CM8 : Fractales lisses

Benoît Mandelbrot

Vincent Borrelli

Institut Camille Jordan - Lyon 1

Le problème du plongement isométrique

• Un plongement

$$f: (M^n, g) \stackrel{C^1}{\longrightarrow} \mathbb{E}^q$$

entre une variété riemannienne compacte (M^n, g) et un espace euclidien $\mathbb{E}^q = (\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ est un **plongement isométrique** s'il préserve la longueur des courbes *i. e.*

$$Long(f \circ \gamma) = Long(\gamma)$$

pour toute courbe paramétrée C^1 par morceaux $\gamma : [0, 1] \longrightarrow M^n$

Le problème du plongement isométrique

• Un plongement

$$f: (M^n, g) \stackrel{C^1}{\longrightarrow} \mathbb{E}^q$$

entre une variété riemannienne compacte (M^n, g) et un espace euclidien $\mathbb{E}^q = (\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ est un **plongement isométrique** s'il préserve la longueur des courbes *i. e.*

$$Long(f \circ \gamma) = Long(\gamma)$$

pour toute courbe paramétrée C^1 par morceaux $\gamma : [0, 1] \longrightarrow M^n$

• Cette condition se réduit à résoudre un système d'EDP non linéaires :

Pour tout
$$1 \le i \le j \le n$$
, $\left\langle \frac{\partial f}{\partial x_i}, \frac{\partial f}{\partial x_j} \right\rangle = g_{ij}$

Le théorème de Nash-Kuiper

Définition.– Une application $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ est dite *courte* (au sens strict) si $f^* \langle ., . \rangle < g$.

Le théorème de Nash-Kuiper

Définition.– Une application $f : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ est dite *courte* (au sens strict) si $f^* \langle ., . \rangle < g$.

John Forbes Nash

Nicolaas Kuiper

Théorème (1954-55-86).— Soient M^n compacte et $f_0 : (M^n, g) \xrightarrow{C^1} \mathbb{E}^q$ un plongement court. Alors, pour tout $\epsilon > 0$, il existe un plongement C^1 -isométrique $f : (M^n, g) \longrightarrow \mathbb{E}^q$ tel que $||f - f_0||_{C^0} \le \epsilon$.

Sphère réduite

Définition.– Une *sphère réduite* est l'image par un plongement isométrique d'une sphère unité de \mathbb{E}^3 dans une boule de rayon strictement plus petit que 1.

Un corollaire : l'existence de sphères réduites C^1

Un corollaire : l'existence de sphères réduites C^1

Un corollaire : l'existence de sphères réduites C^1

Vincent Borrelli

Institut Camille Jordan - Lyon 1

2012-2017 : Une construction explicite

- Vangelis Bartzos : étudiant M2 à l'ENS de Lyon
- Roland Denis : ingénieur de recherche à l'ICJ (Lyon 1)
- Francis Lazarus : directeur de recherche au Gipsa-Lab (Grenoble)
- Damien Rohmer : professeur au LIX (École Polytechnique)
- Boris Thibert : maître de conférences au LJK (Grenoble)

Une construction explicite d'une sphère réduite

Un scalp

Un plongement isométrique

Un plongement court

Un plongement court

Élongation...

... par oscillations

L'intégration convexe

Objectif.– Étant donnés un nombre $\delta > 0$, une application $f_0 : [0, 1] \longrightarrow S \subset \mathbb{R}^3$ et une fonction

$$r: [0, 1] \longrightarrow \mathbb{R}^+$$

telle que

$$\forall t \in [0, 1], \ r(t) > \|f'_0(t)\|,$$

trouver $F : [0, 1] \longrightarrow \mathbb{R}^3$ telle que

i)
$$\forall t \in [0, 1], F'(t) \in Vect(f'_0(t), \mathbf{n})$$

ii) $\forall t \in [0, 1], ||F'(t)|| = r(t)$
iii) $||F - f_0||_{C^0} \le \delta$

L'intégration convexe

• Pour satisfaire i) et ii) on doit nécessairement choisir F' de la forme

$$F'(t) = r(t)e^{i\theta(t)}$$

où θ : [0, 1] $\longrightarrow \mathbb{R}$ et $e^{i\theta} := \cos \theta \mathbf{t} + \sin \theta \mathbf{n}$ avec $\mathbf{t} := \frac{t'_0}{\|t'_0\|}$.

