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aUniversité de Lyon, Université Lyon1, CNRS, UMR 5208 Institut Camille
Jordan, Batiment du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F -

69200 Villeurbanne Cedex, France
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Abstract

We are interested to study the evolution in time of the concentration of a pollutant
which is transported by diffusion and convection from a ”sources site” made of a
large number of similar ”local sources”. Assuming the release curve ( source emis-
sion vs. space and time), of each local source, being random, our aim is to give a
mathematical model describing the global evolution of such a system and numerical
simulations illustrating the theoretical results.

Key words: Partial differential equation, Homogenization, Numerical simulations.

Introduction

We consider a transport diffusion model given by a partial differential equa-
tion describing the temporal evolution of a quantity (the concentration of a
radionuclear pollutant for example) in a parallelepipedic porous domain. The
partial differential equation source term is constituted by spatially period-
ically distributed sources lying on the porous medium median plane. Each
of these sources are identical parallelepipeds. The behavior of each source is
spatially homogeneous but their time dependence is uncertain. Our aim is to
give a mathematical model describing the global evolution of such a system
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and to perform numerical simulations to illustrate the theoretical results. The
deterministic case where all the sources are leaking at the same time with the
same “leaking curve” has been studied in [5,6]. In the first section, we suc-
cessively describe the geometry of the porous medium, the equations and the
uncertainty of the source terms. In the second section, we give the theoreti-
cals results on the homogenization processes. The third section is devoted to
numericals tools used in the last section. Finally, in the last section, numerical
simulations are performed to illustrate the theoretical results.

1 Setting the problem

1.1 Description of the geometry

We consider an open bounded domain D ⊂ Rd, with d = 2 or d = 3, such
that D+ = {x = (x1, · · · , xd) ∈ D : xd > 0} and D− = {x = (x1, · · · , xd) ∈
D : xd < 0} are nonempty domains. Let L > 0 be the typical length of the
repository containing the sources, we suppose that D contains Σ = [0; L]d−1×
{0} (See Figure 1). Let ε be a small positive number, we denote the “global
variable” x = (x1, · · · , xd) and the “local variable” x/ε = (x1/ε, · · · , xd/ε).
The support Kε of a source in the local variables (see Figure 2) is defined by :

Kε = [0; s1]× · · · × [0; sd−1]× [−εγ−1sd/2; εγ−1sd/2], (1)

with 0 < si < 1 for i ∈ {1, · · · , d−1} and γ > 0. The global periodic support
is given by :

B̃ε =
⋃

j∈Nd−1

εL(Kε + (j, 0)) , in global variables and

B̃ =
⋃

j∈Nd−1

Kε + (j, 0) , in local variables.

Here, ε measures the adimensionalised spatial period of the source supports
and for simplicity we assume that 1/ε = N ∈ N. So the whole source site
support (see Figure 3) is defined by :

Bε = B̃ε ∩ S, or also,

=
⋃

j∈I

εL(Kε + (j, 0)),

with S = [0; L]d−1×R and I = {1, · · · , N}d−1, then Bε contains Nd−1 distinct
sources. In the following, we also use the notation

Bε
j = εL(Kε + (j, 0)).
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Fig. 1. Global domain

Fig. 2. One source in the local scale

Fig. 3. Global configuration of sources
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1.2 Description of the randomness

Let (Ω,F ,P) be a standard probability space. To describe the randomness
dependancy in space, we define on this probability space the random ergodic
dynamical system (Tz). Moreover, assuming without loss of generality that
each source term is spatially homogeneous, the dynamical system is assumed to
be discrete, i.e. z ∈ Zd−1. Then, by definition, the random ergodic dynamical
system (Tz) is a collection of measurable maps Tz : Ω → Ω such that Tz

- has the group properties, Tz1+z2 = Tz1 ◦ Tz2 , T0 = Id ;
- preserves the measure P for all z ∈ Zd−1 ;
- is ergodic, i.e. the relation P(A)(1−P(A)) = 0 holds for any invariant set
A ∈ F .

