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Abstract

We present a compositional compressible two-phase, liquid and gas, flow model
for numerical simulations of hydrogen migration in deep geological radioactive
waste repository. This model includes capillary effects and the gas diffusivity. The
choice of the main variables in this model, Total or Dissolved Hydrogen Mass
Concentration and Liquid Pressure, leads to a unique and consistent formulation
of the gas phase appearance and disappearance. After introducing this model, we
show computational evidences of its adequacy to simulate gas phase appearance
and disappearance in different situations typical of underground radioactive waste
repository.
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1 Introduction
The simultaneous flow of immiscible fluids in porous media occurs in a wide vari-
ety of applications. The most concentrated research in the field of multiphase flows
over the past four decades has focused on unsaturated groundwater flows, and flows
in underground petroleum reservoirs. Most recently, multiphase flows have gener-
ated serious interest among engineers concerned with deep geological repository for
radioactive waste. There is growing awareness that the effect of hydrogen gas gener-
ation, due to anaerobic corrosion of the steel engineered barriers of radioactive waste
packages(carbon steel overpacks and stainless steel envelopes), can affect all the func-
tions allocated to the canisters or to the buffers and the backfill. The host rock safety
function may even be threaten by overpressurisation leading to opening fractures in the
host rock and inducing groundwater flow and transport of radionuclides outside of the
waste site boundaries.

Equations governing this type of flow in porous media are inherently nonlinear, and
the geometries and material properties characterizing many situations in many appli-
cations ( petroleum reservoir, gas storage, waste repository), can be quite irregular and
contrasted. As a result of all these difficulties, numerical simulation often offers the
only viable approach to modelling multiphase porous-media flows . In nuclear waste
management, the migration of gas through the near field environment and the host rock,
involves two components, water and pure hydrogen H2; and two phases ”liquid” and
”gas”. Our ability to understand and predict underground gas migration is crucial to
the design and to assessing the performance of reliable nuclear waste storages. This
is a fairly new frontier in multiphase porous-media flows, and again the inherent com-
plexity of the physics leads to governing equations for which the only practical way to
produce solutions may be numerical simulation.

This paper addresses one of the outstanding physical and mathematical problems
in multiphase flow simulation: the appearance and disappearance of one of the phases,
leading to the degeneracy of the equations satisfied by the saturation. In order to over-
come this difficulty, we discuss a formulation based on variables which doesn’t de-
generate and hence could be used as an unique formulation for both situations, liquid
saturated and unsaturated. We will demonstrate through four numerical tests, the abil-
ity of this new formulation to actually cope with the appearance or/and disappearance
of one phase in simple, typical but challenging situations, like the ones we met in un-
derground radioactive waste repository simulations.
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2 Modeling Physical Assumptions
We consider herein a porous medium saturated with a fluid composed of 2 phases,
liquid and gas, and two components. According to the application we have in mind,
we consider the fluid as a mixture of two components: water (only liquid) and hydrogen
(H2, mostly gas) or any gas with similar thermodynamical properties. In the following,
for sake of simplicity we will call hydrogen the non-water component and use indices
w and h for the water and the hydrogen components.

We neglect the water vaporization since, in underground formations with high wa-
ter pressure, the water vapor does not contribute significantly to the gas phase pressure
. The water component is incompressible while the gas phase follow the ideal gas
law. The whole fluid system is in thermal equilibrium and the porous medium is rigid,
meaning that the porosity Φ is only a function of the space variable Φ = Φ(x); more-
over, since hydrogen is highly diffusive we include the dissolved hydrogen diffusion in
the liquid phase .

The two phases are denoted by indices, l for liquid, and g for gas. Associated to
each phase α ∈ {l,g}, we have, in the porous medium, the phase pressures pα , the
phase saturations Sα , the phase mass densities ρα and the phase volumetric flow rates
qα . The phase volumetric flow rates are given by the Darcy-Muskat law:

ql =−K(x)λl(Sl)(∇pl−ρlg) , qg =−K(x)λg(Sg)(∇pg−ρgg) , (1)

where K(x) is the absolute permeability tensor, λα(Sα) is the α−phase relative mo-
bility function, and g is the gravity acceleration; Sα is the reduced α−phase saturation
and then satisfies:

Sl +Sg = 1. (2)

Pressures are connected through a given capillary pressure law:

pc(Sg) = pg− pl . (3)

From definition (3) we notice that pc is a strictly increasing function of gas saturation,
p′c(Sg)> 0, leading to a capillary constraint:

pg > pl + pc(0), (4)

where pc(0)≥ 0 is the capillary curve entry pressure ( see Figure 2).
Since the liquid phase could be composed of water and dissolved hydrogen, we

need to introduce the water mass concentration ρw
l in the liquid phase, and the hydrogen

mass concentration ρh
l in the liquid phase. Note that the upper index is the component

index, and the lower one denotes the phase. We have, then

ρl = ρ
w
l +ρ

h
l . (5)

As said before, in the gas phase, we neglect the water vaporization and we use the ideal
gas law:

ρg =Cv pg, (6)
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with Cv = Mh/(RT ), where T is the temperature, R the universal gas constant and
Mh the hydrogen molar mass. Mass conservation for each component leads to the
following differential equations:

Φ
∂

∂ t
(Slρ

w
l )+div

(
ρ

w
l ql + jw

l

)
= F w, (7)

Φ
∂

∂ t

(
Slρ

h
l +Sgρg

)
+div

(
ρ

h
l ql +ρgqg + jh

l

)
= F h, (8)

where the phase flow velocities, ql and qg, are given by the Darcy-Muskat law (1), F c

are the source terms, and jc
l , c ∈ {w,h} are the c−component diffusive flux in liquid

phase, as defined later in (13).
Assuming water incompressibility and that the liquid volume is independent of the

dissolved hydrogen concentration, we may assume the water component concentration
in the liquid phase to be constant, i.e.:

ρ
w
l = ρ

std
w , (9)

where ρstd
w is the standard water density.