L'intégration convexe

• Si l'on veut créer des oscillations, un choix possible pour θ est

```
\theta(t) = \alpha(t) \cos 2\pi N t
```

où $N \in \mathbb{N}^*$ est le nombre d'oscillations et $\alpha : [0, 1] \longrightarrow \mathbb{R}_+$ est fonction.

• Pour tout $t \in [0, 1]$, on pose

$$F(t) := f_0(0) + \int_0^t r(u) e^{i\alpha(u)\cos 2\pi \mathbf{N} u} \,\mathrm{d} u$$

• Pour tout $t \in [0, 1]$, on pose

$$F(t) := f_0(0) + \int_0^t r(u) e^{i\alpha(u)\cos 2\pi \mathbf{N} u} \, \mathrm{d} u$$

Lemme fondamental de l'intégration convexe.– Si pour tout $t \in [0, 1]$, le nombre $\alpha(t)$ est choisi telle que

$$\int_0^1 r(t) e^{i\alpha(t)\cos(2\pi s)} \,\mathrm{d}s = f_0'(t)$$

alors F vérifie

$$\|F - f_0\|_{C^0} = O(\frac{1}{N})$$

• Pour tout $t \in [0, 1]$, on pose

$$F(t) := f_0(0) + \int_0^t r(u) e^{i\alpha(u)\cos 2\pi \mathbf{N} u} \, \mathrm{d} u$$

Lemme fondamental de l'intégration convexe.– Si pour tout $t \in [0, 1]$, le nombre $\alpha(t)$ est choisi telle que

$$\int_0^1 r(t) \boldsymbol{e}^{i\boldsymbol{\alpha}(t)\cos(2\pi s)} \,\mathrm{d}\boldsymbol{s} = f_0'(t)$$

alors F vérifie

$$\|F-f_0\|_{C^0}=O(\frac{1}{N})$$

Vocabulaire.– On dit que l'application F a été obtenue à partir de f_0 par *intégration convexe*.

Observation.– On dispose d'une formule pour déterminer $\alpha(t)$ au moyen d'une réciproque de la fonction de Bessel J_0 de degré 0 :

$$\alpha(t) = J_0^{-1} \left(\frac{\|f_0'(t)\|}{r(t)} \right)$$

Graphe de la fonction de Bessel J0

La C^0 -densité, N = 5

La C^0 -densité, N = 10

Vincent Borrelli

La C^0 -densité, N = 20

• Il suffit d'allonger trois familles de courbes pour allonger n'importe quelle courbe de la surface initiale.

• Il suffit d'allonger trois familles de courbes pour allonger n'importe quelle courbe de la surface initiale.

• Si on s'y prend bien, le **défaut isométrique** de la surface qui en résulte est moitié plus petit que celui de la surface de départ.

- Il suffit d'allonger trois familles de courbes pour allonger n'importe quelle courbe de la surface initiale.
- Si on s'y prend bien, le **défaut isométrique** de la surface qui en résulte est moitié plus petit que celui de la surface de départ.
- Il ne reste plus qu'à itérer le procédé une infinité de fois...

On note

$$\Delta := g_{\text{sphère}} - f_0^* \langle ., . \rangle$$

le défaut isométrique. Remarquons que

- $\Delta \equiv 0$ sur les calottes
- Δ est une métrique sur \mathcal{B} .
- $\bullet \ \Delta = \textit{Edu} \otimes \textit{du} + \textit{F}(\textit{du} \otimes \textit{dv} + \textit{dv} \otimes \textit{du}) + \textit{Gdv} \otimes \textit{dv}$

