DIFFERENTIAL SPLIT THERMODYNAMIC MODEL FOR GAS-LIQUID COMPOSITIONAL FLOW

Sergey OLADYSHKIN Mikhail PANFILOV

Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée

Lyon, 04 /05 Septembre 2008

CONCLUSIONS

OPEN THERMODYNAMICS

HT-SPLITTING

MATH. FORMULATION

INTRODUCTION

INTRODUCTION

FLUID CHARACTERIZATION

THERMODYNAMIC BEHAVIOURS

Close Thermodynamic System

Open Thermodynamic System

Individual Volums Phase Exchange

Individual Volums Phase Exchange + Transport

MATHEMATICAL FORMULATION

COMPOSITIONAL MODEL

Mass balance for each chemical component k:

$$\phi \frac{\partial}{\partial t} \left(\rho_l c_l^{(k)} s + \rho_g c_g^{(k)} \left[1 - s \right] \right) + \operatorname{div} \left(\rho_l c_l^{(k)} \mathbf{V}_l + \rho_g c_g^{(k)} \mathbf{V}_g \right) = 0, \quad k = 1, \dots, N$$

Momentum balance for each phase (the Darcy law)

$$\mathbf{V}_{l} = -\frac{Kk_{l}}{\mu_{l}} grad(P_{l} + \rho_{l}gz)$$
$$\mathbf{V}_{g} = -\frac{Kk_{g}}{\mu_{g}} grad(P_{g} + \rho_{g}gz)$$

COMPOSITIONAL MODEL

Phase equilibrium :

$$\boldsymbol{V}_{g}^{k}\left(\boldsymbol{P},\left\{\boldsymbol{c}_{g}^{q}\right\}_{q=1}^{N}\right) = \boldsymbol{V}_{l}^{k}\left(\boldsymbol{P},\left\{\boldsymbol{c}_{l}^{q}\right\}_{q=1}^{N}\right) \quad k = 1,...,N \quad (\boldsymbol{V}_{i}^{k} - \text{the chemical potential})$$

$$P_g = P_l$$
 or $P_g = P_l + P_c(s)$

Phase state :

$$\rho_{g} = \rho_{g} \left(P, \left\{ c_{g}^{q} \right\}_{q=1}^{N} \right), \qquad k = 1, \dots, N$$
$$\rho_{l} = \rho_{l} \left(P, \left\{ c_{l}^{q} \right\}_{q=1}^{N} \right)$$

COMPOSITIONAL MODEL

Gibbs "Rule of Phases"

T=const

Difference = $N-1 = v_T$ = Thermodynamic Variance

 $\rho_{i} = \rho_{i}(P), \quad i = g, l$ $c_{i}^{(k)} = c_{i}^{(k)}(P), \quad k = 1, ..., N$ $v_{T} = N-1$