The assumption of hydrogen thermodynamical equilibrium in both phases leads
to equal chemical potentials in each phase: µh

g (T, pg,Xh
l ) = µh

l (T, pl ,Xh
l ). Assuming

that in the gas phase there is only the hydrogen component and no water, leads to
Xh

g = 1; and then, from the above chemical potentials equality, we have a relationship
pg = F(T, pl ,Xh

l ). Assuming that the liquid pressure influence could be neglected
in the pressure range considered herein and using the hydrogen low solubility, ρh

l �
ρw

l = ρstd
w , we may then linearize the relationship between pg and Xh

l , and finally obtain
the Henry’s law pg = KhXh

l , where Kh is specific to the mixture water/hydrogen and
depends only on the temperature T . Furthermore, using (9) and the hydrogen low

solubility, the molar fraction, Xh
l , reduces to ρh

l Mw

ρstd
w Mh (see eqs.(9)-(11) in [2]) and the

Henry law can be written as
ρ

h
l =Ch pg, (10)

where Ch = HMh = ρstd
w Mh/(MwKh); H is called the Henry law constant and is also

depending only on the temperature.

Remark 1 On the one hand the gas pressure obey the Capillary pressure law (3) with
the constraint (4), but on the other hand it should also satisfy the local thermodynam-
ical equilibrium and obey the Henry law (10). More precisely if there are two phases,
i.e. if the concentration, ρh

l , is sufficiently high to have a gas phase appearance(Sg > 0)
, we have from (10) and (3) :

ρ
h
l =Ch(pl + pc(Sg)). (11)

Moreover, Sg > 0 with the constraint (4) and the Henry’s law (10), gives the constraint:

ρ
h
l >Ch(pl + pc(0)). (12)

But if the concentration, ρh
l , is smaller than a certain concentration threshold (see

Figure 1), then there is only the liquid phase (no gas phase, Sg = 0), and none of all
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ρhl

pl

ρ
h
l
=

C h
(p l

+
pc
(0
))

Sg = 0

ρhl ≤ Ch(pl + pc(0))

Sg > 0

ρhl = Chpg

≥ pl + pc(0)

pg = pl + pc(Sg)

Figure 1: Phase diagram: Henry’s law; localization of the liquid saturated Sg = 0 and
unsaturated Sg > 0 states

the relationships (3) or (12), connected to capillary equilibrium, applies anymore; we
have only Sg = 0, with ρh

l ≤Ch pg.
There is then a concentration threshold line, corresponding to ρh

l =Ch(pl + pc(0)) in
the phase diagram (Fig.1), separating the one phase (liquid saturated) region from the
two phase (liquid unsaturated) region.

The existence of a concentration threshold line can also be written as an unilateral
condition:

0≤ Sg ≤ 1, 0≤ ρ
h
l ≤Ch pg, Sg(Ch pg−ρ

h
l ) = 0;

which could be then used (see [4]) for designing a numerical scheme based on approx-
imating a variational equation. �

The diffusive fluxes in the liquid phase are given by the Fick law applied to Xw
l and

to Xh
l , the water component and the hydrogen component molar fractions (see eqs.(12)

and (13) in [2]). Using the same kind of approximation as in the Henry law, based on
the hydrogen low solubility, we obtain, for the diffusive fluxes in this binary mixture
(see Remark 2 and Remark 3 in [2]):

jh
l =−ΦSlD∇ρ

h
l , jw

l =−jh
l , (13)

where D is the hydrogen molecular diffusion coefficient in the liquid phase, corrected
by the tortuosity of the porous medium.

If both liquid and gas phases exist, (Sg 6= 0), the porous media is said liquid unsat-
urated and the transport model for the liquid-gas system can be now written as:

Φρ
std
w

∂Sl

∂ t
+div

(
ρ

std
w ql− jh

l

)
= F w, (14)

Φ
∂

∂ t
(Slρ

h
l +Cv pgSg)+div

(
ρ

h
l ql +Cv pgqg + jh

l

)
= F h, (15)

ql =−Kλl(Sl)
(

∇pl− (ρstd
w +ρ

h
l )g
)
, qg =−Kλg(Sg)(∇pg−Cv pgg) , (16)

jh
l =−ΦSlD∇ρ

h
l . (17)
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But in the liquid saturated regions, where the gas phase doesn’t appear, Sl = 1 or
Sg = 0, the system (14)–(17) degenerates to:

div
(

ρ
std
w ql− jh

l

)
= F w, Φ

∂ρh
l

∂ t
+div

(
ρ

h
l ql + jh

l

)
= F h; (18)

ql =−Kλl(1)
(

∇pl− (ρstd
w +ρ

h
l )g
)
, jh

l =−ΦD∇ρ
h
l . (19)

3 Liquid Saturated/Unsaturated state; a general for-
mulation

A typical choice for the two primary unknowns, in modeling immiscible two-phase
flow, is the saturation and one of the phases pressure, for example Sg and pl . But as
seen above, in (14)–(19), this set of unknowns obviously cannot describe the flow in a
liquid saturated region, where there is only one phase, and cannot take in account the
gas dissolution since then the dissolved gas concentration, ρh

l , becomes an independent
unknown.

