Two-phase flow in a heterogeneous porous media A 2D geometry test case

Amel Sboui

Contents

1	Notation	2
2	Introduction	2
3	Physical Model	3
	3.1 Fluid phases	3
	3.2 Fluid components	3
	3.3 Molecular diffusion flux in the liquid phase	4
	3.4 Conservation of mass for each component	4
	3.5 Phase equilibrium	4
	3.6 Simulation Periods	5
4	A simplified 2D exercice	5
	4.1 Geometry	5
	4.2 Boundary conditions	5
	4.3 Initial conditions	6
	4.4 hydrogen flux	6
5	Examples	6
6	Physical parameters	6
7	Required results	7
	7.1 Required conditions	7
	7.2 Required output	7

1 Notation

Symbol	meaning	dimension
\mathbf{q}_l	Darcy's velocitie for water	${ m m.}{s^{-1}}$
\mathbf{q}_{g}	Darc's velocitie for gas	$m.s^{-1}$
K	the absolute permeability	m^2
k_{rl}	relative water permeability	-
k_{rq}	relative gas permeability	-
p_l	water pressure	Pa
p_g	gas pressure	Pa
p_a^w	partial pressure of water vapor in the gaz phase	Pa
$p_a^{\check{h}}$	partial pressure of hydrogen in the gaz phase	Pa
p_c	capillary pressure	Pa
g	gravity acceleration	$m.s^{-2}$
у	altitude	m
ϕ	porosity	-
S_l	water saturation of phase	-
S_g	gas saturation of phase	-
S_{lr}	residual water saturation	-
S_{gr}	residual gas saturation	-
p_r	parameter of Van Genuchten Law	Pa
n, m	coefficients of Van Genuchten Law $m = 1 - \frac{1}{n}$	-
$ ho_l$	density of the water	$kg.m^{-3}$
$ ho_l$	density of the gas	$kg.m^{-3}$
$ ho_l^w$	density of water in liquid phase	$kg.m^{-3}$
$ ho_g^w$	density of water vapor	$kg.m^{-3}$
$ ho_l^h$	density of dissolved hydrogen	$kg.m^{-3}$
$ ho_g^h$	density of hydrogen in the gas phase	$kg.m^{-3}$
\check{M}^h	molar mass of hydrogen	$kg.mol^{-1}$
M_g^w	molar mass of water vapor	$kg.mol^{-1}$
R	constant of ideal gases	$(j.mol^{-1}.K^{-1})$
Т	the temperature	Κ
D_l^h	Diffusion coefficient of disolved hydrogen	$m^2.s^{-1}$
μ^w	viscosity of liquid phase	Pa.s
μ^g	viscosity of gas phase	Pa.s
au	tortuosity	-
C_l^h	hydrogen concentration in water	$mol.m^{-3}$
H_h	solubility of hydrogen in water	$mol.Pa^{-1}.m^{-3}$

2 Introduction

Andra and MoMas proposed the Couplex-Gas Benchmark for simulating the migration of hydrogen produced by the corrosion of nuclear waste packages in an underground storage.

This is a system of two-phase (liquid-gas) flow with two components (hydrogen-water). We proposed in this paper a simplified exercice of this Benchmark which contain the same numerical difficulties. We will assume that water does not vaporize.

3 Physical Model

We first describe the equations and some simplifying hypotheses.

3.1 Fluid phases

- 2 phases : Liquid (incompressible) (l), Gas (compressible) (g)
- Darcy's law for each phase :

$$\mathbf{q}_i = -K(x)\frac{k_{ri}(S_i)}{\mu_i}(\nabla p_i - \rho_i g \nabla y) \quad i \in l, g.$$

• $S_l + S_g = 1$

•
$$p_c(S_l) = p_g - p_l$$

The capillary pressure is expressed by the Van Genuchten model as follows :

• $p_c = p_r (S_{le}^{-1/m} - 1)^{1/n}$

Where $S_{le} = \frac{S_l - S_{lr}}{1 - S_{lr} - S_{gr}}$ is the effective saturation.

The relative water permeability and the relative gas permeability are expressed by the Mualem model as follows :

•
$$k_r^l = \sqrt{S_{le}} (1 - (1 - S_{le}^{1/m})^m)^2$$

•
$$k_r^g = \sqrt{1 - S_{le}} (1 - S_{le}^{1/m})^{2m}$$

3.2 Fluid components

• 2 components : Water (w), Hydrogen (h)

•
$$\rho_i = \rho_i^w + \rho_i^h, \qquad i \in \{l, g\}$$

• We define mass concentration : $\chi_i^h = \frac{\rho_i^h}{\rho_i}, \quad \chi_i^w = \frac{\rho_i^w}{\rho_i}, \qquad i \in \{l, g\}.$

We assume that the liquid phase may contain both components, while the gas phase contains only hydrogen, that is the water does not vaporize. In this situation we have

- $\rho_g^w = 0, \, \chi_g^h = 1 \text{ and } \chi_g^w = 0$
- Ideal Gas

$$\star \ p_g^h = \frac{\rho_g^h}{M^h} RT.$$

3.3 Molecular diffusion flux in the liquid phase

- Molecular diffusion flux of hydrogen in the liquid phase $\mathbf{j}_l^h = -\phi S_l \rho_l D_l^h \nabla \chi_l^h$
- Molecular diffusion flux of water in the liquid phase $\mathbf{j}_l^w = -\phi S_l \rho_l D_l^w \nabla \chi_l^w$.
 - With molecular diffusion coefficient

*
$$D_l^h = D_l^w = (\frac{1}{\tau^2})1.5710^{-14} \frac{T}{\mu^w(T)} \quad [m^2/s]$$

