

energie atomique · energies alternatives

F. Caro, B. Saad et M. Saad

CEA Saclay DEN/DANS/DM2S/SFME

Journée MOMAS, 23 septembre 2010

Plan

energie atomique • energies alternatives

- Résultats MPCube
 - Modèle physique
 - Modèle mathématique
 - Schéma numérique
 - Résultats numériques
- Relaxation du modèle physique
 - Modèle physique
 - Un résultat théorique
 - Schéma numérique
 - Résultats numériques
- Conclusions et perspectives

Contexte physique

energie atomique • energies alternatives

Modèle d'écoulement diphasique (liquide/vapeur) à deux composants (eau/hydrogène) en milieu poreux

Conservation de la masse de chaque composant

$$\begin{cases} \partial_t(\Phi\rho) + \operatorname{div}(\rho u) = Q\\ \partial_t(\Phi\rho^{H_2}) + \operatorname{div}\left((\rho u)^{H_2} - \sum_{\alpha} \rho_{\alpha} D_{\alpha} \nabla c_{\alpha}\right) = Q^{H_2} \end{cases}$$

- $\Phi = \text{porosité supposée ne dépendre que de l'espace}$
- Tenseur de diffusion D_{α} fonction non linéaire de la saturation liquide et de la pression de gaz
- c_{α} = concentration de l'hydrogène dans la phase α

Contexte physique

energie atomique • energies alternatives

Hypothèses physiques

Ecoulement de Darcy pour chaque phase :

$$u_{\alpha} = -k \frac{k_{r_{\alpha}}(S_l)}{\mu_{\alpha}} \nabla P_{\alpha}$$

- Pression capillaire entre la pression de gaz et la pression liquide : $P_g P_l = P_c(S_l)$
- Ecoulement isotherme
- Phase gazeuse compressible (gaz parfait) et phase liquide incompressible
- Lois de Van Genuchten-Mualen pour les perméabilités relatives et la pression capillaire

Modèle mathématique

energie atomique · energies alternatives

Modèle mathématique :

$$M(u,v)\partial_t \left[\begin{array}{c} u \\ v \end{array} \right] - \operatorname{div} \left(A(u,v) \left[\begin{array}{c} \nabla u \\ \nabla v \end{array} \right] \right) = \left(\begin{array}{c} \mathcal{F}_u \\ \mathcal{F}_v \end{array} \right),$$

où u et v représentent les inconnues chosies, $M \in \mathbb{R}^{2 \times 2}$ et $A \in \mathbb{R}^{4 \times 4}$ sont des matrices dépendants non linéairement des inconnues choisies.

Inconnues utilisées : saturation liquide et pression de gaz

Schéma numérique

energie atomique • energies alternatives

Schéma numérique VF Diamant pour la discrétisation en espace

$$\mathcal{M}(\mathcal{U},\mathcal{V})\partial_t \left(\begin{array}{c} \mathcal{U} \\ \mathcal{V} \end{array}\right) - \left(\mathcal{A}(\mathcal{U},\mathcal{V}) \left(\begin{array}{c} \mathcal{U} \\ \mathcal{V} \end{array}\right)\right) = \left(\begin{array}{c} \mathcal{F}_{\mathcal{U}} \\ \mathcal{F}_{\mathcal{V}} \end{array}\right)$$

Schéma d'Euler implicite pour la discrétisation temporelle

$$\frac{\mathcal{M}(\mathcal{U}^{n+1},\mathcal{V}^{n+1})}{\Delta t} \begin{bmatrix} \mathcal{U}^{n+1} - \mathcal{U}^n \\ \mathcal{V}^{n+1} - \mathcal{V}^n \end{bmatrix} - \mathcal{A}(\mathcal{U}^{n+1},\mathcal{V}^{n+1}) \begin{bmatrix} \mathcal{U}^{n+1} \\ \mathcal{V}^{n+1} \end{bmatrix} = \begin{pmatrix} \mathcal{F}_{\mathcal{U}} \\ \mathcal{F}_{\mathcal{V}} \end{pmatrix}.$$