3.1 Modeling based on Total hydrogen concentration, ρh
tot

To solve this problem, instead of using the gas saturation Sg we have proposed, in [2],
to use ρh

tot , the total hydrogen mass concentration, defined as:

ρ
h
tot = Slρ

h
l +Sgρ

h
g . (20)

Defining

a(Sg) =Ch(1−Sg)+CvSg ∈ [Ch,Cv]; (21)

with

a′(Sg) =Cv−Ch =C∆ > 0, (22)

since Cv > Ch, from the assumption of weak solubility; we may then rewrite the total
hydrogen mass concentration, ρh

tot , defined in (20), as:

ρ
h
tot =

{
a(Sg)(pl + pc(Sg)) if Sg > 0
ρh

l if Sg = 0.
(23)

With this new set of unknowns, ρh
tot and pl , the two systems of equations (14)–(17)

and (18)–(19) now reduce to a single system of equations:

Φρ
std
w

∂Sl

∂ t
−div

(
ρ

std
w Kλl(Sl)

(
∇pl− (ρstd

w +ρ
h
l )g
)
−ΦSlD∇ρ

h
l

)
= F w, (24)

Φ
∂ρh

tot

∂ t
−div

(
ρ

h
l Kλl(Sl)

(
∇pl− (ρstd

w +ρ
h
l )g
)

+Cv pgKλg(Sg)(∇pl +∇pc(Sg)−Cv pgg)+ΦSlD∇ρ
h
l

)
= F h.

(25)
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Now, if we want to study the mathematical properties of the operators in this system of
equations, we should develop the above system of equations using Sg = Sg(pl ,ρ

h
tot), Sl =

1−Sg = Sl(pl , ρh
tot), and ρh

l = ρh
l (pl ,ρ

h
tot), with

∂Sg

∂ pl
=−

a(Sg)
21l{ρh

tot>Ch(pl+pc(0))}

C∆ρh
tot +a(Sg)2 p′c(Sg)

,
∂Sg

∂ρh
tot

=
a(Sg)1l{ρh

tot>Ch(pl+pc(0))}

C∆ρh
tot +a(Sg)2 p′c(Sg)

, (26)

where 1l{ρh
tot>Ch(pl+pc(0))} is the characteristic function of the set {ρh

tot >Ch(pl+ pc(0))}.
As noted in section 2.5 in [2], we have ∂Sg/∂ pl ≤ 0 and ∂Sg/∂ρh

tot > 0, when the gas
phase is present. Then the system (14)–(15) can be written :

−Φρ
std
w

∂Sg

∂ pl

∂ pl

∂ t
−div

(
A1,1

∇pl +A1,2
∇ρ

h
tot +B1Kg

)
−Φρ

std
w

∂Sg

∂ρh
tot

∂ρh
tot

∂ t
= F w

(27)

Φ
∂ρh

tot

∂ t
−div

(
A2,1

∇pl +A2,2
∇ρ

h
tot +B2Kg

)
= F h. (28)

Where the coefficients are defined by:

A1,1(pl ,ρ
h
tot) =λl(Sg)ρ

std
w K−Φ(1−Sg)DChNI, (29)

A1,2(pl ,ρ
h
tot) =−Φ(1−Sg)

1−N
a(Sg)

DChI, (30)

A2,1(pl ,ρ
h
tot) =(λl(Sg)ρ

h
l +λg(Sg)Cv pgN)K+Φ(1−Sg)DChNI, (31)

A2,2(pl ,ρ
h
tot) =λg(Sg)

1−N
a(Sg)

Cv pgK+Φ(1−Sg)
1−N
a(Sg)

DChI, (32)

B1(pl ,ρ
h
tot) =−λl(Sg)ρ

std
w [ρstd

w +ρ
h
l ], (33)

B2(pl ,ρ
h
tot) =− (λl(Sg)ρ

h
l [ρ

std
w +ρ

h
l ]+λg(Sg)C2

v p2
g); (34)

with I denoting the identity matrix and with the auxiliary functions

N(pl ,ρ
h
tot) =

C∆ρh
tot

C∆ρh
tot +a(Sg)2 p′c(Sg)

1l{ρh
tot>Ch(pl+pc(0))} ∈ [0,1), (35)

ρ
h
l (pl ,ρ

h
tot) = min(Ch pg(pl ,ρ

h
tot),ρ

h
tot), pg(pl ,ρ

h
tot) = pl + pc(Sg(pl ,ρ

h
tot)). (36)

We should notice first that equation (28) is uniformly parabolic in the presence
of capillarity and diffusion; but if capillarity and diffusion are neglected, this same
equation becomes a pure hyperbolic transport equation (see sec. 2.6 in [2]). Then, if we
sum equations (27) and (28) we obtain a uniformly parabolic/elliptic equation, which
is parabolic in the unsaturated (two-phases) region and elliptic in the liquid saturated
(one-phase) region.

Remark 2 Simulations presented in sec. 3.2 in [2] show that this last model with
these variables, ρh

tot , the total hydrogen mass concentration, and pl , the liquid phase
pressure, could easily handle phase transitions (appearance and disappearance of the
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gas phase) in two-phase partially miscible flows. However, in equations (27)–(28),
we should notice that both the coefficients Ai j in operators, and the time derivative
coefficients, can be discontinuous. For instance, only if the capillary pressure satisfies
p′c(Sg = 0) = +∞, as in the van Genuchten model, then all the coefficients in (27)–(28)
are continuous; but if this condition is not satisfied they will be discontinuous.

An other variant for the replacement of the saturation by ρh
tot , is presented in

[1],where relation (20)is written

ρ
h
tot = (1−Sg)Ch pg +SgCv pg, (37)

and is then extended to both the two-phase and the one-phase region by making pg = pl
in the liquid saturated region (without the gas phase). This is leading, in the one-phase
region where Sg = 0 and the Henry law does not apply, to extend the gas saturation by
negative values (still defined by equation (37) as a function of the pressure and the total
hydrogen concentration). After a necessary and ad hoc extension of the permeability
and capillary pressure curves, out of the usual positive values of saturation, it is then
possible to modeling both the one-phase flow and the two-phase flow with the same
system of equations written with this extended saturation as main unknown, while using
actually the total hydrogen concentration ρh

tot .