On pose

$$\ell_{1} := du + dv = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, . \rangle = \langle U_{1}, . \rangle$$
$$\ell_{2} := du - dv = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix}, . \rangle = \langle U_{2}, . \rangle$$

$$\ell_3 := du = \langle \left(\begin{array}{c} 1 \\ 0 \end{array}
ight), \ . \ \rangle = \langle U_3, . \rangle$$

et on décompose le défaut isométrique en

$$\Delta = \rho_1 \ell_1 \otimes \ell_1 + \rho_2 \ell_2 \otimes \ell_2 + \rho_3 \ell_3 \otimes \ell_3$$

• On choisit f_0 telle que $\rho_1 > 0$, $\rho_2 > 0$ et $\rho_3 > 0$ sur \mathcal{B} (c'est possible)

Stratégie.– Pour chaque $j \in \{1, 2, 3\}$, on allonge la famille de courbes donnée par ℓ_j afin de faire disparaître le facteur ρ_j du défaut isométrique

$$\Delta = \rho_1 \ell_1 \otimes \ell_1 + \rho_2 \ell_2 \otimes \ell_2 + \rho_3 \ell_3 \otimes \ell_3$$

La famille de courbes donnée par ℓ_1

• Cette allongement se fait au moyen d'une intégration convexe appliquée à toutes les courbes de la famille.
Réduire le défaut isométrique

• Cette allongement se fait au moyen d'une intégration convexe appliquée à toutes les courbes de la famille.

• Par exemple pour j = 1, on construit à partir de f_0 une nouvelle application F en prenant

$$r = \sqrt{\rho_1 + \|df_0(U_1)\|^2}.$$

Ainsi

$$g_{\mathsf{sphère}} - F^* \langle ., .
angle =
ho_2' \ell_2 \otimes \ell_2 +
ho_3' \ell_3 \otimes \ell_3$$

avec $\rho'_2 = \rho_2 + O(\frac{1}{N_1})$ et $\rho'_3 = \rho_3 + O(\frac{1}{N_1})$

Réduire le défaut isométrique

• Cette allongement se fait au moyen d'une intégration convexe appliquée à toutes les courbes de la famille.

• Par exemple pour j = 1, on construit à partir de f_0 une nouvelle application F en prenant

$$r = \sqrt{\rho_1 + \|df_0(U_1)\|^2}.$$

Ainsi

$$g_{\mathsf{sphère}} - \mathit{F}^* \langle ., .
angle =
ho_2' \ell_2 \otimes \ell_2 +
ho_3' \ell_3 \otimes \ell_3$$

avec $\rho'_2 = \rho_2 + O(\frac{1}{N_1})$ et $\rho'_3 = \rho_3 + O(\frac{1}{N_1})$

• Le nouveau défaut isométrique = $\rho'_2 \ell_2 \otimes \ell_2 + \rho'_3 \ell_3 \otimes \ell_3$

• On réalise une nouvelle intégration convexe « le long » de ℓ_2 afin de faire disparaître le facteur ρ'_2 du défaut isométrique.

Le nouveau défaut isométrique = $\rho_3'' \ell_3 \otimes \ell_3 + O(\frac{1}{N_2})\ell_1 \otimes \ell_1$

Vincent Borrelli

• On réalise une troisième intégration convexe « le long » de ℓ_3 afin de faire disparaître la composante ρ_3'' du défaut isométrique.

Le nouveau défaut isométrique = $O(\frac{1}{N_2} + \frac{1}{N_3})\ell_1 \otimes \ell_1 + O(\frac{1}{N_3})\ell_2 \otimes \ell_2$

Vincent Borrelli

• Le nouveau défaut isométrique $\widetilde{\Delta}$ n'est pas nul sur ${\mathcal B}$:

$$\widetilde{\Delta} = \widetilde{\rho_1}\ell_1 \otimes \ell_1 + \widetilde{\rho_2}\ell_2 \otimes \ell_2$$

avec

$$|\widetilde{\rho_1}| < \rho_1 \quad \text{et} \quad |\widetilde{\rho_2}| < \rho_2$$

• Le nouveau défaut isométrique $\widetilde{\Delta}$ n'est pas nul sur ${\cal B}$:

$$\widetilde{\Delta} = \widetilde{\rho_1}\ell_1 \otimes \ell_1 + \widetilde{\rho_2}\ell_2 \otimes \ell_2$$

avec

$$|\widetilde{\rho_1}| < \rho_1 \quad \text{et} \quad |\widetilde{\rho_2}| < \rho_2$$

• De plus, les coefficients $\tilde{\rho_1}$ et $\tilde{\rho_2}$ ne sont pas positifs en général.