Méthode de point fixe pour la résolution (globale) du système non linéaire d'inconnues U_{n+1} et V_{n+1}

$$\frac{\mathcal{M}(\mathcal{U}_{k}^{n+1},\mathcal{V}_{k}^{n+1})}{\Delta t} \begin{bmatrix} \mathcal{U}_{k+1}^{n+1} - \mathcal{U}_{k}^{n} \\ \mathcal{V}_{k+1}^{n+1} - \mathcal{V}_{k}^{n} \end{bmatrix} - \mathcal{A}(\mathcal{U}_{k}^{n+1},\mathcal{V}_{k}^{n+1}) \begin{bmatrix} \mathcal{U}_{k+1}^{n+1} \\ \mathcal{V}_{k+1}^{n+1} \end{bmatrix} = \begin{pmatrix} \mathcal{F}_{\mathcal{U}} \\ \mathcal{F}_{\mathcal{V}} \end{pmatrix}.$$

DM2S/SFME/LSET

Schéma de discrétisation pour les termes de diffusion

Méthode VF Diamant : intégration du flux sur la cellue diamant $G_1S_1G_2S_2$ (résolution de $-\operatorname{div}(D\nabla u) = f$ dans un domaine + CL)

energie atomique • energies alternatives

 \implies expression du flux $\mathbf{q} \cdot \mathbf{n}$ sur la face $S_1 S_2$ (\mathbf{n} normale à la face $S_1 S_2$ de norme $S_1 S_2$)

$$\mathbf{q} \cdot \mathbf{n} = \frac{\mathbf{n} \cdot (K^1 \mathbf{n}) \mathbf{n} \cdot (K^2 \mathbf{n})}{\mathbf{n} \cdot (K^1 \mathbf{n}) + \mathbf{n} \cdot (K^2 \mathbf{n})} (u_{G_2} - u_{G_1}) + \sum_{k=0}^1 \left[\frac{\mathbf{n} \cdot (K^2 \mathbf{r}_k^2) \mathbf{n} \cdot (K^1 \mathbf{n}) + \mathbf{n} \cdot (K^1 \mathbf{r}_k^1) \mathbf{n} \cdot (K^2 \mathbf{n})}{\mathbf{n} \cdot (K^1 \mathbf{n}) + \mathbf{n} \cdot (K^2 \mathbf{n})} \right] u_{S_k}$$

avec $K^i = D_i/(2V_i)$, $\mathbf{r}_k^1 = \mathbf{n}_{G_1S_k} + \mathbf{n}/2$, $\mathbf{r}_k^2 = \mathbf{n}_{G_1S_k} - \mathbf{n}/2$ et reconstruction des u_{S_k} à l'aide des u_{G_i} en utilisant une méthode SVD.

DM2S/SFME/LSET

Cas test MOMAS CI hors équilibre

1	~	~	
	大	ス	ノ

energie atomique • energies alternatives

$$(P_l, P_g) = (10, 1.5)$$
 bar sur $[0, \frac{1}{2}], (P_l, P_g) = (10, 2.5)$ bar sur $[\frac{1}{2}, 1]$

- Conditons aux limites de type Neumann
- Pas de temps : progression géométrique (raison 1.1) et seuil à 833.
- **Pas d'espace** : 0.016

Condition initiale

Paramètres physiques

Milieu poreux		Caractéristiques des fluides		
Paramètre	Valeur	Paramètre	Valeur	
$k [\mathrm{m}^2]$	10^{-16}	$D_l \left[\mathrm{m}^2 \cdot \mathrm{s}^{-1} \right]$	3×10^{-9}	
Φ[-]	0.3	$\mu_l [\mathrm{Pa} \cdot \mathrm{s}]$	1×10^{-3}	
P_r [Pa]	2×10^6	$\mu_g [\mathrm{Pa} \cdot \mathrm{s}]$	9×10^{-6}	
n [-]	1.54	$H^{H_2} [\operatorname{mol} \cdot \operatorname{Pa}^{-1} \cdot \operatorname{m}^{-3}]$	7.65×10^{-6}	