3.2 Modeling based on the hydrogen concentration in the liquid
phase, ρh

l

We have seen that the variables pl and ρh
tot , introduced in the last section, can de-

scribe simply the flow system, both in the one-phase and in the two-phase regions,
independently of the presence of diffusion or capillary forces. But if we assume that
the capillary forces are present we can choose an other change of variables in order
to have a system of equations with continuous coefficients. Namely, using the inverse
of the capillary pressure function, we may define the phase saturation as function of
the hydrogen mass concentration in the liquid, ρh

l , and of the liquid pressure, pl ; and
hence use them as main unknowns. With these two variables, ρh

l and pl the two sys-
tems (14)–(17) and (18)–(19) are transformed in a single system of equations able to
describe both liquid saturated and unsaturated flow.

Since the capillary pressure curve Sg 7→ pc(Sg) is a strictly increasing function we
can define an inverse function f : R→ [0,1], (see Fig. 2), by

f (π) =
{

p−1
c (π) if π ≥ pc(0)

0 otherwise. (38)

By definition of the function f , using (10) and (12), we have:

f

(
ρh

l
Ch
− pl

)
= Sg, (39)

and it is then possible to compute the gas saturations, Sg, from pl and ρh
l . These two

variables being well defined in both the one and two-phase regimes, we will now use
them as principal unknowns.

8



Sg

pc(Sg)

0 1
0

π =
ρhl
Ch

− pl

f(π)

1

0

0

Figure 2: Capillary pressure curve, pc = pg− pl , and inverse function

Equations (14)-(17) with unknowns pl and ρh
l can be written as:

−Φρ
std
w

∂

∂ t

(
f

(
ρh

l
Ch
− pl

))
−div

(
A1,1

∇pl +A1,2
∇ρ

h
l +B1Kg

)
= F w (40)

Φ
∂

∂ t

(
a∗ ◦ f

(
ρh

l
Ch
− pl

)
ρ

h
l
)
−div

(
A2,1

∇pl +A2,2
∇ρ

h
l +B2Kg

)
= F h (41)

where the coefficients are given by the following formulas:

A1,1 = λl(Sg)ρ
std
w K, A1,2 =−Φ(1−Sg)DI (42)

A2,1 = λl(Sg)ρ
h
l K, A2,2 = λg(Sg)

Cv

C2
h

ρ
h
l K+Φ(1−Sg)DI (43)

B1 =−λl(Sg)ρ
std
w (ρstd

w +ρ
h
l ) (44)

B2 =−λl(Sg)ρ
h
l (ρ

std
w +ρ

h
l )−λg(Sg)

C2
v

C2
h
(ρh

l )
2 (45)

with

a∗(Sg) =
a(Sg)

Ch
= 1+(

Cv

Ch
−1)Sg. (46)

If we consider first, equation (41), we may write it as

Φ

(
a∗(Sg)+ρ

h
l

∂a∗(Sg)

∂ρh
l

)
∂ρh

l
∂ t
−div

(
A2,1

∇pl +A2,2
∇ρ

h
l +B2Kg

)
+Φρ

h
l

∂a∗(Sg)

∂ pl

∂ pl

∂ t
= F h .

Moreover, from (46) and because f and f ′ are positive, we have

a∗(Sg)+ρ
h
l

∂a∗(Sg)

∂ρh
l

= 1+(
Cv

Ch
−1)

(
f

(
ρh

l
Ch
− pl

)
+

ρh
l

Ch
f ′
(

ρh
l

Ch
− pl

))
≥ 1;
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and if the diffusion is not neglected, we have definite positiveness of the quadratic
form A2,2 , in equation (41); i.e. for any ξ 6= 0,

(A2,2
ξ ·ξ ) = λg(Sg)

Cv

C2
h

ρ
h
l Kξ ·ξ +Φ(1−Sg)D|ξ |2 > 0,

and therefore equation (41) is strictly parabolic in ρh
l .

If we develop, equation (40) as follows:

Φρ
std
w f ′

(
ρh

l
Ch
− pl

)
∂ pl

∂ t
−div

(
A1,1

∇pl +A1,2
∇ρ

h
l +B1Kg

)
− ρstd

w

Ch
Φ f ′

(
ρh

l
Ch
− pl

)
∂ρh

l
∂ t

= F w;

we have, for any ξ ,
λl(Sg)ρ

std
w Kξ ·ξ ≥ 0,

and then positiveness of (A1,1ξ ·ξ ) and of (A2,1ξ ·ξ ).
Moreover,

Φρ
std
w f ′

(
ρh

l
Ch
− pl

)
≥ 0.

However, equations in system (40)-(41) are not uniformly parabolic/elliptic for the
pressure pl , because the coefficients, A1,1, A2,1, in front of ∇pl in (40)– (41) tend to
zero as Sg→ 1.

Remark 3 It is worth noticing that this system (40)-(41), with variables pl and ρh
l , has

interesting properties for numerical simulations in strongly heterogeneous porous me-
dia. These two variables are continuous through interfaces separating different porous
media with different rock types (different absolute permeability, different capillary and
permeability curves), as we will see in 4.3; which is absolutely not the case for the
variables pl and ρh

tot . An other advantage is the continuity of all the coefficients Ai, j,
in (40)–(41) and the continuity of f in (41) , even if p′c(Sg = 0) = +∞.

4 Numerical experiments
In this last section, we present four numerical tests specially designed for illustrating
the ability of the model described by equations (40)-(41) to deal with gas phase appear-
ance and disappearance. Although all the computations were done using the variables,
pl and ρh

l , we are also displaying, for each test, the Saturation and Pressure level curves.
These two last quantities are obtained after a post processing step using the Capillary
Pressure law (3), equations (39), Henry’s law (10), and following the constraints (4)
and (12) (see Figure 1).
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The first test focuses on the gas phase appearance produced by injecting pure hy-
drogen in a 2-D homogeneous porous domain Ω (see Figure 3), which is initially liquid
saturated by pure water(water saturated).

