

Convergence of a Finite Volume Scheme and Numerical Simulations for Water-Gas Flow in Porous Media

M. Afif and <u>B. Amaziane</u> IPRA–LMA de Pau CNRS-UMR 5142 brahim.amaziane@univ-pau.fr

Journée MoMaS : Modélisation des Ecoulements Diphasiques Liquide-Gaz en Milieux Poreux : Cas Tests et Résultats IHP Paris, 23 Septembre 2010

4 Numerical results of the BOBG test problem

5 References

御 と く ヨ と く ヨ と …

Mathematical model

We consider the flow of two immiscible compressible fluids (w=water and g=gas) in a porous medium $I =]a, b[= \bigcup_{m=1}^{2} I^{m}]$.

Gas pressure - water saturation formulation

$$\begin{array}{ll} 0 \leq S(x,t) \leq 1 & \text{in } I \times]0, T[, \\ \Phi \partial_t S + \partial_x (f_w(S)q) - \partial_x (\mathbf{K} \partial_x \alpha(S)) = \frac{Q_w}{\rho} & \text{in } I \times]0, T[, \\ \Phi \partial_t (P(1-S)) - \partial_x (P \lambda_g(S) \mathbf{K} \partial_x P) = \frac{Q_g}{\sigma_g} & \text{in } I \times]0, T[, \\ q = -\lambda(S) \mathbf{K} \partial_x (P + \beta(S)) & \text{in } I \times]0, T[, \end{array}$$

$$(1)$$

- $\Phi(x)$ is the porosity,
- **K**(*x*) absolute permeability,
- Q_{ν} the source term of phase u = w, g,
- $kr_{\nu}(S)$ the ν -phase relative permeability,
- $\lambda_{\nu}(S) = \frac{kr_{\nu}(S)}{\mu_{\nu}}$ where μ_{ν} the ν -phase viscosity,
- $\lambda(S) = \lambda_w(S) + \lambda_g(S)$ is the total mobility.

- Let $\{t_0, ..., t_N\}$ be a partition of J = [0, T]; $\Delta t^n = t^{n+1} t^n$;
- Let $(x_i)_{i=0}^{N_x}$ be a partition of I and $x_{i+\frac{1}{2}} = (x_{i+1} + x_i)/2;$
- Vertex-Centred control volumes $I_i := [x_{i-\frac{1}{2}}; x_{i+\frac{1}{2}}]; h_i = |I_i|$

< 臣 > (臣 > …)

Saturation equation

$$S_{i}^{n+1} + \frac{\Delta t^{n}}{\Phi_{i}h_{i}} \sum_{j=\pm\frac{1}{2}} \left(\alpha^{m}(S_{i}^{n+1}) - \alpha^{m}(S_{i+2j}^{n+1}) \right) \frac{\mathbf{K}_{i+j}}{\Delta x_{i+j-\frac{1}{2}}}$$
(2)
= $S_{i}^{n} - \frac{\Delta t^{n}}{\Phi_{i}h_{i}} \sum_{j=\pm\frac{1}{2}} \left[f_{w}^{m}(S_{i}^{n})(2jq_{i+j}^{n})^{+} - f_{w}^{m}(S_{i+2j}^{n})(-2jq_{i+j}^{n})^{+} \right] + \frac{\Delta t^{n}}{\Phi_{i}\rho} Q_{w,i}^{n}$

Pressure equation

$$P_{i}^{n+1}(1 - S_{i}^{n+1}) + \frac{\Delta t^{n}}{\Phi_{i}h_{i}} \sum_{j=\pm\frac{1}{2}} \left((P_{i}^{n+1})^{2} - (P_{i+2j}^{n+1})^{2} \right) \frac{\lambda_{g}^{m}(S^{n+1})_{i+j} \mathbf{K}_{i+j}}{2\Delta x_{i+j-\frac{1}{2}}} = P_{i}^{n}(1 - S_{i}^{n}) + \frac{\Delta t^{n}}{\Phi_{i}\sigma_{g}} Q_{g,i}^{n}$$
(3)