1.3 Description of the equations

Under the above assumptions, we are now considering the convection-diffusion
problem, with a random source term Qε :

∂tu
ε −∇(a(x)∇uε − b(x)uε) + λuε = Qε in[0; T ]×D (2a)

uε = 0 in{0} × D (2b)

(a(x)∇uε − b(x)uε) · n(x) = 0 in[0; T ]× (∂D \ Γd) (2c)

uε = 0 in[0; T ]× Γd (2d)

where uε (the concentration) is a scalar field of [0; T ]×D, λ (the radioactive
decay constant) is a non negative constant, a(x) (the diffusion tensor) is a
uniformly positive definite smooth matrix-function, b(x) (the convection field)
is a smooth given divergence free vector field, n is the external normal of
domain D and Γd is a subset of ∂D. To simplify notations of equation (2a),
let’s introduce the linear operator A defined by :

Au ≡ −∇(a(x)∇u− b(x)u) + λu.

Concerning the random source term, as usual in “probability literature”, we
will not show explicitly the dependency in ω and write the random variable:

Qε(t, x) = 1lBε

1

εγ
f(T[x′/Lε]ω, t), (3)

where x′ denotes the restriction to Rd−1 of x :

Rd −→ Rd−1

x = (x1, · · · , xd) −→ x′ = (x1, · · · , xd−1) ;
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[·] denotes the floor function extended to Rp by :

Rp −→ Zp

y −→ [y] = ([y1], · · · , [yp])

where [yi] is the classical floor function in R ;
and, for any set E , 1lB : E → {0, 1} denotes the indicator function of the subset
B ⊂ E .
Besides, we will assume that the random variable f(ω, t) is uniformly bounded,
i.e. there exists two nonrandom positive constants Λ and C0 such that

∀ω ∈ Ω ∀t ∈ [0; T ] |f(ω, t)| < C0e
−Λt.

A classical result gives that, for each ε > 0 and each ω ∈ Ω, problem (2) has
a unique solution uε ∈ L2(0, T ; H1(D)) ∩ C(0, T ; L2(D)) (see [6]).

2 Homogenization of the random problem

In this section, we recall some theoretical results from [1] about convergences
of the detailed problem (2) to a homogenized problem. More precisely, in
a first part, Theorem 1 gives convergence of the random solution uε to a
deterministic limit u0, solution of a problem of the same type but with only
one source lying on Σ. Theorem 2 provide an estimation of the rate of this
convergence. In a second part, under some assumptions about the source term
randomness, Theorems 3 give the rescaled field ε−(d−1)/2(uε−u0) convergence
in law to Gaussian field and provide the parameters of the limit law.

2.1 Convergence to a deterministic limit

Let δΣ(x) denote the surface Lebesgue measure with support Σ, by E[f(·, t)]
the expectation of f(ω, t) and define :

F (t) =

(
d∏

i=1

si

)
LE[f(·, t)].
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It may be proved that the solution uε of problem (2) converge, when ε → 0,
to a limit u0, solution of a similar convection-diffusion problem :

∂tu
0 + Au0 = F (t)δΣ(x) in [0; T ]×D (4a)

u0 = 0 in {0} × D (4b)

(a(x)∇u0 − b(x)u0) · n(x) = 0 in [0; T ]× (∂D \ Γd) (4c)

u0 = 0 in [0; T ]× Γd (4d)

More precisely, the following theorem (proved in [1]) holds :

Theorem 1 Under the above assumptions

lim
ε→0

‖uε − u0‖L2(0,∞;H1(D)) = 0 a.s.

Under natural additional assumptions, this convergence result can be com-
pleted by an estimation of the convergence rate. To do this, we introduce the
correlation function, R, of f in the local variables :

R : [0, T ]× [0, T ]× Rd−1 × Rd−1 → R,

such that ∀t, s ∈ [0; T ] ∀x, y ∈ Rd :

R(t, s, x′, y′) = E
[
(f(T[x′]·, t)− E[f(T[x′]·, t)])(f(T[y′]·, s)− E[f(T[y′]·, s)])

]
.

(5)
We assume that there exists R̄ : Rd−1 → R+ such that

∀t, s ∈ [0;∞] ∀x, y ∈ Rd |R(t, s, x′, y′)| ≤ e−Λmin(t,s)R̄(x′ − y′).

We define the following conditions on R̄(y′) :

H1 There exist R0 > 0 such that

R̄(y′) = 0 if |y′| > R0.

H2 ∫

Rd−1
R̄(y′)dy′ < ∞.

H3 There exists C0 > 0 and ν > 2 such that

R̄(y′) ≤ C0(1 + |y′|)−ν .