Because the main goal of all these numerical experiments is to test the model ef-
ficiency, for describing the phase appearance or disappearance, the porous domain ge-
ometry does not really matter and we will use a porous domain with a simple geometry.
Consequently, we choose a simple, quasi-1D, porous domain (see Figure 4) for the all
three next tests .

The test case number 2 is more complex, it shows local disappearance of the
gas phase created by injecting pure hydrogen in a homogeneous unsaturated porous
medium (initially both phases, liquid and gas, are present everywhere).

The two last tests aim is to focus on the main challenges in simulating the flow
crossing the engineered barriers, located around the waste packages. In the test case
number 3, the porous medium domain is split in two parts with different and highly
contrasted rock types, and like in the first one, the gas phase appearance is produced
by injecting pure hydrogen in an initially water saturated porous domain. The test case
number 4 addresses the evolution of the phases, from an initial phase disequilibrium to
a stabilized stationary state, in a closed porous domain (no flux boundary conditions).

Parameter Value
θ 303 K

Dh
l 3 10−9 m2/s

µl 1 10−3 Pa.s
µg 9 10−6 Pa.s

H(θ = 303K) 7.65 10−6 mol/Pa/m3

Mw 10−2 kg/mol
Mh 2 10−3 kg/mol
ρstd

w 103 kg/m3

Table 1: Fluid parameters: phases and components characteristics.

In all these four test cases, for simplicity, the porous medium is assumed to be isotropic,
such that K = kI with k a positive scalar; and the source terms are assumed to be
null: Fw = 0 and Fh = 0. As usual in geohydrology, the van Genuchten-Mualem
model for the capillary pressure law and the relative permeability functions are used in

Mesh size range Time step range
Test number 1 2 m – 6 m (∗) 102 years – 5 104 years
Test number 2 1 m (∗∗) 102 years – 5 103 years
Test number 3 1 m (∗∗) 102 years – 2 104 years
Test number 4 2 10−3 m (∗∗) 0.33 s – 16.7 103 s
(*) Unstructured triangular mesh
(**) Regular quadrangular mesh

Table 2: Mesh sizes and time steps used in the different Numerical Test
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Figure 3: Test case number 1: Geometry a the 2-D porous domain, Ω.

underground nuclear waste modeling, i.e. :

pc = Pr

(
S−1/m

le −1
)1/n

, λl =
1
µl

√
Sle

(
1− (1−S1/m

le )m
)2

and λg =
1
µg

√
1−Sle

(
1−S1/m

le

)2m

with Sle =
Sl−Sl,res

1−Sl,res−Sg,res
and m = 1− 1

n
.

(47)

Note that in the van Genuchten-Mualem model, we have no entry pressure, pc(0) = 0,
but the presence of an entry pressure will not lead to any difficulty, neither from the
mathematical point of view, nor for the numerical simulations. Concerning the other
fluid characteristics, the values of the physical parameters specific to the phases (liquid
and gas) and to the components (water and hydrogen) are given in Table 1. All the
simulations, presented herein, were performed using the modular code Cast3m, [3].
The differential equations system was first linearized by a quasi-Newton method and
then discretized by a finite volume, implicit in time, scheme; with the discretization
parameters (mesh size and time step) given in Table 2.

4.1 Numerical Test number 1
The geometry of this test case is given in Figure 3; and the related data are given in
Table 3. A constant flux of hydrogen is imposed on the input boundary, Γin, while

12
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y
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Figure 4: Test cases number 2, 3 and 4: Geometry of the quasi-1D porous domain,
Ω = Ω1∪Ω2.

Dirichlet conditions pl = pl,out , ρh
l = 0 are given on Γout in order to have only the water

component on this part of the boundary. The initial conditions, pl = pl,out and ρh
l = 0,

are uniform on all the domain, and correspond to a porous domain initially saturated
with pure water.

The main steps of the corresponding simulation are presented in Figure 5.

Boundary conditions Porous medium Others
Initial condition Param. Value Param. Value

φ w ·ν = 0 on Γimp k 5 10−20 m2 Ld 200 m
φ h ·ν = 0 on Γimp Φ 0.15 (−) Ls 20 m
φ w ·ν = 0 on Γin Pr 2 106 Pa pl,out 106 Pa

φ h ·ν = Qh on Γin n 1.49 (−) Qh 9.28 mg/m2/year
pl = pl,out on Γout Sl,res 0.4 (−)

ρh
l = 0 on Γout Sg,res 0 (−)

pl(t = 0) = pl,out in Ω

ρh
l (t = 0) = 0 in Ω

Table 3: Numerical Test case number 1: Boundary and Initial Conditions; porous
medium characteristics and domain geometry; φ w and φ h are denoting respectively
the water and hydrogen flux.

We observe in the beginning (see time t = 1200 years in Figure 5) that all the
injected hydrogen through Γin is totally dissolved in the liquid phase, the gas saturation
stay null on all the domain (there is no gas phase). During that same period of time:
the liquid pressure stay constant, the liquid phase does not flow, and the hydrogen is
transported only by diffusion of the dissolved hydrogen in the liquid phase.

Later on, the dissolved hydrogen accumulates around Γin until the dissolved hy-
drogen concentration ρh

l reaches the threshold ρh
l = Ch pl ( according to Figure 1and

pc(0) = 0 in 1), at time t = 1600 years, when the gas phase appears in the vicinity of
Γin. Then this unsaturated region ( the two-phases, gas and liquid are present together)
progressively expands and the liquid pressure, due to the compression by the gas phase,
increases in the whole porous domain, causing the liquid phase to flow from Γin to Γout .
Consequently, after this time, t = 1600 years: the hydrogen is transported by convec-
tion in the gas phase and the dissolved hydrogen is transported by both convection and

13



diffusion in the liquid phase. The liquid phase pressure increases globally in the whole
domain until time t = 260 000 years (see Figure 5), and it starts to decrease in the
whole domain until reaching a uniform and stationary state at t = 106 years, in which
the water component flux is null everywhere.

