{0}(e_{j}) \rangle_{\mathbb{E}^{q}} \\ &+ \langle r \sin(\bigstar) \mathbf{n}, df_{0}(e_{j}) \rangle_{\mathbb{E}^{q}} + O\left(\frac{1}{N}\right) \\ &= \frac{r \cos(\bigstar)}{\|df_{0}(e_{1})\|} \langle df_{0}(e_{1}), df_{0}(e_{j}) \rangle_{\mathbb{E}^{q}} \\ &+ O\left(\frac{1}{N}\right) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• In the other hand, since $\ell(e_j) = 0$, we have

$$\mu(\boldsymbol{e}_1, \boldsymbol{e}_j) = \langle df_0(\boldsymbol{e}_1), df_0(\boldsymbol{e}_j)
angle_{\mathbb{E}^q}.$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• In the other hand, since $\ell(e_j) = 0$, we have

$$\mu(\boldsymbol{e}_1, \boldsymbol{e}_j) = \langle \textit{df}_0(\boldsymbol{e}_1), \textit{df}_0(\boldsymbol{e}_j)
angle_{\mathbb{R}^q}.$$

• Therefore

$$\|(f^*\langle .,.
angle_{\mathbb{E}^q}-\mu)(oldsymbol{e}_1,oldsymbol{e}_j)\|_{oldsymbol{C}^0}
eq O\left(rac{1}{N}
ight)$$

unless $\langle df_0(e_i), df_0(e_j) \rangle_{\mathbb{E}^q} \equiv 0.$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

A technical difficulty

• In the other hand, since $\ell(e_j) = 0$, we have

$$\mu(oldsymbol{e}_1,oldsymbol{e}_j)=\langle d\mathit{f}_0(oldsymbol{e}_1), d\mathit{f}_0(oldsymbol{e}_j)
angle_{\mathbb{E}^q}.$$

• Therefore

$$\|(f^*\langle .,.
angle_{\mathbb{E}^q}-\mu)(oldsymbol{e}_1,oldsymbol{e}_j)\|_{C^0}
eq O\left(rac{1}{N}
ight)$$

unless $\langle df_0(e_i), df_0(e_j) \rangle_{\mathbb{E}^q} \equiv 0.$

Claim.– This difficulty vanishes if the convex integration is done along the integral lines of a vector field *W* such that

$$\forall j \in \{2,...,m\}, \quad \mu(\boldsymbol{W},\boldsymbol{e}_j) = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

i. e. *W* is μ -orthogonal to ker ℓ .

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensional case

How to deal with a closed relation?

Adjusting the convex integration formula

Proposition.– The resulting map f solves the fundamental problem. Precisely

$$\|f^*\langle .,.\rangle_{\mathbb{E}^q}-\mu\|=O\left(rac{1}{N}
ight)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where
$$\mu = f_0^* \langle ., . \rangle_{\mathbb{E}^q} + \rho \, \ell \otimes \ell$$
. Moreover
1) $\|f - f_0\|_{C^0} = O\left(\frac{1}{N}\right)$,
2) $\|df - df_0\|_{C^0} \le \frac{Cte}{N} + \sqrt{7}\rho^{\frac{1}{2}}|\ell(W)|$,

and if N is large enough, f is an embedding.

V.Borrelli

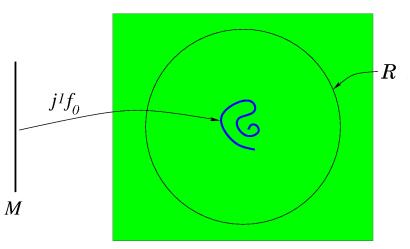
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

V.Borrelli

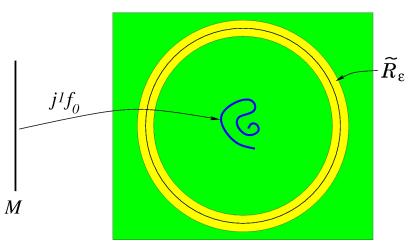
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation



▲ロト▲圖▶▲臣▶▲臣▶ 臣 のへで

V.Borrelli

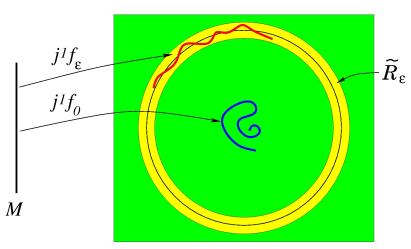
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation



・ロト・日本・日本・日本・日本・日本

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation

Question.- Is the limit

 $\lim_{\epsilon \longrightarrow 0} f_{\epsilon}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

an isometric map (if it exists)?