Theorem 2 Under the assumptions of Theorem 1 and one of the additional
condition H1, H2 or H3, we have

E
[
‖uε − u0‖2

L2(0,T ;L2(D))

]
≤ C1(ε

2 + ε2γ) (6)

with C1 a positive constant independent of ε.
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In other terms, considering a fixed ε > 0, Theorem 1 provides the far field
approximation, u0, of the solution, uε, of problem (2) : u0 do not mimic the
local oscillatory behaviour of uε “near the sources”, but give an accurate far
field approximation of uε far from the source. Notice that u0 is the solution of
problem (4) which differs from the original problem only by the source term :
FδΣ instead of Qε. That implies that u0 can be computed in the same way as
uε(ω), with a given ω ∈ Ω, but the geometry of the new problem (4) may be
very less detailed, so numerical computation of u0 will be faster than for uε.

2.2 Convergence in law of the rescaled field

Theorems 1 and 2 give a deterministic approximation, u0, of the average be-
havior of the random solution, uε, of problem (2), but we are also interested
by random fluctuations of uε around its homogenized value. In the same way
as the Central Limit Theorem, it may be proved, as in [1], under some as-
sumptions, that the rescaled field ε−(d−1)/2(uε(t, x)−u0(t, x)) converges in law
to a Gaussian field.

Denote by G(t, s, x, y) the Green function associated with problem (2) and

¯̄c(t, s) ≡ lim
N→∞

s2
dL

d+1

Nd−1

∫

[0,N ]d−1

∫

[0,N ]d−1
R(t, s, y, z)1lB̃(y)1lB̃(z)dydz. (7)

Further more, denote f̃(t, x′) ≡ f(T[x′]·, t) and consider the following condi-
tions :

H4 For each t0 ≥ 0 the strong mixing coefficient αt0(s) of f̃ decays fast
enough so that

∃ν1 > 2 ∃C2 > 0 ∃Λ1 > 0 ∀s > 0 αt0(s) < C2e
Λ1t0(1 + s)−ν1 .

Here we define αt0(s) as follows

αt0(s) = sup
G1,G2

sup
E1∈FG1E2∈FG2

|P(E1 ∩ E2)−P(E1)P(E2)|

with FG1 and FG2 are the following sigma-algebra : FG1 = σ{f̃(t1, y
′
1) : y′1 ∈

G1, t1 ≥ t0}, FG2 = σ{f̃(t2, y
′
2) : y′1 ∈ G2, t2 ≥ t0}. The first supremum is

taken over all sets G1, G2 ⊂ R2 such that dist(G1, G2) ≥ s.

H5 For each t0 ≥ 0 the maximum correlation coefficient βt0(s) of f̃ decays
fast enough so that

∃ν2 > 2 ∃C3 > 0 ∃Λ2 > 0 ∀s > 0 βt0(s) < C3e
Λ2t0(1 + s)−ν2 .
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with

βt0(s) = sup
G1,G2

sup
ξ,µ
|E(ξµ)|.

Here the second supremum is taken over all random variables ξ and µ wich are
respectively FG1- and FG2-measurable and satisfy the conditions Eξ = Eµ =
0 and ‖ξ‖L∞(Ω = ‖µ‖L∞(Ω = 1. The first supremum is taken over all sets
G1, G2 ⊂ R2 such that dist(G1, G2) ≥ s.

We have a result concerning the pointwise convergence in law :

Theorem 3 Assume that condition H4 or H5 holds. Then for each t > 0
and x ∈ D\Σ, the normalized difference ε−(d−1)/2(uε(t, x)−u0(t, x)) converges
in law toward a Gaussian random variable with zero mean and the covariance
σ2 given by :

σ2(t, x) =
∫ t

0

∫ t

0

∫

Σ
G(t, s, x, y′)G(t, r, x, y′)¯̄c(s, r)dy′dsdr. (8)

3 Numerical simulations Tools

In this section, we define some tools and approaches used to perform the
numerical simulations presented in this article. First, an approach using the
problem linearity to compute the random solution uε is presented. Second, a
way to compute σ2 (see equation (8)) is presented. Finally, a classical distance
is explained in order to evaluate the convergence in law.