ρh
l pl Sg

ρh
l at t = 1200 years pl at t = 1200 years Sg at t = 1200 years

ρh
l at t = 4 104 years pl at t = 4 104 years Sg at t = 4 104 years

ρh
l at t = 2 105 years pl at t = 2 105 years Sg at t = 2 105 years

ρh
l at t = 106 years pl at t = 106 years Sg at t = 106 years

Figure 5: Numerical Test case number 1: Evolution of ρh
l ,the hydrogen concentration

in the liquid phase; pl the liquid phase pressure; and Sg the gas saturation ; at times
t = 1200,4 104,2 105 and 106 years (from the top to the bottom).
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4.2 Numerical Test number 2
The geometry and the data of this numerical test are given in Figure 4 and Table 4.
The porous medium is homogeneous and the initial conditions uniform; there is no
need for defining two parts of the porous domain, Ω1 and Ω2; the parameter L1 will be
considered as null.

In this second test a constant flux of hydrogen is imposed on the input boundary
Γin, while Dirichlet conditions pl = pl,out , pg = pg,out are chosen, on Γout , such that
ρh

l >Ch pl , in order to keep the gas phase ( according to the phase diagram in Figure 1)
present on this part of the boundary. The initial conditions pl = pl,out and ρh

l =Ch pg,out
are uniform and imply the presence of the gas phase ( Sg > 0) in the whole domain.

The main steps of the corresponding simulation are presented in Figures 6 and 7where
are presented the liquid pressure pl , the dissolved hydrogen molar density ( equal to
ρh

l /Mh) and the gas saturation Sg profiles at different times.

Boundary conditions Porous medium Others
Initial condition Param. Value Param. Value

φ w ·ν = 0 on Γimp k 5 10−20 m2 Lx 200 m
φ h ·ν = 0 on Γimp Φ 0.15 (−) Ly 20 m
φ w ·ν = 0 on Γin Pr 2 106 Pa L1 0 m

φ h ·ν = Qh on Γin n 1.49 (−) pl,out 106 Pa
pl = pl,out on Γout Sl,res 0.4 (−) pg,out 1.1 106 Pa

ρh
l =Ch pg,out on Γout Sg,res 0 (−) Qh 55.7 mg/m2/year

pl(t = 0) = pl,out in Ω

ρh
l (t = 0) =Ch pg,out in Ω

Table 4: Numerical Test case number 2: Boundary and Initial Conditions; porous
medium characteristics and domain geometry. φ w and φ h are denoting respectively
the water and hydrogen flux.

At the beginning, up to t < 1400 years, the two phases are present in the whole
domain (see time t = 500 years on Figure 6). The permanent injection of hydrogen
increases both the two phase pressures and the gas saturation in the vicinity of Γin. The
local gas saturation drop is due to the difference in mobilities between the two phases:
the lower liquid mobility leads to a bigger liquid pressure increase, compared to the
gas pressure increase; which is finally producing a capillary pressure drop (according
to definition (3), see Figure 2), and creating a water saturated zone. At time t = 1400
years, the gas phase starts to disappear in some region of the porous domain (see time
t = 1500 years, in Figure 7) .

Then, a saturated liquid region (Sg = 0)will exist until time t = 17 000 years (see
Figure 6); and during this period of time, the saturated region is pushed by the injected
Hydrogen, from Γin to Γout .

After the time t = 17 000 years, due to the Dirichlet conditions imposed on Γout ,
the liquid saturated region disappears and all together the phases pressure and the gas
saturation are growing in the whole domain (see the time t = 20 000 years in Figure 7).

Finally the liquid pressure reaches its maximum at time t = 20 000 years and then
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decreases in the whole domain (see the Figure 7). This is caused, like in the numerical
test case number 1, by the evolution of the system towards a stationary state which is
characterized by a zero water component flow.
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Figure 6: Test case number 2; Lx = L2 = 200 m: Time evolution of ρh
l (top right), the

dissolved hydrogen molar density (ρh
l /Mh) (top left) and Sg (bottom) profiles ; during

the first time steps.

4.3 Numerical Test number 3
The geometry and the data of this numerical test are given in Figure 4 and Table 5 .
Like in the Numerical Test number 2, a constant flux of hydrogen is imposed on the
input boundary, Γin, while Dirichlet conditions pl = pl,out , ρh

l = 0 are given on Γout , in
order to have only the liquid phase on this part of the boundary. The initial conditions,
pl = pl,out and ρh

l = 0, are uniform on all the domain, and correspond to a porous do-
main initially saturated with pure water. Contrary to the two first numerical tests, the
porous domain is non homogeneous, there are two different porous subdomains Ω1 and
Ω2; Lx = 200 m, L1 = 20 m and L2 = 180 m.

The simulation time of this test case is T = 106 years;the discretization space mesh
is 1 m; the time step is 102 years at the beginning and grows up to 2 ·104 years in the
end of the simulation (see Table2).
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Figure 7: Test case number 2; Lx = L2 = 200 m: Time evolution of the dissolved
hydrogen molar density (ρh

l /Mh) (top right), pl(top left) and Sg (bottom) profiles ;
during the six last time steps.