Dimensionless canonical form

$$\begin{split} & \underbrace{\widehat{\phi}_{\partial \tau}^{\partial} \left(\varphi_{l}\overline{\rho}s + \varphi_{g}(1-s)\right) = \operatorname{div}\left(\left[\psi_{g}k_{g} + \widehat{\omega}_{l}k_{l}\right]\operatorname{grad}p\right), & \underbrace{\operatorname{gas flow}}{} \\ & \underbrace{\widehat{\phi}_{\partial \tau}^{\partial} \left(\varphi_{l}s\right)}_{\partial \tau} + \overline{\rho}\varphi_{l}s\frac{\partial\zeta_{l}^{(N)}}{\partial \tau} + \varphi_{g}(1-s)\frac{\partial\zeta_{g}^{(N)}}{\partial \tau}\right) = \underbrace{\operatorname{\omega}_{d}\operatorname{iv}\left(\psi_{l}k_{l}\operatorname{grad}p\right) + \underbrace{\operatorname{liquid flow}}{} \\ & \underbrace{\omega}_{l}k_{l}\operatorname{grad}p\cdot\operatorname{grad}\zeta_{l}^{(N)} + \psi_{g}k_{g}\operatorname{grad}p\cdot\operatorname{grad}\zeta_{g}^{(N)}, \\ & \underbrace{\widehat{\phi}_{l}k_{l}\operatorname{grad}p\cdot\operatorname{grad}}_{\partial \tau}\left(\zeta_{l}^{(k)} - \zeta_{l}^{(N)}\right) + \varphi_{g}(1-s)\frac{\partial}{\partial \tau}\left(\zeta_{g}^{(k)} - \zeta_{g}^{(N)}\right)\right] = \underbrace{\omega}_{l}k_{l}\operatorname{grad}p\cdot\operatorname{grad}\left(\zeta_{l}^{(k)} - \zeta_{l}^{(N)}\right) + \psi_{g}k_{g}\operatorname{grad}p\cdot\operatorname{grad}\left(\zeta_{g}^{(k)} - \zeta_{g}^{(N)}\right), \\ & \underbrace{k = 1, \dots, N-2} \underbrace{\operatorname{transport of basic}}_{components} \end{split}$$

Characteristic parameters of the system

Perturbation parameter:

 $\mathcal{E} = \frac{\text{Perturbation propagation time}}{\text{Reservoir depletion time}} \sim 10^{-3} - 10^{-2}$

ω ~ 3

Relative phase mobility parameter: $\omega = \frac{\text{liquid mobility}}{\text{gas mobility}} = \frac{\langle \rho_l \mu_g \rangle}{\langle \rho_g \mu_l \rangle} \sim 10^{-3} - 10^{-2}$

Limit behavior of the compositional model $\omega, \mathcal{E}
ightarrow 0$

$$0 = \operatorname{div}(\psi_{g}k_{g} \operatorname{grad} p);$$

$$\varepsilon \left(\overline{p} \frac{\partial(\varphi_{l} s)}{\partial \tau} + \overline{p}\varphi_{l} s \frac{\partial \varsigma_{l}^{(N)}}{\partial \tau} + \varphi_{g}(1-s) \frac{\partial \varsigma_{g}^{(N)}}{\partial \tau}\right) =$$

$$\operatorname{odiv}(\psi_{l}k_{l} \operatorname{grad} p) + \psi_{g}k_{g} \operatorname{grad} p \cdot \operatorname{grad} \varsigma_{g}^{(N)};$$

$$0 = \psi_{g}k_{g} \operatorname{grad} p \cdot \operatorname{grad}(\varsigma_{g}^{(k)} - \varsigma_{g}^{(N)}), \quad k = 1, ..., N - 2$$

$$\operatorname{transport of basic components}$$

This subsystem can be integrated along streamlines

Transformation of the transport sub-system

$$0 = \Psi_g k_g \text{ grad } p \cdot \text{grad} \left(\varsigma_g^{(k)} - \varsigma_g^{(N)} \right), \quad k = 1, \dots, N - 2$$

Along a streamline *I* :

$$0 = \Psi_g k_g \frac{\partial p}{\partial l} \cdot \frac{\partial}{\partial l} \left(\varsigma_g^{(k)} - \varsigma_g^{(N)} \right) \implies \frac{\partial}{\partial l} \left(\varsigma_g^{(k)} - \varsigma_g^{(N)} \right) = 0 \implies \frac{\partial \varsigma_g^{(k)}}{\partial l} = \frac{\partial \varsigma_g^{(N)}}{\partial l}$$

$$\sum_{k=1}^{N-2} \left(\frac{1}{\Delta c^{(q)}} \delta_{qk} - \frac{1}{\Delta c^{(q)}} \frac{\partial c_g^{(N)}}{\partial \chi^{(q)}} \right) \frac{\partial \chi^{(q)}}{\partial l} - \frac{1}{\Delta c^{(N)}} \frac{\partial c_g^{(N)}}{\partial p} \frac{\partial p}{\partial l} = 0$$