Pression liquide, pression gaz, cas test MOMAS

energie atomique • energies alternatives

Saturation de gaz, cas test MOMAS

 $(C \in C)$

energie atomique · energies alternatives

Cas test MOMAS milieu hérérogène

energie atomique · energies alternatives

- Condition initiale : $P_l = 1$ bar et $P_g = 1.5$ bar
- Pas de flux de gaz à gauche du domaine
- Pas de temps : progression géométrique (raison 1.01) et seuil à 20000.
- Pas d'espace : 2
- Paramètres physiques : ceux donnés dans le cas test

Pression liquide milieu hétérogène

energie atomique • energies alternatives

Saturation liquide, milieu hétérogène

Cas test MOMAS BO-BG

energie atomique · energies alternatives

Problème de pression de gaz négative

Nouveau modèle : obtenu par relaxation

energie atomique • energies alternative

Prescription d'un flux de masse (dynamique) entre l'hydrogène dissous et l'hydrogène gazeux :

Transfert de masse entre l'hydrogène gazeux et l'hydrogène dissous

$$\sigma = -\gamma \rho_l (c_l - c_{\rm eq})$$

où $c_{\rm eq}$ représente une concentration d'équilibre et γ l'inverse du temps caractéristique de retour à l'équilibre entre l'hydrogène dissous et l'hydrogène gazeux

Modèle devient

$$\begin{cases} \partial_t (\Phi \rho_l S_l) + \operatorname{div}(\rho_l u_l) = \sigma + Q_l \\\\ \partial_t (\Phi \rho_g S_g) + \operatorname{div}(\rho_g u_g) = -\sigma + Q_g \\\\ \partial_t (\Phi \rho_l S_l c_l) + \operatorname{div}(\rho_l c_l u_l - \rho_l D_l \nabla c_l) = \sigma + Q_l^{H_2}. \end{cases}$$

Théorème

 (\mathcal{C})

nergie atomique · energies alternatives

On cherche un solution définie sur un ouvert Ω borné régulier de \mathbb{R}^3 avec des conditions aux limites de type Dirichlet homogène sur une partie Γ_1 de $\partial\Omega$ et de type Neumann sur le reste de $\partial\Omega$. Nous avons alors le résultat

Théorème (B. Saad) : Sous les certaines hypothèses sur les paramètres physiques soient $P_l^0, P_g^0, et c_l^0$ les conditions intitiales définies presque partout dans Ω , si cette condition initiale est dans $L^2(\Omega)$ alors il existe (P_l, P_g, c_l) solution faible du modèle avec transfert de masse dynamique. De plus (P_l, P_g, c_l) vérifie

$$P_{\alpha} \in L^{2}(0,T; H^{1}_{\Gamma_{1}}(\Omega)), \ \Phi \partial_{t}(\rho_{\alpha}(P_{\alpha})S_{\alpha}) \in L^{2}(0,T; (H^{1}_{\Gamma_{1}}(\Omega))')$$

 $\Phi \partial_t (\rho_l(P_l) S_l c_l) \in L^2(0, T; (H^1_{\Gamma_1}(\Omega))')$

 $0 \leq S_{\alpha} \leq 1$ et $\beta(S_l) \in L^2(0,T;H^1(\Omega))$

 $c_l \in L^2(0,T; H^1_{\Gamma_1}(\Omega))$ et $0 \le c_l \le c_{eq}$

 $(C \in C)$

nergie atomique · energies alternatives

Modèle mathématique : même formalisme qu'avec un modèle utilisant la loi de Henry

Objectif : Retrouver à l'aide du modèle avec flux de masse dynamique les solutions numériques du modèle avec flux de masse statique (loi de Henry) \implies nous supposons que c_{eq} est une fonction de la saturation liquide et de la pression de gaz de tel sorte que

$$c_l = c_{eq} \iff \rho_l^{H_2} = K^{H_2} M^{H_2} P_g^{H_2}$$
 (loi de Henry)