With continuity of the capillary pressure at the interface

$$S_{i_0}^{m=2} = (P_c^2)^{-1} (P_c^1(S_{i_0}^{m=1}))$$

M. Afif and B. Amaziane Journée MoMaS 23 Septembre 2010

< ∃ >

$$q_{i+\frac{1}{2}}^{n} := \frac{\kappa_{i+\frac{1}{2}}}{\Delta x_{i}} \lambda^{m}(S^{n})_{i+\frac{1}{2}} \Big[(P_{i}^{n} - P_{i+1}^{n}) + (\beta^{m}(S_{i}^{n}) - \beta^{m}(S_{i+1}^{n})) \Big]$$

Matrix form

$$\begin{bmatrix} \mathbb{A}^{n}(\mathbb{S}^{n+1}) \end{bmatrix} \mathbb{S}^{n+1} = \mathbb{F}^{n}$$
$$\begin{bmatrix} \mathbb{B}^{n}(\mathbb{S}^{n+1}, \mathbb{V}^{n+1}) \end{bmatrix} \mathbb{V}^{n+1} = \mathbb{G}^{n}$$

where for all n = 0, ..., N - 1

$$\begin{split} \mathbb{S}^{n} &:= (S_{i}^{n})_{i=0}^{N_{x}} \quad \text{and} \quad \mathbb{V}^{n} := (v_{i}^{n} := P_{i}^{n}(1 - S_{i}^{n}))_{i=0}^{N_{x}} \\ \left[\mathbb{A}^{n}(\mathbb{S}^{n+1})\right] &:= (A_{ij}^{n})_{i,j=0}^{N_{x}} \quad \text{and} \quad \left[\mathbb{B}^{n}(\mathbb{S}^{n+1}, \mathbb{V}^{n+1})\right] := (B_{ij}^{n})_{i,j=0}^{N_{x}} \\ \mathbb{F}^{n} &:= (F_{i}^{n})_{i=0}^{N_{x}} \quad \text{and} \quad \mathbb{G}^{n} := (G_{i}^{n})_{i=0}^{N_{x}}. \end{split}$$

・ロト ・四ト ・モト ・モト

 \mathbb{A}^n and \mathbb{B}^n are the sparse matrix with non nulls entries:

$$A_{ii}^{n} := 1 + \frac{\Delta t^{n}}{\Phi_{i}h_{i}} \sum_{j=\pm \frac{1}{2}} \frac{\mathbf{K}_{i+j}}{\Delta x_{i+j-\frac{1}{2}}} \alpha^{\prime m} (S^{n+1})_{i+j},$$

$$A_{i,i+2j}^{n} := -\frac{\Delta t^{n}}{\Phi_{i}h_{i}} \frac{\mathbf{K}_{i+j}}{\Delta x_{i+j-\frac{1}{2}}} \alpha^{\prime m} (S^{n+1})_{i+j}, \quad j = \pm^{1}/_{2}$$

$$B_{ii}^{n} := 1 + \frac{\Delta t^{n}}{\Phi_{i}h_{i}} \sum_{j=\pm \frac{1}{2}} (v^{n+1} \widetilde{\lambda}_{g}^{m} (S^{n+1}))_{i+j} \frac{\mathbf{K}_{i+j}}{\Delta x_{i+j-\frac{1}{2}}},$$

$$B_{i,i+2j}^{n} := -\frac{\Delta t^{n}}{\Phi_{i}h_{i}} (v^{n+1} \widetilde{\lambda}_{g}^{m} (S^{n+1}))_{i+j} \frac{\mathbf{K}_{i+j}}{\Delta x_{i+j-\frac{1}{2}}}, \quad j = \pm^{1}/_{2},$$

where for $\gamma^m(S) := -\int_S^1 \breve{\breve{\lambda}}_g^m(s) ds$,

$$\widetilde{\lambda}_{g}^{m}(S)_{i+j} := \begin{cases} \breve{\lambda}_{g}^{m}(S_{i}) & \text{if } S_{i} = S_{i+2j} \\ \frac{\gamma^{m}(S_{i+2j}) - \gamma^{m}(S_{i})}{S_{i+2j} - S_{i}} & \text{otherwise.} \end{cases}$$

L^{∞} and weak *BV* estimates

(A0) $\rho, \sigma_g, \mu_{\nu}(\nu = w, g)$, are positive constants.