Sg

pc
p(1)c (Sg)

p(2)c (Sg)

p(1)c (S(1)
g ) = p(2)c (S(2)

g )

S(1)
g S(2)

g

Figure 8: Saturation discontinuity at the interface of two materials with different cap-
illary pressure curves; test case number 3.
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Boundary conditions Porous medium Other
initial condition Param. Value on Ω1 Param. Value

φ w ·ν = 0 on Γimp k 10−18 m2 Lx 200 m
φ h ·ν = 0 on Γimp Φ 0.3 (−) Ly 20 m
φ w ·ν = 0 on Γin Pr 2 106 Pa L1 20 m

φ h ·ν = Qh on Γin n 1.54 (−) pl,out 106 Pa
pl = pl,out on Γout Sl,res 0.01 (−) Qh 5.57 mg/m2/year

ρh
l = 0 on Γout Sg,res 0 (−)

pl(t = 0) = pl,out on Ω Param. Value on Ω2
ρh

l (t = 0) = 0 on Ω k 5 10−20 m2

Φ 0.15 (−)
Pr 15 106 Pa
n 1.49 (−)

Sl,res 0.4 (−)
Sg,res 0 (−)

Table 5: Numerical Test case number 3: Boundary and Initial Conditions; porous
medium characteristics and domain geometry. φ w and φ h are denoting respectively
the water and hydrogen flux.

Figures 9 and 10 represent the liquid pressure pl , the dissolved hydrogen molar density
( equal to ρh

l /Mh) and the gas saturation Sg profiles at different times.
The main difference from the previous simulations (which were in a homogeneous

porous domain) is the gas saturation discontinuity, staying on the porous domain inter-
face x = 20 m; and due to the height of this saturation jump , we had to use a logarithm
scale for presenting the gas saturation Sg profiles .

There are four main steps :

• From 0 to 3.8 · 104 years both the gas saturation and the liquid pressure stay
constant in the whole domain while the hydrogen injection on the left side Γin of
the domain increases the hydrogen density level .

• From 3.8 ·104 to 5.4 ·104 years both the liquid pressure and the hydrogen density
are increasing in the whole domain. The gas start to expanding from the left side
of the domain Γin. The saturation front is moved towards the porous media
discontinuity, at x = 20 m, which is reached at t = 5.4 ·104 years; see Figures 9.

• From 5.4 · 104 years to 1.3 · 105 years, see Figures 10, the saturation front has
crossed the medium discontinuity at x = 20 m and, from now, all the saturation
profiles will have a discontinuity at x = 20 m.

• From 1.3 ·105 years to 106 years, see Figures 10, both the hydrogen density and
the gas saturation keep growing while the liquid pressure decreases towards zero
on the entire domain. The gas saturation front keeps moving to the right, pushed
by the injected gas, up to x≈ 150 m at 106 years.

Until the saturation front reaches the interface between the two porous media, for
(t = 5.4 ·104 years), appearance and evolution of both the gas phase and the unsaturated
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zone are identical to what was happening in the test case 1 (with a homogeneous porous
domain) during the period of gas injection: the dissolved hydrogen is accumulating at
the entrance until the liquid phase becomes saturated,at time (t > 3.8104 years), letting
the gas phase to appear.

When the saturation front crosses the interface between the two porous subdomains
(at x = 20 m and t = 5.4 ·104 years), the gas saturation is strictly positive on both sides
of this interface and the caplllary pressure curves being different on each side( see
Table 5) forces the saturation to be discontinuous for preserving the capillary pressure
continuity on the interface. The capillary pressure continuity at the interface imposes to
p(1)c , the Capillary Pressure in Ω1, and to p(2)c , the Capillary Pressure in Ω2, to be equal
on this interface. p(1)c = p(2)c is satisfied only if there are two different saturations,on
each interface side S(1)g , and S(2)g : p(1)c (S(1)g ) = p(2)c (S(2)g ) ; see Figure 8.

In the same way as in the numerical test case number 1, the system tends to a
stationary state
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Figure 9: Test case number 3; Lx = 200 m, L1 = 20m: Time evolution of the dissolved
hydrogen molar density (ρh

l /Mh) (top right), pl (top left) and Sg (bottom) profiles ;
during the first time steps. All the Sg curves go to zero( although this cannot be seen
using a logarithmic scale) .
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Figure 10: Test case number 3; Lx = 200 m, L1 = 20m: Time evolution of the dissolved
hydrogen molar density (ρh

l /Mh)(top right), pl (top left) and Sg (bottom) profiles ;
during the last seven time steps. All the Sg curves go to zero( although this cannot be
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4.4 Numerical Test number 4
This last numerical test is different from all the precedent ones; it intends to be a simpli-
fied representation of what happens when an unsaturated porous block is placed within
a water saturated porous structure. The challenge is then: how the mechanical balance
will be restored in a homogeneous porous domain , which was initially out of equilib-
rium, i.e. with a jump in the initial phase pressures?

The initial liquid pressure is the same in the entire porous domain; Ω ,pl,1 = pl,2 ,
and in the subdomain Ω1 the initial condition, (pl,1 = pg,1 in Table 6, corresponds to a
liquid fully saturated state with a hydrogen concentration reaching the gas appearance
concentration threshold (pg = pl and ρh

l = Ch pg, see Figure 1). In the subdomain Ω2
the initial condition(pl,2 6= pg,2and pg,2 6= pg,1 )corresponds to a non saturated state
(see Table 6).
The porous block initial state is said out of equilibrium, because:
if this initial state was in equilibrium , in the two subdomains Ω1 and Ω2, the local
mechanical balance would have made the pressures, of both the liquid and the gas
phase, continuous in the entire domain Ω .

For simplicity, we assume the porous medium domain Ω is homogeneous and all
the porous medium characteristics are the same in the two subdomains Ω1 and Ω2, and
corresponding to concrete.

The system is then expected to evolve from this initial out of equilibrium state
towards a stationary state.

We should notice that, in order to see appearing the final stationary state, in a rea-
sonable period of time, we have shortened the domain Ω ( Lx = 1m), taken the porous
media characteristics , and set the final time of this simulation Tf in at Tf in = 106 s ≈
11.6 ) days. The complete set of data of this test case is given in Table 6.