Pour ne pas avoir à intégrer une EDO raide et ne connaissant pas physiquement la cinétique du changement de phase hydrogène gazeux- hydrogène dissous, on impose formellement $\gamma = +\infty$ dans le modèle (rappel transfert de masse $\sigma = -\gamma \rho_l (c - c_{eq})$)

Choix d'une méthode de splitting en temps : intégration des termes différentiels dans un premier temps puis projection sur la variété d'équilibre $\{c_l = c_{eq}\}$ ensuite

Schéma numérique : première étape

 (\mathcal{C})

perale atomique : energies alternative

Notant \mathcal{U} le vecteur inconnu discrétisé ($3 \times$ nombre d'éléments), nous discrétisons dans un premier temps les termes différentiels

Méthode de différences finis pour la discrétisation en espace

$$\mathcal{M}(\mathcal{U})\partial_t\mathcal{U}-\mathcal{A}(\mathcal{U})\mathcal{U}=\mathcal{F}_\mathcal{U}$$

Shéma d'Euler implicite pour la discrétisation temporelle

$$\mathcal{M}(\mathcal{U}^*)\frac{\mathcal{U}^* - \mathcal{U}^n}{\Delta t} - \mathcal{A}(\mathcal{U}^*)\mathcal{U}^{n+1} = \mathcal{F}_{\mathcal{U}}^n$$

Méthode de point fixe pour une résolution globale du système non linéaire avec inconnue \mathcal{U}_{k+1}^*

$$\mathcal{M}(\mathcal{U}_k^*)\frac{\mathcal{U}_{k+1}^* - \mathcal{U}_k^n}{\Delta t} - \mathcal{A}(\mathcal{U}_k^*)\mathcal{U}_{k+1}^{n+1} = \mathcal{F}_{\mathcal{U}}^n$$

 \longrightarrow donne un état intermédiaire \mathcal{U}^*

Schéma numérique : deuxième étape

energie atomique • energies alternatives

 $\begin{array}{l} \mathbf{Remarque}: \mathsf{si} \; \gamma < +\infty, \; \partial_t (\rho_l S_l + \rho_g S_g) = 0 \; \mathsf{et} \; \partial_t (\rho_g S_g + \rho_l S_l c_l) = 0 \\ \longrightarrow \text{ conservation de ces quantités aux niveau discret} \end{array}$

Schéma numérique (suite) Projection sur la variété $\{c_l = c_{eq}\}$ pour trouver \mathcal{U}^{n+1} avec la contrainte

$$(\rho_l S_l)_i^{n+1} + (\rho_g S_g)_i^{n+1} = (\rho_l S_l)_i^* + (\rho_g S_g)_i^*$$

$$(\rho_l S_l c_l)_i^{n+1} + (\rho_g S_g)_i^{n+1} = (\rho_l S_l c_l)_i^* + (\rho_g S_g)_i^*$$

Revient à trouver le zéro d'une fonction non linéaire dans chaque maille

Validation

energie atomique • energies alternative

Comparaison des résultats numériques obtenus avec ce nouveau modèle et ceux obtenus avec le modèle utilisant un flux de masse statique (loi de Henry)

- Inconnues : pression liquide, pression de gaz et densité d'hydrogène dissous
- **Domaine** : $\Omega = [0, 1]$
- Paramètres numériques : $\Delta t = 10^{-2}$ an, $\Delta x = 10^{-2}$ m, temps final = 1 an
- Lois de fermeture (perméabilités relatives et pression capillaire) : modèle de Van Genuchten-Mualen

Validation (comparaison)

Condition initiale

energie atomique · energies alternatives

$$P_l = 10 \text{ bar}, \ P_g = 150 \text{ bar et } \rho_l^{H_2} = 0.23 \text{ kg} \cdot \text{m}^{-3} \text{ sur } [0, \frac{1}{2}]$$

$$P_l = 10 \text{ bar}, \ P_g = 250 \text{ bar et } \rho_l^{H_2} = 0.38 \text{ kg} \cdot \text{m}^{-3} \text{ sur } [\frac{1}{2}, 1]$$