(A1) $\Phi \in L^{\infty}(I)$ such that, $0 < \Phi_{-} \le \Phi(x) \le \Phi^{+} \le 1$ a.e. in I.

(A2)
$$0 < K_{-} \leq \mathbf{K}(x) \leq K^{+} < +\infty$$
 a.e. in *I*.

$$(\mathsf{A3}) \ S^0, \mathsf{K}\partial_{\mathsf{x}}\alpha(S^0) \in L^\infty(I) \cap \overline{BV}(I), \ 0 \leq S^0(\mathsf{x}) \leq 1 - \varepsilon.$$

(A4) $P^0, \mathbf{K}\partial_x P^0 \in L^\infty(I) \cap \overline{BV}(I), \ 0 < P^0_- \le P^0 \le P^0_+ < +\infty.$

$$\begin{array}{l} \text{(A5)} \hspace{0.2cm} \lambda_{\nu}, \widetilde{\lambda}_{g} \in C^{1}([0,1];\mathbb{R}^{+}) \hspace{0.2cm} \text{such that} \hspace{0.2cm} \forall s \in]0,1[,\hspace{0.2cm} \lambda_{\nu}(s) > 0 \\ \hspace{0.2cm} \text{and} \hspace{0.2cm} \widetilde{\lambda}_{g}(s) \geq \widetilde{\lambda}_{g}^{-} > 0. \end{array}$$

(A6) $\lambda \in C^1([0,1]; \mathbb{R}^+)$ such that $\forall s \in [0,1], \lambda(s) \ge \lambda_- > 0$.

(A7)
$$f_w, \check{f}_w \in C^1([0,1]; \mathbb{R}^+)$$
 such that $f_w(0) = 0$ and $\forall s \in]0, 1[, f'_w(s) > 0.$

(A8) $\alpha, \beta \in C^1([0,1]; \mathbb{R}^+)$ such that $\alpha', \beta'(0) = 0$ and $\forall s \in]0, 1[, \alpha', \beta'(s) > 0.$

(A9) $Q_{\nu} \in L^{\infty}(I \times J) \cap \overline{BV}(I \times J), \ \partial_t Q_{\nu} \in L^{\infty}(I \times J) \text{ and } Q_{\nu}(x,t) \geq 0 \text{ a.e. in } I \times J.$

イロト イボト イヨト イヨト 三日

L^{∞} and weak *BV* estimates

CFL condition

$$2\frac{\Delta t^n}{h\phi_-} \Big[\sup_{s} f'_w(s) + \sup_{s} \check{f}_w(s) \Big] \|q^n\|_{\infty} \le 1,$$
(4)

and for $i_n \in \{0,...,N_x\}~/~S^{n+1}_{i_n} = \max_i S^{n+1}_i$, we assume that

$$\begin{array}{l} Q_{w,i_n}^n = 0 \quad \text{and} \quad \partial_{i_n}(q^n) \ge 0. \\ \text{where} : \partial_i f := \frac{1}{h_i} \begin{pmatrix} f_{i+\frac{1}{2}}^m - f_{i-\frac{1}{2}}^m \end{pmatrix} \text{ and } \check{f}_w(S) := \begin{cases} \frac{f_w(S)}{S} & \text{if } S \neq 0\\ f_w'(S) & \text{otherwise.} \end{cases} \end{array}$$

Proposition 1.

