Benchmark on two-phase flow in porous media : presentation of 3 tests

S. Granet, B. Amaziane, A. Bourgeat, F. Caro

Solving and understanding of main numerical problems concerning gas migration in porous media for underground nuclear waste storage :

Injection of gas in a fully saturated medium problem

Hydrogen due to corrosion of steel containers and liners produced in clay
 Saturation equilibrium between contrasted materials

✓ Plugs (concrete, swelling clays, etc.), seals, clay ...

Separation of each problem

>A very simple geometry (quasi-1D flow)

>Several Test cases available on <u>http://sources.univ-lyon1.fr/cas_test.html</u>.

=>Selection of 3 tests for this benchmark (1.a - 3 - 4)

General hypothesis

- ≻2 phases : liquid and gas
- >2 components (for ex. hydrogen and water)
- >Incompressible water
- Isothermal Problem and vaporization neglected
- >Hypothesis of perfect gas
- >Capillary pressure Pc(S) = Pg-Pl
- Mass conservation of each component
- Darcy law for each phase
- >Fick Law in liquid mixture (exept 4)
- >Henry's law for dissolution(exept 4)
- Indeformable solid

Test 1a : Gas phase appearance in a homogeneous porous media

Test proposed by F. Smaï

>Capillary pressure curve and relative permeability expressed with a Mualem Van-Genuchten Law (Pr = 2MPa ; n=1,49 ; S_{lr} = 0,4)

$$\begin{split} S_{lq} &= \frac{1 - S_{wre}}{\left(\left(\frac{P_c}{P_r}\right)^n + 1\right)^m} + S_{wre} \qquad k_{rel}^l = \sqrt{S_{wre}} \left(1 - \left(1 - S_{we}^{-1/m}\right)^m\right)^2 \qquad k_{rel}^g = \sqrt{(1 - S_{we}^{-1/m})^2} \left(1 - S_{we}^{-1/m}\right)^{2m} \\ S_{we} &= \frac{S_l - S_{lr}}{1 - S_{lr}} \qquad m = 1 - 1/n \end{split}$$

Test 1a : Hypothesis of each team (1/2)

	Software	Spatial Scheme	Mesh	Regulariza tion of MVG (S=1)	Time steps
			000000000000000000000000000000000000000		(years)
UFSC	Matlab	Discontinuous Galerkin	200*1*(1m*1m) guad	No	125->5000
(I.Mozolezki)					
EDF	Code_Aster	FE P1 (and FV)	200*1*(1m*1m	Yes	0,1-
(S. Granet)) quad		>15000
INRIA	Develop.	FV with upstream scheme	200*1*(1m*1m	Yes	5000
(I.Ben Gharbia)	INRIA soft.) quad		
IRSN	Develop.	FE P1	200*1*(1m*1m	No	100-
(F. Smaï)	IRSN soft.) quad		>15000
U. Erlangen	M++	Mixed Hybrid FE	4480 triangles	Yes	200
(T. Mueller)					
U. Heidelberg	Dune	FV with upstream scheme	40*20*(0,5*1m	No	0,001-
(R. Neumann)) quad		>1010

Test 1a : Hypothesis of each team (2/2)

•Time disretization : Euler implicit for all team

Treatment of gas appearance

✓ included in choice of unknows, for exemple : $\left(P_l, \frac{\rho_l^h}{H.M^h}\right)$

- A. Bourgeat, M. Jurak, F. Smaï, Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository. Comp. Geoscience. 2009
- O. Angelini, C. Chavant, E. Chénier, R. Eymard, S. Granet, Finite Volume ٠ Approximation of a Diffusion-dissolution model and application to nuclear waste storage, Mathematics & Computers in simulation. matcom.2010
- Neumann, R., Ippisch, O. Bastian, P. Modeling Two-Phase Two-Component Flow with Disapearing Gas Phase. Preprint 2011

✓ INRIA use (S_i, P_i, χ_i^h) and complementarities conditions

Test 1a : Results

Time evolution

- 1- Dissolution
- 2- Desaturation and increase of gas pressure
- 3- Equilibrium in a desaturated state
- 4- End of Injection : quick desaturation, water comes from the left : decrease of liquid

pressure

- 5- End of desaturation the water is coming back
- 6- back to initial state

Test 1 : results (2/2)

edf

Test 3 : Compressible and miscible two-phase flow starting from non equilibrium state

$$\mathbf{F}^{\mathbf{h}}.\mathbf{n}=\mathbf{0}$$
 $\mathbf{F}^{w}.\mathbf{n}=\mathbf{0}$

$$\mathbf{F}^{\mathbf{h}} \cdot \mathbf{n} = 0 \quad
 \mathbf{F}^{0}_{l} = 1MPa \\
 \mathbf{F}^{w} \cdot \mathbf{n} = 0 \quad
 \mathbf{F}^{0}_{g} = 1,5MPa \quad
 => S^{0}_{l} = 0,962 \quad
 \mathbf{F}^{0}_{g} = 2,5MPa \quad
 => S^{0}_{l} = 0,842 \quad
 \mathbf{F}^{\mathbf{h}} \cdot \mathbf{n} = 0 \quad
 \mathbf{F}^{w} \cdot \mathbf{n} = 0 \quad
 \mathbf{F}^{w} \cdot \mathbf{n} = 0$$

Test proposed by F. Smaï

- ≻Time of simulation : 10⁶s
- Homogeneous material

>Capillary pressure curve and relative permeability expressed with a Mualem Van-Genuchten Law (Pr = 2MPa ; n=1,54 ; S_{lr} = 0,01)

