

C¹ Fractals

Pictures !

Flat 2-Tori in \mathbb{E}^3

Vincent Borrelli

Université Lyon 1

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

The Hevea Project

Francis Lazarus Gipsa-Lab, Grenoble Boris Thibert LJK, Grenoble Saïd Jabrane ICJ, Lyon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

The initial map

Step 1 : decomposition of Δ

Integration Process C¹ Fractals

the Convex

Flat 2-Tori in \mathbb{R}^3

V.Borrelli Implementing

Pictures !

120

$$\ell_1(.) = \langle \boldsymbol{e}_1, . \rangle_{\mathbb{E}^2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

$$\ell_2(.) = \langle \frac{1}{5}(e_1 + 2e_2), . \rangle_{\mathbb{E}^2}$$

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli Implementing the Convex Integration Process

$$\ell_3(.) = \langle \frac{1}{5}(\textbf{e}_1 - 2\textbf{e}_2), . \rangle_{\mathbb{E}^2}$$

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Pictures !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Flat 2-Tori in \mathbb{E}^3

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Step 2 : Three convex integrations

• From f_0 and by applying three convex integrations along the directions given by ℓ_1 , ℓ_2 and ℓ_2 , we build iteratively three maps (a *salvo*) :

$$f_{1,1}, f_{1,2}, f_{1,3}$$

such that

- $$\begin{split} g &- f_{1,1}^* \langle ., . \rangle_{\mathbb{E}^q} = \rho_2 \ell_2^2 + \rho_3 \ell_3^2 &+ O(\frac{1}{N_{1,1}}) \\ g &- f_{1,2}^* \langle ., . \rangle_{\mathbb{E}^q} = \rho_3 \ell_3^2 &+ O(\frac{1}{N_{1,1}}) + O(\frac{1}{N_{1,2}}) \\ g &- f_{1,3}^* \langle ., . \rangle_{\mathbb{E}^q} = 0 &+ O(\frac{1}{N_{1,1}}) + O(\frac{1}{N_{1,2}}) + O(\frac{1}{N_{1,3}}) \end{split}$$
- We choose $N_{1,1}$, $N_{1,2}$ and $N_{1,3}$ such that :

$$\|\langle .,.\rangle_{\mathbb{E}^2} - f_{1,3}^* \langle .,.\rangle_{\mathbb{E}^3} \|_{C^0} \leq \frac{1}{2} \|\langle .,.\rangle_{\mathbb{E}^2} - f_0^* \langle .,.\rangle_{\mathbb{E}^3} \|_{C^0}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Convex Integration in the First Direction

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Convex Integration in the Second Direction

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Convex Integration in the Third Direction

Three directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

The flow in direction 1

Flat 2-Tori in \mathbb{E}^3

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Three directions

The flow in direction 2

The flow in direction 3

A zoom

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣

The vertical scale is exaggerated for emphasis.

Implementing the Convex Integration Process

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Pictures !

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Step 3 : Iterating the process

• We continue the process to create infinite sequence of maps

 $f_0, f_{1,1}, f_{1,2}, f_{1,3}, \dots f_{k,1}, f_{k,2}, f_{k,3}, \dots$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Step 3 : Iterating the process

• We continue the process to create infinite sequence of maps

$$f_0, f_{1,1}, f_{1,2}, f_{1,3}, \dots f_{k,1}, f_{k,2}, f_{k,3}, \dots$$

• After the salvo n° k, the isometric default is divided by 2^k

$$\|\langle .,.\rangle_{\mathbb{E}^2}-f_{k,3}^*\langle .,.\rangle_{\mathbb{E}^3}\|_{C^0}\leq \frac{1}{2^k}\|\langle .,.\rangle_{\mathbb{E}^2}-f_0^*\langle .,.\rangle_{\mathbb{E}^3}\|_{C^0}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Step 3 : Iterating the process