• Le nouveau défaut isométrique $\widetilde{\Delta}$ n'est pas nul sur ${\cal B}$:

$$\widetilde{\Delta} = \widetilde{\rho_1}\ell_1 \otimes \ell_1 + \widetilde{\rho_2}\ell_2 \otimes \ell_2$$

avec

$$|\widetilde{\rho_1}| < \rho_1 \quad \text{et} \quad |\widetilde{\rho_2}| < \rho_2$$

- De plus, les coefficients $\tilde{\rho_1}$ et $\tilde{\rho_2}$ ne sont pas positifs en général.
- Ce défaut est rédhibitoire : l'intégration convexe ne peut qu'allonger les courbes, pas les raccourcir.

• Le nouveau défaut isométrique $\widetilde{\Delta}$ n'est pas nul sur ${\cal B}$:

$$\widetilde{\Delta} = \widetilde{\rho_1}\ell_1 \otimes \ell_1 + \widetilde{\rho_2}\ell_2 \otimes \ell_2$$

avec

$$|\widetilde{\rho_1}| < \rho_1 \quad \text{et} \quad |\widetilde{\rho_2}| < \rho_2$$

- De plus, les coefficients $\tilde{\rho_1}$ et $\tilde{\rho_2}$ ne sont pas positifs en général.
- Ce défaut est rédhibitoire : l'intégration convexe ne peut qu'allonger les courbes, pas les raccourcir.
- Nash contourne cet obstacle en cherchant à diviser le défaut isométrique par deux plutôt que de le réduire à zéro directement.

Approche itérative

• On construit une suite

$$f_0, F_{1,1}, F_{1,2}, F_{1,3}, F_{2,1}, F_{2,2}, F_{2,3}, \dots$$

d'applications telles que

$$\|g_{\mathsf{sph}\check{\mathsf{e}}\mathsf{re}} - F_{k,3}^*\langle .,.
angle \|_{C^0} \leq rac{\|\Delta\|_{C^0}}{2^k}$$

Affirmation.– Si les $N_{k,j}$ croissent suffisamment vite, la suite des $F_{k,3}$ converge au sens C^1 vers une application F_{∞} C^0 -proche de f_0 et isométrique :

$$extsf{F}^*_{\infty}\langle.,.
angle= extsf{g}_{ extsf{sphère}}$$

Top départ !

Vincent Borrelli

Première vague d'oscillations

Seconde vague d'oscillations

Troisième vague d'oscillations

Vincent Borrelli

Une sphère réduite

Le facteur de réduction

La Terre dans une balle de ping-pong?