3.1 Linearity and randomness : distribution and moment computations

In order to perform numerical computations for validation of the previous re-
sults of convergence, we are interested in a method to compute efficiently mo-
ments and distribution of uε, for a fixed ε. Usual approaches are Monte-Carlo
methods which need to compute a large number of realization of the random
source term and the corresponding solutions. It leads to numerically solve a
large number of detailed problems (2), especially higher than the number of
sources. Considering the high computation cost of one resolution, we choose
an other approach, based on the linearity of the problem and the particular
form (3) of the source term Qε. Though this approach uses a Monte-Carlo
method to simulate the source randomness, it requires only a number of res-
olution equal to the number of sources, Nd−1.
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3.1.1 “Decoupling” the time behavior of sources from their geometry

Let us define, for i ∈ I, fi(ω, t) = 1
εγ f(Tiω, t), thus we can write (3) as

Qε(t, x) =
∑

i∈I

fi(ω, t)1lBε
i
(x).

Considering furthermore the family of problems indexed by i ∈ I :

∂tui + Aui = δ0(t)1lBε
i
(x) in [0; T ]×D (9a)

ui = 0 in {0} × D (9b)

(a(x)∇ui − b(x)ui) · n(x) = 0 in [0; T ]× (∂D \ Γd) (9c)

ui = 0 in [0; T ]× Γd (9d)

where δ0(t) is the Dirac function in the variable t. We can now define :

U(ω, t, x) =
∑

i∈I

f̃i(ω, ·) ∗ ũi(·, x)(t), (10)

where ∗, the convolution product, is defined for two mappings g, h : Rp → R
by :

g(·) ∗ h(·) = g ∗ h : Rp −→ R

x −→ ∫
Rp g(x)h(x− y)dy.

And where ũi(t, x) and f̃i(ω, t) are the extensions of ui(t, x) and fi(ω, t) re-
spectively on R×D and Ω× R by:

ũi(t, x) ≡




ui(t, x) if t ∈ [0; T ]

0 otherwise
; f̃i(ω, t) ≡





fi(ω, t) if t ∈ [0; T ]

0 otherwise
.

In order to simplify the notations, we will now assimilate ui and fi with their
extensions when necessary.

Proposition 1 U(ω, t, x) given by (9) and (10) is a solution of problem (2).

Thus, equation (10) provides a direct expression of the solution uε of detailed
problem (2) where the random terms fi(ω, t) explicitly appears. More precisely,
expression (10) gives a splitting between the part coming from the random
source behavior and the part coming from the convection-diffusion dynamic
and the source geometry.

3.1.2 Distribution of U(ω, t, x)

A numerical estimation of the distribution of U(ω, t, x) requires a sample of
U(ω, t, x). Considering that U is a solution of the problem (2), a direct ap-
proach to obtain this sample could consist in simulating a sample of the source
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term Qε and solving the problem (2) for each Qε sample element. A good sam-
ple of Qε must respect the variability of Qε. So, due to its particular form (3)
constituted by Nd−1 distinct sources, a good sample size is especially higher
than Nd−1, the number of sources.

By using expression (10) of U and a good sample of Qε, we compute the asso-
ciated sample of U(ω, t, x) by solving only Nd−1 partial differential equations
(the problem family (9)). With this approach, the Qε sample sizes effectively
computable are particularly higher than with the previous direct approach
since performing a time convolution are less expensive than solving the prob-
lem (2).

3.1.3 First order moments

With the expression of detailed problem’s solution given by equation (10), we
can compute the first moments of U .

Considering, for each t ∈ [0; T ], the stationarity of the “spatial” random pro-
cess fi(·, t), we have E[fi(·, t)] = E[fj(·, t)] for each i, j ∈ I. So, by denoting
Ef(t) = E[fi(·, t)], we can compute the first order moment of U(ω, t, x) for
each (t, x) ∈ [0; T ]×D :

E[U(·, t, x)] =
∑

i∈I

E[fi] ∗ ui(·, x)(t)

=
∑

i∈I

Ef ∗ ui(·, x)(t)

=Ef ∗∑

i∈I

ui(·, x)(t).

Second order moment can also be computed by introducing the tensorial prod-
uct ⊗, defined for two mappings g : Rp → R and h : Rq → R as :

g(·)⊗ h(·) = g ⊗ h : Rp × Rq −→ R

(x, y) −→ g(x)h(y).