$$\sum_{k=1}^{N-2} \left(\frac{1}{\Delta c^{(q)}} \delta_{qk} - \frac{1}{\Delta c^{(q)}} \frac{\partial c_g^{(N)}}{\partial \chi^{(q)}} \right) \frac{d\chi^{(q)}}{dp} - \frac{1}{\Delta c^{(N)}} \frac{\partial c_g^{(N)}}{\partial p} = 0$$

$$\sum \left[\frac{1}{\Delta c^{(q)}} \frac{dc_g^{(k)}}{dp} = \frac{1}{\Delta c^{(N)}} \frac{dc_g^{(N)}}{dp}, \quad k = 1, \dots, N-2 \right]$$

A differential thermodynamic system

This subsystem is transformed into a thermodynamic one along streamlines

Hydrodynamic subsystem

$$\begin{cases} \operatorname{div}\left(\psi_{g}k_{g}\operatorname{grad}p\right) = 0, \\ \overline{\rho}\varphi_{l}\frac{\partial s}{\partial\tau} + \overline{\rho}\varphi_{l}s\frac{\partial\zeta_{l}^{(N)}}{\partial\tau} + \varphi_{g}(1-s)\frac{\partial\zeta_{g}^{(N)}}{\partial\tau} = \frac{\omega}{\varepsilon}\operatorname{div}\left(\psi_{l}k_{l}\operatorname{grad}p\right) + \\ \frac{1}{\varepsilon}\psi_{g}k_{g}\operatorname{grad}p\cdot\operatorname{grad}\zeta_{g}^{(N)} \end{cases}$$

Thermodynamic subsystem

p

S

Interpretation of the New Delta-Law

$$\frac{1}{\Delta c^{(q)}} \frac{dc_g^{(k)}}{dp} = \frac{1}{\Delta c^{(N)}} \frac{dc_g^{(N)}}{dp}, \quad k = 1, ..., N-2$$

Open Thermodynamic System

Depend on the pressure only !

OPEN THERMODYNAMICS SIMULATIONS-OTS

Thermodynamic System Behaviours

Close or Open ?

Open System Phase Exchange + Transport

Case Test 1: Urengoy Reservoir

8 Components Mixture: CO2, N2, C1, C2, C3, C4, F1, F2

Specified temperature: 359 K

Data: ECLIPCE Close Thermodynamics (PVTi)

Thermodynamic System Behaviours

Delta Law

250

300

Case Test 1: Urengoy Reservoir

Thermodynamic System Behaviours

New O T S. Case Test 2:

3 Components Mixture: CH4, C2H6, C10H22

Open Thermodynamic System – Lines (NEW) Thermodynamic Behaviours in an Open System – Circles (ECLIPCE 300)

New O T S. Case Test 4: Radioactive Waste Storage

Open Thermodynamic System – Lines (NEW) Close Thermodynamic System – Circles (ECLIPCE PVTi) 4 Components Mixture: H2, H2O, N2, CO2

Specified temperature: 298 K

CONCLUSIONS

CONCLUSIONS

H-T Splitting along streamlines

- Contrast & Stabilisation

- New Open Thermodynamic System
- Independent New Differential T. System
- New OT Simulator

Hydrodynamic Compositional System consists of 2 Equations -Pressure & Saturation

APPLICATIONS

Gas-Condensate Well Representation

Streamline Simulator for the 3D Dynamic Analysis of the Compositional Flows in Oil Reservoirs

Transfer of the Gas Around Storage of Radioactive Waste

Perspective

Enhanced Oil Recovery

APPLICATIONS

Gas-Condensate Well Representation

Saturation

APPLICATIONS

Streamline Simulator for the 3D Dynamic Analysis of the Compositional Flows in Oil Reservoirs

Saturation variation along the streamlines during the natural depletion of the gas-condensate reservoir

A C K N O W L E D G E M E N T S

Schlumberger

gOcad

MoMas