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation

Question.- Is the limit

 $\lim_{\epsilon \longrightarrow 0} f_{\epsilon}$

an isometric map (if it exists)?

Answer.- No!

 $\lim_{\epsilon \longrightarrow 0} f_{\epsilon} = f_0.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

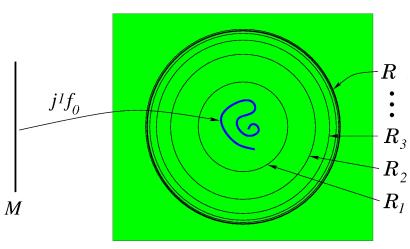
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Approximating the Differential Relation



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

V.Borrelli

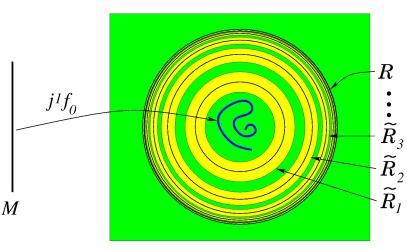
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Approximating the Differential Relation



V.Borrelli

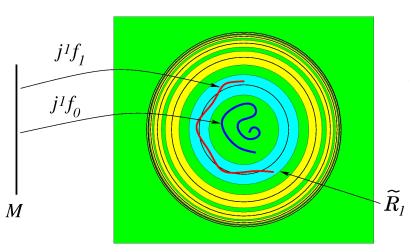
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Iterated Convex Integrations



ヘロト 人間 とくほとくほとう

ъ

V.Borrelli

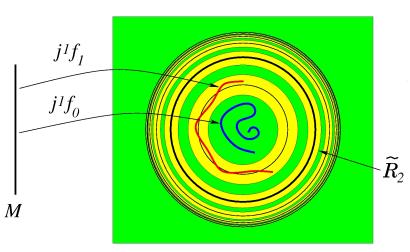
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Iterated Convex Integrations



ヘロト 人間 とくほとくほとう

ъ

V.Borrelli

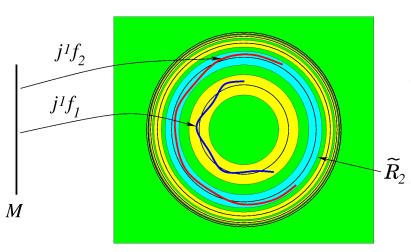
Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Iterated Convex Integrations



ヘロト 人間 とくほとくほとう

ъ

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Question.- Is the limit

 $\lim_{k \longrightarrow +\infty} f_k$

an isometric map (if it exists)?

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

The one dimensiona case

How to deal with a closed relation?

Thickening the Differential Relation

Question.- Is the limit

 $\lim_{k \longrightarrow +\infty} f_k$

an isometric map (if it exists)?

Answer.- Yes!

Let us see why i) it is C^0 converging, ii) it is C^1 converging.

Consequently

$$f_{\infty} := \lim_{k \to +\infty} f_k$$
 is a C^1 isometric map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

V.Borrelli

Isometrie Maps

How to deal with the non-ampleness?

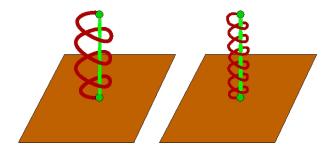
The one dimensiona case

How to deal with a closed relation?

C^0 Convergence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It is enough to control the difference $||f_k - f_{k-1}||_{C^0}$.



We set

$$f_{\infty} = \lim_{k \to +\infty} f_k.$$

V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

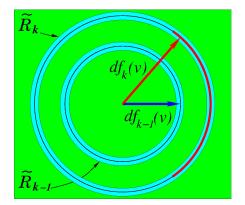
The one dimensiona case

How to deal with a closed relation?

C^1 convergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

It is enough to control the difference $||df_k - df_{k-1}||_{C^0}$.



V.Borrelli

Isometric Maps

How to deal with the non-ampleness?

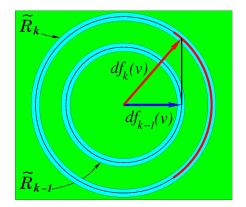
The one dimensiona case

How to deal with a closed relation?

C^1 convergence

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It is enough to control the difference $||df_k - df_{k-1}||_{C^0}$.



 $\|df_k - df_{k-1}\|_{C^0} \leq C^{te} \sqrt{dist(\widetilde{\mathcal{R}}_{k-1}, \widetilde{\widetilde{\mathcal{R}}_k})}$

John Nash

Embeddings V.Borrelli

The *H*-principle for

Isometric

Isometric Maps

How to deal with the nonampleness?

The one dimensiona case

How to deal with a closed relation?