Structure géométrique de F_{∞}

Vincent Borrelli

Une portion de la surface initiale

Vincent Borrelli

Première intégration : 8 oscillations

Vincent Borrelli

Deuxième intégration : 64 oscillations

Vincent Borrelli

Zoom sur la deuxième intégration

Vincent Borrelli

Encore plus près

Troisième intégration : 4096 oscillations

Vincent Borrelli

*F*_{1,3}

Troisième intégration : 4096 oscillations

Vincent Borrelli

Zoom sur la troisième intégration

Encore plus près

La quatrième intégration : 524 288 oscillations

Vincent Borrelli

La quatrième intégration : 524 288 oscillations

Vincent Borrelli

La quatrième intégration : 524 288 oscillations

Vincent Borrelli

La cinquième intégration : 2 097 152 oscillations

La cinquième intégration : 2 097 152 oscillations

1/3	no	ont	D	rroll
_ V I	пc	ent	DU	леп

La cinquième intégration : 2 097 152 oscillations

La sixième intégration : 16 777 216 oscillations

1/3	no	ont	D	rroll
_ V I	пc	ent	DU	леп

Zoom sur la sixième intégration

Vincent Borrelli

Institut Camille Jordan - Lyon 1

Zoom sur la sixième intégration

Vincent Borrelli

Institut Camille Jordan - Lyon 1

La septième intégration : 536 870 912 oscillations

11:			D -	
VI	nce	ent -	вo	rrell

Institut Camille Jordan - Lyon 1

L'application initiale fo

L'application f_1 obtenue à partir de f_0 par intégration convexe

L'application f_2 obtenue à partir de f_1 par intégration convexe

Matrices de corrugations

• Soit $C_k : \mathbb{S}^1 \longrightarrow O(2)$ définie par

On appelle C_k une matrice de corrugations.

Structure de l'application de Gauss

• L'effet des intégrations convexes successives est formalisé au moyen d'une suite de matrices de corrugations :

$$\mathcal{C}_k(u) := \left(egin{array}{cc} \cos heta_k(u) & \sin heta_k(u) \ -\sin heta_k(u) & \cos heta_k(u) \end{array}
ight)$$

avec

$$\theta_k(u) = ?$$

Retour à l'intégration convexe

• Notre choix de θ :

 $\theta(t) = \alpha(t) \cos 2\pi N t$

Structure de l'application de Gauss

• L'effet des intégrations convexes successives est formalisé au moyen d'une suite de matrices de corrugations :

$$\mathcal{C}_k(u) := \left(egin{array}{cc} \cos heta_k(u) & \sin heta_k(u) \ -\sin heta_k(u) & \cos heta_k(u) \end{array}
ight)$$

où

$$\theta_k(u) = \alpha_k \cos(2\pi N_k u).$$

• L'application de Gauss n_{∞} du plongement limite est donnée par un produit infini :

$$\left(\begin{array}{c}t_{\infty}\\n_{\infty}\end{array}\right) = \left(\prod_{k=1}^{\infty} \mathcal{C}_{k}\right) \cdot \left(\begin{array}{c}t_{0}\\n_{0}\end{array}\right)$$

qui est analogue à un produit de Riesz.

Produits de Riesz

• Ce sont les produits infinis de la forme :

$$u \longmapsto \prod_{k=0}^{\infty} (1 + \alpha_k \cos(2\pi N^k u))$$

où $N \ge 3$ est un entier et $(\alpha_k)_{k \in \mathbb{N}}$ une suite de nombres réels telle que, pour tout $k \in \mathbb{N}, |\alpha_k| \le 1$.

Frigyes Riesz

Produits de Riesz

Frigyes Riesz

• Ce sont les produits infinis de la forme :

$$u \mapsto \prod_{k=0}^{\infty} (1 + \alpha_k \cos(2\pi N^k u))$$

où $N \ge 3$ est un entier et $(\alpha_k)_{k \in \mathbb{N}}$ une suite de nombres réels telle que, pour tout $k \in \mathbb{N}, |\alpha_k| \le 1$.

• Dans notre contexte, les facteurs du produit de Riesz sont remplacés par les *matrices de corrugations*. En identifiant \mathbb{R}^2 à \mathbb{C} , on peut écrire

$$n_{\infty}(u) = \prod_{k=0}^{\infty} e^{i\alpha_k \cos(2\pi N_k u)} n_0(u)$$

Fonction de Weierstrass

• Ainsi : $n_{\infty}(u) = e^{iW(u)}n_0(u)$ avec $W(u) = \sum_{k=0}^{\infty} \alpha_k \cos(2\pi N_k u)$.

Fonction de Weierstrass

• Ainsi : $n_{\infty}(u) = e^{iW(u)}n_0(u)$ avec $W(u) = \sum_{k=0}^{\infty} \alpha_k \cos(2\pi N_k u)$.

• Si $\alpha_k = a^k$, $N_k = b^k$ avec 0 < a < 1 < ab, la série *W* est la *fonction de Weierstrass*. La dimension de son graphe est conjecturalement

 $2 + \ln(a) / \ln(b)$.