Boundary conditions Porous medium Other
initial condition Param. Value Param. Value

φ w ·ν = 0 on ∂Ω k 10−18 m2 Lx 1 m
φ h ·ν = 0 on ∂Ω Φ 0.3 (−) Ly 0.1 m

pl(t = 0) = pl,1 on Ω1 Pr 2 106 Pa L1 0.5 m
ρh

l (t = 0) =Ch pg,1 on Ω1 n 1.54 (−) pl,1 106 Pa
pl(t = 0) = pl,2 on Ω2 Sl,res 0.01 (−) pg,1 106 Pa

ρh
l (t = 0) =Ch pg,2 on Ω2 Sg,res 0 (−) pl,2 106 Pa

pg,2 2.5 106 Pa

Table 6: Data of the numerical test number 4 : boundary and initial conditions;domain
geometry. The porous medium domain Ω is homogeneous, all the porous medium
parameters are the same in the two subdomains Ω1 and Ω2; φ w and φ h are denoting
respectively the water and hydrogen flux .

The space discretization step was taken constant equal to 2 · 10−3 m and the time
step was variable, going from 0.33 s in the beginning of the simulation to 16.7 ·103 s at
the end of the simulation (see Table 2). Figures 11 and 12 represent the liquid pressure
pl , the dissolved hydrogen molar density ( equal to ρh

l /Mh) and the gas saturation Sg
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Figure 11: Numerical test case number 4, Lx = 1 m, L1 = 0.5 m: Time evolution of
the dissolved hydrogen molar density (ρh

l /Mh) (top right), pl (top left) and Sg (bottom)
profiles; during the six first time steps.
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Figure 12: Numerical test case number 4, Lx = 1 m, L1 = 0.5 m: Time evolution of the
the dissolved hydrogen molar density (ρh

l /Mh) (top right), pl (top left) and Sg (bottom)
profiles; during the five last time steps.
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profiles at different times.
There are essentially two steps:

• For 0< t < 1.92 ·105 s (see Figure 11), the initial gas saturation jump moves from
x = 0.5 m, at t = 0 and reaches Γin, the left domain boundary, at t = 1.92 ·105 s.
During this movement, the saturation jump height (initially ≈ 0.16 ) decreases,
until approximately 0.03, when it reaches the left boundary Γin. In front of this
discontinuity there is a liquid saturated zone, Sg = 0, and in this zone both the
liquid pressure and the hydrogen density are spatially uniform (see Figure 11,
top ). But, while the hydrogen density remains constant and equal to its initial
value, the liquid pressure becomes immediately continuous and starts growing
quickly (for instance, pl(t = 103 s) ≈ 1.6 · 106 Pa), and then more slowly until
t = 1.3 ·105 s, when it starts to slightly decrease.

In Figure 11, located on the gas saturation discontinuity, there are both a high
contrast in the dissolved hydrogen concentration (this concentration stays how-
ever continuous, but with a strong gradient, as seen in the top right of Figure 11),
and a discontinuity in the liquid pressure gradient (see the top left of Figure 11).

• For 1.92 ·105 s < t < 106 s = Tf in (see Figure 12), all the entire domain is now
unsaturated (Sg >0). The liquid pressure, the hydrogen density and the gas satu-
ration profiles are all strictly monotonous and continuous, going towards a spa-
tially uniform distribution, corresponding to the stationary state(see Figure 12).

As expected, the system initially out of equilibrium (discontinuity of the gas pres-
sure), becomes immediately again in equilibrium (the gas pressure is continuous)and
evolves towards a uniform stationary state (due to the no mass inflow and outflow
boundary conditions). Although the liquid pressure and the dissolved hydrogen den-
sity are immediately again continuous for t > 0 , the hydrogen density still have a
locally very strong gradient until t = 1.92 ·105 s.

At first, and at the very begining(≈ 102 s), see top left of Figure 11, only the liquid
pressure evolves in the liquid saturated zone. Due to a gas pressure in the unsaturated
zone higher than in the liquid saturated zone (Sg = 0; pg = 2.5MPa > pl = 1MPa, for
the initial state in Table6), and due to the no flow condition imposed on Γin, the liquid in
the saturated zone is compressed by the gas from the unsaturated zone. Then, a liquid
gradient pressure appears around the saturation front and makes the liquid to flow from
the liquid saturated zone towards the unsaturated one, and then the gas saturation front
to move in the opposite direction.

The very strong hydrogen density gradient (until t = 1.92 · 105 s), located on the
saturation front, is due to the competition between the diffusion and the convective flux
of the dissolved hydrogen around the saturation front: the water flow convecting the
dissolved hydrogen, from left to right, cancels the smoothing effect of the gas diffu-
sion propagation in the opposite direction. On the one hand the diffusion is supposed
to reduce the hydrogen concentration contrast, by creating a flux going from strong
concentrations (in the unsaturated zone) towards the low concentrations (in the liquid
saturated zone), and on the other hand the flow of the liquid phase goes in the opposite
direction (left to right, from Sg = 0 to Sg > 0). Once the disequilibrium has disap-
peared, the system tends to reach a uniform stationary state determined by the mass
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conservation of each component present in the initial state (the system is isolated, with
no flow on any of the boundaries).

5 Concluding remarks
From balance equations, constitutive relations and equations of state, assuming ther-
modynamical equilibrium, we have derived a model for describing underground gas
migration in water saturated or unsaturated porous media, including diffusion of com-
ponents in phases and capillary effects. In the second part, we have presented a group
of numerical test cases synthesizing the main challenges concerning gas migration in
a deep geological repository. These numerical simulations, are based on simplified but
typical situations in underground nuclear waste management; they show evidence of
the model ability to describe the gas (hydrogen) migration, and to treat the difficult
problem of correctly following the saturated and unsaturated regions created by the gas
generation.
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