• We continue the process to create infinite sequence of maps

$$f_0, f_{1,1}, f_{1,2}, f_{1,3}, \dots f_{k,1}, f_{k,2}, f_{k,3}, \dots$$

• After the salvo n° k, the isometric default is divided by 2^k

$$\|\langle .,.\rangle_{\mathbb{E}^2}-f_{k,3}^*\langle .,.\rangle_{\mathbb{E}^3}\|_{C^0}\leq \frac{1}{2^k}\|\langle .,.\rangle_{\mathbb{E}^2}-f_0^*\langle .,.\rangle_{\mathbb{E}^3}\|_{C^0}.$$

• The limit

$$f_{\infty} := \lim_{k \longrightarrow +\infty} f_{k,3}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is a C^1 isometric immersion of the flat torus.

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Another CI in the first direction

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

And so on... up to the Flat Torus

Flat 2-Tori in \mathbb{E}^3
V.Borrelli
Implementing the Convex Integration Process
C ¹ Fractals
Pictures !

Nash-Kuiper in a 1D setting !

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

lat 2-Tori in ℝ ³ V.Borrelli	Nas
plementing Convex egration ocess	
Fractals	
ctures !	

Nash-Kuiper in a 1D setting !

at 2-Tori in ᢧ ³ V.Borrelli	Nas
Dementing Convex egration ocess	
Fractals	
tures !	

F

 C^{1}

Nash-Kuiper in a 1D setting !

lat 2-Tori in ᢧ ³ V.Borrelli	Nash-
plementing e Convex regration ocess Fractals	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ctures !	

Flat

 C^1 Fr

Kuiper in a 1D setting !

ヘロト 人間 とくほ とくほ とう æ

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Moscow University

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Riesz Products

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Frigyes Riesz

• These spectra arise from the study of *Riesz products* :

$$u \mapsto \prod_{j=0}^{\infty} (1 + \alpha_j \cos(2\pi b^j u)).$$

In that product, $b \ge 3$ is an integer and $(\alpha_j)_{j \in \mathbb{N}}$ is a sequence of real numbers such that, for every $j \in \mathbb{N}$, $|\alpha_j| \le 1$.

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Riesz Products

Frigyes Riesz

• These spectra arise from the study of *Riesz products* :

$$u \mapsto \prod_{j=0}^{\infty} (1 + \alpha_j \cos(2\pi b^j u)).$$

In that product, $b \ge 3$ is an integer and $(\alpha_j)_{j \in \mathbb{N}}$ is a sequence of real numbers such that, for every $j \in \mathbb{N}$, $|\alpha_j| \le 1$.

• Here, products of *corrugation matrices* take the place of Riesz products.

Flat 2-Tori in \mathbb{E}^3 V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Corrugation matrices

• Let $C_k : \mathbb{S}^1 \longrightarrow O(2)$ be the matrix valued map such that

$$\forall u \in \mathbb{S}^1, \quad \left(\begin{array}{c} t_k(u) \\ n_k(u) \end{array}\right) = \mathcal{C}_k(u) \cdot \left(\begin{array}{c} t_{k-1}(u) \\ n_{k-1}(u) \end{array}\right)$$

We call C_k a corrugation matrix.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

C¹ Fractals

Pictures !

Structure of the Gauss Map

• Corrugation matrices encode the data of the successive convex integrations :

$$\mathcal{C}_k(u) := \begin{pmatrix} \cos \theta_k(u) & \sin \theta_k(u) \\ -\sin \theta_k(u) & \cos \theta_k(u) \end{pmatrix}$$

with

$$\theta_k(u) = \arg h_u(\{N_k u\}) = \alpha_k \cos(2\pi N_k u).$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

C¹ Fractals

Pictures !

Structure of the Gauss Map

• Corrugation matrices encode the data of the successive convex integrations :

$$\mathcal{C}_k(u) := \left(egin{array}{cc} \cos heta_k(u) & \sin heta_k(u) \ -\sin heta_k(u) & \cos heta_k(u) \end{array}
ight)$$

with

$$\theta_k(u) = \arg h_u(\{N_k u\}) = \alpha_k \cos(2\pi N_k u).$$

 \bullet The Gauss map n_∞ of the limit embedding is given by a Riesz-like product :

$$\left(\begin{array}{c}t_{\infty}\\n_{\infty}\end{array}\right) = \left(\prod_{k=1}^{\infty} \mathcal{C}_{k}\right) \cdot \left(\begin{array}{c}t_{0}\\n_{0}\end{array}\right)$$

C¹ Fractals

Pictures !