Under the assumptions **(A0)–(A9)**, the CFL condition (4) and (5), the scheme (2)–(3) is L^{∞} stable. Furthermore the following discrete maximum principle holds: for all $i = 1, ..., N_x$ we have $0 \le S_i^{n+1} \le 1$.

ロンスロンスロンスロン

L^{∞} and weak *BV* estimates

Proposition 2.

Under the assumptions **(A0)–(A9)**, the CFL condition (4) and (5), the scheme (2)–(3) is *BV* stable in space for all n = 1, ..., N, furthermore we have the L^1 continuity in time.

Theorem 1.

Under the assumptions **(A0)–(A9)**, the CFL condition (4) and (5), the approximate solution (S_h, P_h) given by the scheme (2)–(3) converge in $L^1(\Omega_T)$ to (S, P) a weak solution of (1) as H and Δt go to zero.

イロト イヨト イヨト

Test case BOBG (C. Chavant, 2008)

$$S = 0.77$$
 BO
 BG
 $S = 1.0$
 $P_g = 10^5 Pa$
 $P_g = P_w = 10^5 Pa$
 $P_g = P_w = 10^5 Pa$

- Capillary pressure: $S^m(P_c) := \left(1 + \left(\frac{P_c}{A^m}\right)^{\frac{1}{1-B^m}}\right)^{-B^m}$
- Relative permeability: $kr_g(S) := (1 S^2)(1 S^{\frac{5}{3}})$ and $kr_w^m(S) := (1 + \frac{(S^{-C_m} 1)^{D_m}}{F_m})^{-E_m}$ for m = 1 or 2.

m	Φ_m	$\mathbf{K}_{m}(m^{2})$	A _m (Pa)	B_m	Cm	D_m	E _m	F _m
1	0.30	1.E-20	1.5E+6	0.060	16.67	1.880	0.5	4.0
2	0.05	1.E-19	1.0E+7	0.412	2.429	1.176	1.0	1.0

御 と くき とくき とうき

- Capilary pressure: $S^m(P_c) := \left(1 + \left(\frac{P_c}{A^m}\right)^{\frac{1}{1-B^m}}\right)^{-B^m}$
- Relative permeability: $kr_g(S) := (1 S^2)(1 S^{\frac{5}{3}})$ and $kr_w^m(S) := (1 + \frac{(S^{-C_m} 1)^{D_m}}{F_m})^{-E_m}$ for m = 1 or 2.

Relative permeability (left) and Capillary pressure (right)

- Total mobility: $\lambda^m(S) := \frac{kr_w^m(S)}{\mu_w} + \frac{kr_g(S)}{\mu_w}$
- fractional flow: $f_w^m(S) := \frac{kr_w^m(S)}{\mu_w \lambda^m(S)}$, for m = 1 or 2

Total mobility $\lambda(S)$ (left) and fractional flow f_w (right)

<ロ> (四) (四) (三) (三) (三)

$$S = 0.77$$
 BO
 BG
 $S = 1.0$
 $P_g = 10^5 Pa$
 $P_g = P_g - P_c(S)$
 $P_g = P_w = 10^5 Pa$

Figure: Water saturation S

ヘロン 人間 とくほど 人間と

$$S = 0.77$$
 BO
 BG
 $S = 1.0$
 $P_g = 10^5 Pa$
 $P_g = P_w = 10^5 Pa$
 $P_g = P_w = 10^5 Pa$

Figure: Capillary pressure P_c

Figure: Gas pressure P

Figure: Gas pressure P

Figure: Water pressure P_w

References

- M. Afif and B. Amaziane, Convergence of a 1–D finite volume scheme and numerical simulations for water-gas flow in porous media. Submitted to Applied Numerical Mathematics (2010).
- O. Angelini, C. Chavant, E. Chénier, R. Eymard, S. Granet, Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage. Preprint submitted to Mathematics and Computers in Simulation, (2010).

回 と く ヨ と く ヨ と