- Conditions aux limites de type Dirichlet
- Paramètres physiques

Milieu poreux		Caractéristiques des fluides		
Paramètre	Valeur	Paramètre	Valeur	
$k [\mathrm{m}^2]$	10^{-6}	$D_l \left[\mathrm{m}^2 \cdot \mathrm{s}^{-1} \right]$	1.57×10^{-14}	
Φ[-]	0.3	$\mu_l [\mathrm{Pa} \cdot \mathrm{s}]$	798×10^{-6}	
P_r [Pa]	2×10^6	$\mu_g [\mathrm{Pa} \cdot \mathrm{s}]$	9×10^{-6}	
<i>n</i> [-]	1.54	$H^{H_2} [\operatorname{mol} \cdot \operatorname{Pa}^{-1} \cdot \operatorname{m}^{-3}]$	7.65×10^{-6}	

Comparaison des solutions (pression liquide)

Comparaison des solutions (densité d'hydrogène dissous)

Cas test MOMAS CI hors équilibre

energie atomique • energies alternatives

Condition initiale

$$P_l = 10$$
 bar, $P_g = 1.5$ bar sur $[0, \frac{1}{2}]$

$$P_l = 10$$
 bar, $P_g = 2.5$ bar sur $[\frac{1}{2}, 1]$

La densité d'hydrogène dissous est détuite des conditions initiales sur P_l et P_g via la loi de Henry

Conditons aux limites de type Neumann

Cas test MOMAS CI hors équilibre : P_g et P_l

DM2S/SFME/LSET

Conclusions et perspectives

energie atomique • energies alternatives

- Etude de quelques cas tests MOMAS et mise en évidence d'un problème de pression de gaz négative avec le cas test BO-BG
- Etude théorique d'un nouveau modèle obtenu par relaxation de la loi de Henry (prescription d'un flux de masse dynamique) : existence d'une solution faible pour ce modèle, principe du maximum sur la saturation liquide et la concentration d'hydrogène dissous
- Ecriture d'un schéma numérique pour ce modèle, validation et test sur un cas MOMAS
- Etude des autres et des nouveaux cas tests MOMAS
- Ecriture et étude (convergence) d'un nouveau schéma numérique pour le modèle avec flux de masse dynamique
- Etude thérorique de la limite (actuellement formelle) $\gamma \to +\infty$

Hypothèses sur les paramètres physiques

energie atomique • energies alternatives

- 1. La porosité $\Phi \in W^{1,\infty}(\Omega)$ et vérifie $0 < \Phi_0 \le \Phi \le \Phi_1$ pour des $\Phi_i > 0$
- 2. Le tenseur de perméabilité k est dans $W^{1,\infty}(\Omega)$, borné et coercif
- 3. Les fonctions $k_{r\alpha}$ sont continues avec $k_{r_l}(S_l = 0) = k_{r_g}(S_l = 1) = 0$ et les $M_{\alpha} = k_{r_{\alpha}}/\mu_{\alpha}$ vérifient

$$M_l + M_g \ge m_0 > 0.$$

- 4. La fonction $\chi(S_l) = -\frac{M_l M_g}{M_l + M_g} \frac{dP_c}{dS_l}$ est régulière avec $\chi > 0$ si $0 < S_l < 1$ et $\chi(0) = 0$. De plus, si β est la primitive de χ , alors on suppose que β^{-1} est une fonction holdérienne d'ordre θ , avec $0 < \theta \leq 1$.
- 5. Le tenseur de diffusion D_l est régulier borné et coercif
- 6. $\rho_{\alpha} \in \mathcal{C}^{2}(\mathbb{R})$ est croissante et vérifie $0 < \rho_{m} \leq \rho_{\alpha}(P_{\alpha}) \leq \rho_{M}$
- 7. La pression capillaire $P_c \in \mathcal{C}^1([0,1]; \mathbb{R}^+)$ et vérifie $0 < \underline{P_c} \leq |\frac{\mathrm{d}P_c}{\mathrm{d}S_l}|$.
- 8. la concentration d'équilibre c_{eq} est une constante positive.