From the circle to the torus

We denote by $C_{k,j}$ the SO(3) matrix such that :

$$\left(\begin{array}{c} \mathbf{v}_{k,j}^{\perp} \\ \mathbf{v}_{k,j} \\ \mathbf{n}_{k,j} \end{array}\right) = \mathcal{C}_{k,j} \cdot \left(\begin{array}{c} \mathbf{v}_{k,j-1}^{\perp} \\ \mathbf{v}_{k,j-1} \\ \mathbf{n}_{k,j-1} \end{array}\right)$$

٠

C¹ Fractals

Pictures !

From the circle to the torus

Let $f_{\infty}: \mathbb{T}^2 \longrightarrow \mathbb{E}^3$ be the limit of the maps :

$$f_0, \quad f_{1,1}, f_{1,2}, f_{1,3}, \quad f_{2,1}, f_{2,2}, f_{2,3}, \quad \dots$$

We have

$$\left(\begin{array}{c} v_{\infty}^{\perp} \\ v_{\infty} \\ n_{\infty} \end{array}\right) = \prod_{k=1}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}\right) \cdot \left(\begin{array}{c} v_{0}^{\perp} \\ v_{0} \\ n_{0} \end{array}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

C¹ Fractals

Pictures !

From the circle to the torus

Let $f_{\infty} : \mathbb{T}^2 \longrightarrow \mathbb{E}^3$ be the limit of the maps :

$$f_0, \quad f_{1,1}, f_{1,2}, f_{1,3}, \quad f_{2,1}, f_{2,2}, f_{2,3}, \quad \dots$$

We have

$$\begin{pmatrix} \mathbf{v}_{\infty}^{\perp} \\ \mathbf{v}_{\infty} \\ \mathbf{n}_{\infty} \end{pmatrix} = \prod_{k=1}^{\infty} \begin{pmatrix} \mathbf{3} \\ \prod_{j=1}^{3} \mathcal{C}_{k,j} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v}_{0}^{\perp} \\ \mathbf{v}_{0} \\ \mathbf{n}_{0} \end{pmatrix}$$

Beware ! – Unlike the 1-dimensional case, the analytic expressions of the $C_{k,j}$'s are simply ugly...

C¹ Fractals

Pictures !

From the circle to the torus

Let $f_{\infty} : \mathbb{T}^2 \longrightarrow \mathbb{E}^3$ be the limit of the maps :

$$f_0, \quad f_{1,1}, f_{1,2}, f_{1,3}, \quad f_{2,1}, f_{2,2}, f_{2,3}, \quad \dots$$

We have

$$\left(\begin{array}{c} \mathbf{v}_{\infty}^{\perp} \\ \mathbf{v}_{\infty} \\ \mathbf{n}_{\infty} \end{array}\right) = \prod_{k=1}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}\right) \cdot \left(\begin{array}{c} \mathbf{v}_{0}^{\perp} \\ \mathbf{v}_{0} \\ \mathbf{n}_{0} \end{array}\right)$$

Beware ! – Unlike the 1-dimensional case, the analytic expressions of the $C_{k,j}$'s are simply ugly... but fortunately, their asymptotic expressions are nice.

C¹ Fractals

Pictures !

Loss of derivatives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• In the one dimensional setting we have :

$$f(t) := f_0(0) + \int_0^t r(u) \mathbf{e}^{i\alpha(u)\cos 2\pi N u} \, \mathrm{d}u.$$

where
$$\mathbf{e}^{i\theta} := \cos \theta \mathbf{t} + \sin \theta \mathbf{n}$$
 and $\mathbf{t} := \frac{f'_0}{\|f'_0\|}$.