Test 3 : Hypothesis of each team (1/2)

	Software	Spatial Scheme	Mesh	Time steps(s)	
CEA	MPCube FV Diamants		200 triangles	0,17->833	
(F. Caro)					
CEA2	Scilab 1D	Finite Diffrence	500 1D el.	0,17->833	
(B. Saad)					
IRSN1	Develop.	FE P1	500*1*(1m*1m	0,1->4000	
(F. Smaï)	IRSN SOTT.) quad		
IRSN2	Mlgastra	FV for convection and EF	Triangles	1->16	
(M. Dimitrowska)		for diπusion	$\Delta X=0,01$		
EDF	Code_Aster	FE P1 (VF)	100*1*(1m*1m	2->15000	
(S. Granet)) quad		
U. Erlangen	M++	Mixed Hybrid FE	4480 triangles	10->1000s	
(T. Mueller)					
U. Heidelberg	Dune	FV with upstream scheme	40*20*(0,5*1m	1->1000s	
(R. Neumann)) quad		
UFSC	Matlab	Discontinuous Galerkin	512*1D el.	0,3->31250	
1 (I.Mozolezki) Benchmark on two-phase flow in porous media. GNR MoMas, CIRM Marseille, November 2011					

Test 3 : Results (1/2)

1000 s

Test 3 : Results (2/2)

500000 s

Test 4 : immiscible two-phase flow starting from non equilibrium state in a heterogeneous media

>Immiscible fluid : 1 component in each phase (no dissolution)

- ≻100 elements (h=10⁻² m)
- >heterogeneous material :

13

S(PC) : VG (n=0,06 ; Pr = 1,5MPa) $k_{rel}^{l} = \left(1 + \frac{\left(S^{-16,67} - 1\right)^{1,88}}{4}\right)^{-0.5}$ $\phi = 0,3$ $K^{int} = 10^{-20} m^{2}$ S(PC) : VG (n=0,412 ; Pr = 1MPa) $k_{rel}^{l} = \left(1 + \left(S^{-1,429} - 1\right)^{1,88}\right)^{-1}$ $\phi = 0,05$ $K^{int} = 10^{-19} m^{2}$

Benchmark on two-phase flow in porous media. GNR MoMas, CIRM Marseille, November 2011

Test 4 : Hypothesis of each team

	Software	Unknowns	Spatial Scheme
UPPA-UCAM Marrakech (Ahusborde, Afif)	C++ 1D software	(P_g, S)	Vertex center FV
UPPA-U Zagreb (Amaziane, Jurak, Zgaljic-Keko)	C++ 1D software	$\left(P_{glob},S\right)$	Vertex center FV
UPPA(Ahusborde)	DuMuX	$\left(P_{g},S ight)$	Vertex center FV
IRSN (M. Dimitrowska)	Mlgastra	$\left(P_{g},S\right)$	FV for convection and FE for diffusion
EDF (S. Granet)	Code_Aster	$\left(P_l, \frac{\rho_l^h}{H.M^h}\right)$	FV Sushi

edf

Test 4 : results (1/2)

Test 4 : results (2/2)

Participation of 12 teams : CEA (2 answers), EDF, INRIA, IRSN (2 answers), U. Erlangen, UFSC Santa Catarina, U. Heidelberg, UPPA&CNRS Pau, UCAM Marrakech, U. Zagreb

≻6 teams for Test 1a; 8 teams for Test 3; 5 teams for test 4

> All the tests : very useful to understand the different mechanism of classical two-phase flow problem, and the solutions to solve them

Most of results are qualitatively similar

Little differences to investigate

>Importance in the choice of the unknowns (1a)

>Importance to take into account miscible phenomena

Choice of scheme doesn't seams to be discriminating

Perpective : vaporization, gravity ...etc.

Selected references

➢M. Afif and B. Amaziane, Convergence of a 1–D Finite Volume Scheme and NumericalSimulations for Water-Gas Flow in Porous Media, Submitted 2010.

➢B. Amaziane, M. Jurak, A. "Zgalji'c–Keko, Modeling and Numerical Simulations of Immiscible Compressible Two-Phase Flow in Porous Media by the Concept of Global Pressure, Transport in Porous Media 84 (2010), pp. 133-152.

O. Angelini, Etude de Schémas Numériques pour les Ecoulements Diphasiques en Milieu Poreux Déormable pour des Maillages Quelconques. Application au Stockage deDéchets Radioactifs, Thèse de Doctorat de l'Université de Marne La Valle, 2010.

A.Bourgeat, M. Jurak, F. Smaï, Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository. Comp. Geoscience. 2009

>DuMuX: Open-Source Simulator for Flow and Transport Processes in Porous Media, http://www.dumux.unistuttgart.de

>Code_Aster : www.code_aster.org

>Bastian, P., Blatt, M., Dedner, A., Engwer, C., KI ofkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive Scientic Computing. Part II: Implementation and Tests in DUNE. Computing 82(2{3), 121{138 (2008). DOIhttp://www.springerlink.com/content/gn177r643q2168g7/

> Ippisch, O.: Coupled transport in natural porous media. Ph.D. thesis, University ofHeidelberg (2003)

Neumann, R., Ippisch, O., Bastian, P.: Modeling Two-Phase Two-Component Flow with Disappearing Gas Phase. preprint (2011)

➢F. Smaï, Développement d'outils mathématiques et numériques pour l'évaluation du concept de stockage géologique. Thèse de Doctorat de l'Université de Lyon, 2009