Fractale C^1

Bilan.– Le procédé de Nash-Kuiper unidimensionnel construit une application limite f_{∞} de classe C^1 . L'application normale n_{∞} est de classe C^0 , elle s'exprime comme un produit de Riesz et possède conjecturalement une structure fractale.

Fractale C^1

Bilan.– Le procédé de Nash-Kuiper unidimensionnel construit une application limite f_{∞} de classe C^1 . L'application normale n_{∞} est de classe C^0 , elle s'exprime comme un produit de Riesz et possède conjecturalement une structure fractale.

Le flocon de Von Koch et une courbe fractale C1

Définition.– On dit qu'une courbe a une structure *fractale* C^1 si le graphe de son application normale est fractale.

Soit $C_{k,j} \in SO(3)$ telle que

$$\begin{pmatrix} v_{k,j}^{\perp} \\ v_{k,j} \\ n_{k,j} \end{pmatrix} = \mathcal{C}_{k,j} \cdot \begin{pmatrix} v_{k,j-1}^{\perp} \\ v_{k,j-1} \\ n_{k,j-1} \end{pmatrix}.$$

Soit $F_{\infty} : (\Sigma^2, g) \longrightarrow \mathbb{E}^3$ la limite de la suite : $f_0, \quad F_{1,1}, F_{1,2}, F_{1,3}, \quad F_{2,1}, F_{2,2}, F_{2,3}, \quad \dots$

on a

$$\left(\begin{array}{c} \mathbf{v}_{\infty}^{\perp} \\ \mathbf{v}_{\infty} \\ \mathbf{n}_{\infty} \end{array}\right) = \prod_{k=1}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}\right) \cdot \left(\begin{array}{c} \mathbf{v}_{0}^{\perp} \\ \mathbf{v}_{0} \\ \mathbf{n}_{0} \end{array}\right)$$

Soit $F_\infty:(\Sigma^2,g)\longrightarrow \mathbb{E}^3$ la limite de la suite :

$$f_0, F_{1,1}, F_{1,2}, F_{1,3}, F_{2,1}, F_{2,2}, F_{2,3}, \dots$$

on a

$$\left(\begin{array}{c} \mathbf{v}_{\infty}^{\perp} \\ \mathbf{v}_{\infty} \\ \mathbf{n}_{\infty} \end{array}\right) = \prod_{k=1}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}\right) \cdot \left(\begin{array}{c} \mathbf{v}_{0}^{\perp} \\ \mathbf{v}_{0} \\ \mathbf{n}_{0} \end{array}\right)$$

Remarque. – Contrairement au cas unidimensionnel, les expressions analytiques des matrices $C_{k,j}$ sont peu maniables. En particulier, la comparaison avec un produit de Riesz n'est pas claire.

Soit $F_\infty:(\Sigma^2,g)\longrightarrow \mathbb{E}^3$ la limite de la suite :

$$f_0, F_{1,1}, F_{1,2}, F_{1,3}, F_{2,1}, F_{2,2}, F_{2,3}, \dots$$

on a

$$\left(\begin{array}{c} \mathbf{v}_{\infty}^{\perp} \\ \mathbf{v}_{\infty} \\ \mathbf{n}_{\infty} \end{array}\right) = \prod_{k=1}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}\right) \cdot \left(\begin{array}{c} \mathbf{v}_{0}^{\perp} \\ \mathbf{v}_{0} \\ \mathbf{n}_{0} \end{array}\right)$$

Remarque. – Contrairement au cas unidimensionnel, les expressions analytiques des matrices $C_{k,j}$ sont peu maniables. En particulier, la comparaison avec un produit de Riesz n'est pas claire.

Théorème (V. B., S. Jabrane, F. Lazarus, B. Thibert, 2012).– « *Ce produit infini est asymptotiquement un produit de Riesz.* »

Fractales usuelles vs Fractales lisses

Images : Jos Leys et Projet Hévéa

Encore plus d'images sur le site du projet Hévéa

http://hevea-project.fr/

Merci pour votre attention...

L'équipe Hévéa

... et votre accueil !

EMA 2018 Rabat