Then, we can compute second order moment of U , for (t1, x1) and (t2, x2) ∈
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[0; T ]×D :

E[U(·, t1, x1)U(·, t2, x2)] =E


 ∑

i,j∈I

fi ∗ ui(·, x1)(t1)fj ∗ uj(·, x2)(t2)




=E


 ∑

i,j∈I

(fi ⊗ fj) ∗ (ui(·, x1)⊗ uj(·, x2)) (t1, t2)




=
∑

i,j∈I

E [fi ⊗ fj] ∗ (ui(·, x1)⊗ uj(·, x2))(t1, t2)

=
∑

i,j∈I

Cov(fi, fj) ∗ (ui(·, x1)⊗ uj(·, x2))(t1, t2)

+ E[U(·, t1, x1)]E[U(·, t2, x2)],

with

Cov(fi, fj)(t1, t2) ≡ E [fi(t1)fj(t2)]− E[fi(t1)]E[fj(t2)].

3.1.4 Expectation of ‖uε − u0‖2
L2(0,T ;L2(D))

Calculation of second order moments is useful for computation of the error
given in Theorem 2. Indeed, we can develop error expression (6) as

E
[
‖uε − u0‖2

L2(0,T ;L2(D))

]
= E

[
‖uε‖2

L2(0,T ;L2(D))

]

︸ ︷︷ ︸
=I1

− 2E < uε, u0 >L2(0,T ;L2(D))︸ ︷︷ ︸
=I2

+E
[
‖u0‖2

L2(0,T ;L2(D))

]

︸ ︷︷ ︸
=I3

,

where I3 is explicit since u0 is deterministic, I2 =< Euε, u0 >L2(0,T ;L2(D)) and

I1 =
∫ T

0

∫

D
E

[
uε(t, x)2

]
dxdt

=
∫ T

0

∫

D


E[uε(t, x)]2 +


 ∑

i,j∈I

Cov(fi, fj) ∗ (ui(·, x)⊗ uj(·, x))(t, t)





dxdt

=‖Euε‖2
L2(0,T ;L2(D))

+
∫ T

0

∑

i,j∈I

Cov(fi, fj) ∗
(∫

D
ui(·, x)⊗ uj(·, x)dx

)
(t, t)dt,

and finally :

E
[
‖uε − u0‖2

L2(0,T ;L2(D))

]
= ‖Euε − u0‖2

L2(0,T ;L2(D))

+
∫ T

0

∑

i,j∈I

Cov(fi, fj) ∗
(∫

D
ui(·, x)⊗ uj(·, x)dx

)
(t, t)dt. (11)
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3.2 Approximation of the Green function

Theorems 3 need to compute the quantity (see (8)) :

σ2(t, x) =
∫ t

0

∫ t

0

∫

Σ
G(t, s, x, y′)G(t, r, x, y′)¯̄c(s, r)dy′dsdr

where (t, x) is a point of R+ × (D \ Σ). This quantity require to know the
Green function, G(t, s, x, y), of problem (2). For a fixed (s, y) ∈ [0; T ] × D,
the Green function can be defined as the solution of the following problem,
parametrized by (s, y) :





∂tG(t, s, x, y) + AG(t, s, x, y) = δs(t)δy(x) for (t, x) ∈ [0; T ]×D,

G(t, s, x, y) = 0 for (t, x) ∈ {0} × D,

(a(x)∇G(t, s, x, y)− b(x)G(t, s, x, y)) · n = 0 for (t, x) ∈ [0; T ]× (∂D \ Γd),

G(t, s, x, y) = 0 for (t, x) ∈ [0; T ]× Γd

where δy(x) is the space Dirac function at y and δs(t) is the time Dirac function
at s.

No explicit formulation of this Green function is known, so it can only be
estimated by partial differential equation simulations. Estimating entirely the
Green function need to compute and to store a partial differential equation
solution for each (s, y) ∈ [0; T ]×D. This can be extremely costly but it appears
that an entire estimation is not necessary to compute σ2. First, given that
equation parameters A, a and b are constant in time, we have G(t, s, x, y) =
G(t−s, 0, x, y). Second, equation (8) need to know G(t, s, x, y) only for y ∈ Σ.
Finally, we are interested to know G0(x, t, y) = G(t, 0, x, y) for x, t ∈ [0, T ]
and y ∈ Σ. Thus σ2(t, x) can now be written as :

σ2(t, x) =
∫

Σ
(G0(x, ·, y′)⊗G0(x, ·, y′)) ∗ ¯̄c(·, ·)(t, t)dy′. (12)

For a given value of the parameter y, G0(x, t, y) is computed by solving one
partial differential equation. So, complying with the partial differential equa-
tion spatial discretization, G0 is entirely computed by solving a number of
partial differential equation equal to the number of discrete elements consti-
tuting Σ.
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3.3 Evaluation of the distance between distributions of random variables

In order to illustrate the Theorem 3 result, we are interested to define a quan-
tity characterizing the “distance” between the distribution of two random
variables. To do this, we propose to use the Kolmogorov-Smirnov distance
(see [3]).