3.4 Conservation of mass for each component

•
$$\phi \frac{\partial}{\partial t} (S_l \rho_l^w) + \operatorname{div}(\rho_l^w \mathbf{q}_l + \mathbf{j}_l^w) = 0$$

•
$$\phi \frac{\partial}{\partial t} (S_l \rho_l^h + S_g \rho_g^h) + \operatorname{div}(\rho_l^h \mathbf{q}_l + \rho_g^h \mathbf{q}_g + \mathbf{j}_l^h) = 0$$

• Total flux for each component

$$\star \mathbf{F}^w = \rho_l^w \mathbf{q}_l + \mathbf{j}_l^w$$

$$\star \mathbf{F}^{h} =
ho_{l}^{h} \mathbf{q}_{l} +
ho_{g}^{h} \mathbf{q}_{g} + \mathbf{j}_{l}^{h}$$

3.5 Phase equilibrium

• Henry's law and the hydrogen concentration

$$\star \ M^h H(T) p_q^h = \rho_l^h,$$

* We define the concentration of hydrogen in water C_l^h by $C_l^h = H(T)p_g^h = \frac{\rho_l^n}{M^h}$.

3.6 Simulation Periods

The simulation will take place between moment $t_0 = 0$ and moment $t_{end} = 1000$ years.

4 A simplified 2D exercice

We consider a rectangle of dimension [200 m x 130 m] initially saturated into which we inject gazeous hydrogen at a given rate. This core sample is actually made of two different rock types (the concrete package and the Cox) with different capillary pressure and relative permeability curves. The hydrogen source S is located near the interface between the two materials in the rectangle representing rock type 1 as shown in Fig. 4.1.

4.1 Geometry

Figure 4.1: Geometry

4.2 Boundary conditions

We denote by \mathbf{n}_{Γ_L} and \mathbf{n}_{Γ_R} the unit outward pointing normal vectors respectively on Γ_L and Γ_R . We denote by $\mathbf{n}_{\partial S}$ the unit outward pointing normal vector on the boundary of S.

- $p_l = 4.2$ MPa, $S_l = 1$ on Γ_T .
- $p_l = 5.5$ MPa, $S_l = 1$ on Γ_B .
- $\mathbf{F}^w \cdot \mathbf{n}_{\Gamma_L} = 0$ and $\mathbf{F}^h \cdot \mathbf{n}_{\Gamma_L} = 0$
- $\mathbf{F}^w \cdot \mathbf{n}_{\Gamma_R} = 0$ and $\mathbf{F}^h \cdot \mathbf{n}_{\Gamma_R} = 0$
- $\mathbf{F}^w \cdot \mathbf{n}_{\partial S} = 0$ and $\mathbf{F}^h \cdot \mathbf{n}_{\partial S} = Q^h$.

4.3 Initial conditions

• $S_l = 1.$

- hydrostatic liquid pressure.
- $C_l^h = 0 \text{ mol.} m^{-3}$.

4.4 hydrogen flux

- $Q^h = 0.5210^{-10} \text{ kg}/m^2/\text{year}$ for $0 \le t \le 500 \text{ years}$
- $Q^h = 0.2610^{-10} \text{ kg}/m^2/\text{year}$ for $500 < t \le 530 \text{ years}$
- $Q^h = 0 \text{ kg}/m^2/\text{year}$ for $530 < t \le 10000 \text{ years}$

5 Examples

We propose two test cases :

- Case 1 : Rock type 1 = COX, rock type 2 = Concrete package.
- Case 2 : Rock type 1 = Concrete package, rock type 2 = COX.

6 Physical parameters

The calculations are isotherm; temperature is set at 303 Kelvin throughout the simulation period.

Materials parameters	Concrete package	COX	
$K[m^2]$	10^{-19}	10^{-21}	
Porosity (ϕ) [%]	15	15	
Two-phase flow parameters	Concrete package	COX	
$S_{gr}[\%]$	0	0	
$S_{lr}[\%]$	1	40	
n [-]	1.54	1.49	
$P_r[Pa]$	2.10^{6}	15.10^{6}	
Tortuosity (τ)	2	2	
Fluids parameters			
Viscosity of liquid phase μ_l	$10^{-3} Pa.s$		
Viscosity of gas phase μ_g	$9.10^{-6} Pa.s$		
Molar mass of hydrogen M_h	$2 g.mol^{-1}$		
Constant of ideal gases R	$8.314 \ J.mol^{-1}.K^{-1}$		
Solubility of hydrogen in water H_h	$7.65 \ 10^{-6} \ mol. Pa^{-1}.m^{-3}$		
Masse volumique de l'eau ρ_l	$10^6 \ g.m^{-3}$		

7 Required results

7.1 Required conditions

- What are the unknown that you use?
- if $S_l = 1$ is impossible for numerical reasons, please specify initial and boundary conditions.
- Do you take into account an initial concentration of hydrogen? If yes, which one?
- Which treatment you use to regularize the curve of the capillary pressure when the saturation is maximum?

7.2 Required output

- Gaz-pressure, water pressure and gaz saturation profile in (y = 50 m, y = 85 m and x = 100 m) at (t = 0, 1, 10, 50, 100, 200, 500, 550, 800, 1000, 5000, 10000 year).
- Gaz pressure in relation to time in the following points : (90,85.5), (100,55), (100,70).
- Hydrogen flows (in mol/year) through the surface which contain the source : $(x = 85 m, 70 m \le y \le 100 m) \cup (x = 115 m, 70 m \le y \le 100 m) \cup (y = 70 m, 85 m \le x \le 115 m) \cup (y = 100 m, 85 m \le x \le 115 m)$