C¹ Fractals

Pictures !

Loss of derivatives

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• In the one dimensional setting we have :

$$f(t) := f_0(0) + \int_0^t r(u) \mathbf{e}^{i\alpha(u)\cos 2\pi N u} \, \mathrm{d}u.$$

where
$$\mathbf{e}^{i\theta} := \cos \theta \mathbf{t} + \sin \theta \mathbf{n}$$
 and $\mathbf{t} := \frac{f'_0}{\|f'_0\|}$.

• In particular

$$\frac{\partial f}{\partial t}(t) = r(t) \mathbf{e}^{i\alpha(t)\cos 2\pi Nt},$$

therefore, if f_0 is C^k then f is C^k also.

C¹ Fractals

Pictures !

Loss of derivatives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• In the two dimensional setting we have :

$$f(t,s) := f_0(0,s) + \int_0^t r(u,s) \mathbf{e}^{i lpha(u,s) \cos 2\pi N u} \, \mathrm{d}u + \mathrm{gluing \ term}$$

where $\mathbf{e}^{i\theta} := \cos\theta \mathbf{t} + \sin\theta \mathbf{n}$ with

$$\mathbf{t} := \frac{\partial_t f_0}{\|\partial_t f_0\|} \quad \text{and} \quad \mathbf{n} := \frac{\partial_t f_0 \wedge \partial_s f_0}{\|\partial_t f_0 \wedge \partial_s f_0\|}$$

C¹ Fractals

Pictures !

Loss of derivatives

• In the two dimensional setting we have :

$$f(t,s) := f_0(0,s) + \int_0^t r(u,s) \mathbf{e}^{i lpha(u,s) \cos 2\pi N u} \, \mathrm{d}u + \mathrm{gluing \ term}$$

where $\mathbf{e}^{i\theta} := \cos\theta \mathbf{t} + \sin\theta \mathbf{n}$ with

$$\mathbf{t} := \frac{\partial_t f_0}{\|\partial_t f_0\|} \quad \text{and} \quad \mathbf{n} := \frac{\partial_t f_0 \wedge \partial_s f_0}{\|\partial_t f_0 \wedge \partial_s f_0\|}$$

• The integral over the variable *t* can not recover the loss of derivative due to the presence of the partial derivative $\partial_s f$ in the definition of **n**. Therefore if f_0 is C^k then, generically, *f* is C^{k-1} only.

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Corrugation Theorem

Corrugation Theorem (~, Jabrane, Lazarus, Thibert).– For every $p \in \mathbb{T}^2$, we have

$$\mathcal{C}_{k,j+1}(p) = \mathcal{L}_{k,j+1}(p) \cdot \mathcal{R}_{k,j}(p)$$

where

$$\mathcal{L}_{k,j+1} := \begin{pmatrix} \cos \theta_{k,j+1} & 0 & \sin \theta_{k,j+1} \\ 0 & 1 & 0 \\ -\sin \theta_{k,j+1} & 0 & \cos \theta_{k,j+1} \end{pmatrix} + O\left(\frac{1}{N_{k,j+1}}\right)$$

with $\theta_{k,j+1}(p) := \alpha_k(p) \cos(2\pi N_k X_{j+1})$ and

$$\mathcal{R}_{k,j} := egin{pmatrix} -\sineta_j & -\coseta_j & 0\ \coseta_j & -\sineta_j & 0\ 0 & 0 & 1 \end{pmatrix} + O(\Omega_{k,j})$$

where $\Omega_{k,j} = \|\langle ., . \rangle_{\mathbb{E}^2} - f_{k,j}^* \langle ., . \rangle_{\mathbb{E}^3} \|$ is the isometric default.

It is time for pictures !

The new CSCS (Swiss National Supercomputing Centre) building in Lugano-Cornaredo.

V.Borrelli

Flat 2-Tori in

the Convex Integration Process

C¹ Fractals

C¹ Fractals

Pictures !

A wide-angle view

As an arch

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

the Convex Integration Process

Flat 2-Tori in \mathbb{E}^3

V.Borrelli

 C^1 Fractals

Flat 2-Tori in [™] V.Borrelli

Implementin the Convex Integration Process

C¹ Fractals

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

"Cinq colonnes à la une"

the Convex Integration Process

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

In the belly of the beast

Implementing the Convex Integration Process

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Flat 2-Tori in ℝ³ V.Borrelli

the Convex Integration Process

C¹ Fractals

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Flexible electrical conduits

The truck suspension

Implementing the Convex Integration Process

C¹ Fractals

Velodrome

・ロン ・聞 と ・ ヨ と ・ ヨ と

ъ

the Convex Integration Process

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractals

(日) (圖) (E) (E) (E)

Implementing the Convex Integration Process

C¹ Fractals

The landing

Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

Pictures !

The rope

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

YouTube : Flat Torus

C¹ Fractals

Pictures !

A part of the initial torus of revolution

Zoom!

C¹ Fractals

Pictures !

First integration : 8 oscillations

Zoom!

C¹ Fractals

Pictures !

Zoom!

Second integration : 64 oscillations

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Zoom in on the second integration

Zoom!

Zoom!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Implementing the Convex Integration Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Pictures !

More closely

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractal

Pictures !

Third integration : 4096 oscillations

Third integration : 4096 oscillations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Zoom!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Pictures !

Zoom in on the third integration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Implementin the Convex Integration Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Pictures !

More closely

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractal

Pictures !

The fourth integration : 524 288 oscillations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractal

Pictures !

The fourth integration : 524 288 oscillations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractal

Pictures !

The fourth integration : 524 288 oscillations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractal

Pictures !

The fifth integration : 2 097 152 oscillations

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The fifth integration : 2 097 152 oscillations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Implementin the Convex Integration Process

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractals

Pictures !

The fifth integration : 2 097 152 oscillations

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

The sixth integration : 16 777 216 oscillations

ヘロト 人間 とくほとくほとう

э.

Implementin the Convex Integration

Process

Pictures !

Zoom!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Zoom in on the sixth integration

.

Implementin the Convex Integration Process

C¹ Fractals

Pictures !

Zoom in on the sixth integration

・

Zoom!

The seventh integration : 536 870 912 oscillations

ヘロン 人間 とくほど 人ほど 一日

Implementin the Convex Integration Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

"Dites 33 !"

æ

Implementing the Convex Integration

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

"Dites 33 !"

▲□ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Implementin the Convex Integration Process

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

V.Borrelli

Implementing the Convex Integration Process

C¹ Fractals

・ロト ・ 四ト ・ ヨト ・ ヨト

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

ヘロト 人間 とくき とくきとう

э

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

ъ

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

ヘロト 人間 とくほとう ほとう

э

 $\underset{\mathbb{R}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

ヘロト 人間 とくき とくきとう

э

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Artefacts

Implementing the Convex Integration Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Artefacts

Implementing the Convex Integration Process

 $\underset{\mathbb{E}^{3}}{\text{Flat 2-Tori in}}$

V.Borrelli

C¹ Fractals

Corrugations in real life?

An ammonite : Douvilleiceras Mammillatum

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

V.Borrelli Implementing the Convex Integration

Flat 2-Tori in \mathbb{R}^3

C¹ Fractals

Corrugations in real life?

A whelk

ヘロト 人間 とくき とくきとう

э

Implementing the Convex Integration Process

Flat 2-Tori in \mathbb{R}^3

V.Borrelli

C¹ Fractals

Implementing the Convex Integration Process

C¹ Fractals

Pictures !

Corrugations in real life?

Close up picture of a whelk

Implementin the Convex Integration Process

C¹ Fractals

Pictures !

Corrugations in real life?

Show 1 reply

dogmaticequation 26 Apr 2012 12:09 AM 5

Leave it to the French to try and pass off baked goods as an advancement in science. promoted by FrankN.Stein

Implementin the Convex Integration Process

C¹ Fractals

Pictures !

The Hevea Team