Considering X, Y : Ω → Rk two random variables, we define the cumulative
distribution functions of X and Y , FX and FY : R→ [0; 1], by :

∀x ∈ R FX(x) = P(X−1(M(x))) and FY (x) = P(Y −1(M(x)))

where M(x) = {y ∈ R : y ≤ x}. Let us recall the definition of Kolmogorov-
Smirnov distance (see [3]) :

Definition 1 Let X,Y : Ω → R be two random variables, the Kolmogorov-
Smirnov distance between the distributions of X and Y is defined by :

DKS(FX , FY ) = ‖FX − FY ‖L∞(R).

In the following, this Kolmogorov-Smirnov distance will be used to compare
an empirical distribution to a theoretical distribution. In this case, FX(x)
is known and FY (x) is estimated by the empirical cumulative distribution
function F̂Y given by :

F̂Y (x) =
1

Ns

Ns∑

i=1

1lM(x)(y
i)

where x ∈ R and {yi}i=1..Ns is a sample of size Ns of the random vector Y .

4 Numerical results

In this section, our goal is to illustrate by numerical simulations the theoretical
results described in section 2. After a description of the test case, we present
the comparisons between uε and u0,the solutions of the detailed model (2)
and the homogenized model (4). More precisely, we first compute the error
defined in Theorem 2 for several ε (Figures 7). Then, we compute, for several
ε, a distance between the distributions of ε−(d−1)/2(uε(tj, xj)− u0(tj, xj)) and
a centered Gaussian distribution with variance (σ2) (Figure 8).

In the following, all the numerical computations of partial differential equa-
tions have been done with the Cast3m software (see [4]). This software devel-
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oped by the Commissariat à l’Energie Atomique (France) is devoted to numer-
ical resolution of classical mechanics equations. Numerous choice are possible
in term of discretization. All the following numerical simulations have been
performed with a Mixed Hybrid Finite Element Method for spatial discretiza-
tion, and an Implicit Scheme for the time discretization.

4.1 Setting test case

The geometry and the physical characteristics considered describe a synthetic
case and don’t represent a real waste repository. But these results may be
useful to better understand real waste depository.

4.1.1 Geometry and equation coefficients

For sake of simplicity, the geometry of the test case is two-dimensional, i.e. d =
2. The domain D is taken as a rectangular domain : D = [−750 m; 2250 m]×
[−400m; 400m], Γd is taken as the top of the domain : Γd = [−750m; 2250m]×
{400 m} and the length of the inside repository is L = 1500 m (see Figure 6).
The size of a source in local variables (see (1)) is given by s1 = 7 10−1,
s2 = 5 10−2 and γ = 1.

The test case is defined with :

- a spatially constant diffusion tensor, a(x) = 10−1m2/years for each x ∈ Rk ;
- a null convection, b(x) = 0 m/years for each x ∈ Rk ;
- a radioactive decay constant fixed to λ = 4.415 10−8 years−1 (characteristic

of a radioactive element such 129I).

4.1.2 Random source term

Let f : Ω× [0, T ] → R be the random function given by :

f(ω, t) =

∣∣∣∣∣∣∣∣∣∣∣

e−λtM1/t1(ω) if 0 < t− t0 ≤ t1(ω)

e−λtM2/t2(ω) if 0 < t− t0 − t1(ω) ≤ t0 + t1(ω) + t2(ω)

0 otherwise

where t1(ω) and t2(ω) are two independent random variables such that log(t1)
and log(t2) are normal random variables respectively with parameters (expec-
tation and standard deviation) of (mLt1 , σLt1) and (mLt2 , σLt2). The numerical
values of all those parameters are given in Table 1.
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mol.m−2 years log(years)

Parameter M1 M2 t0 mLt1 σLt1 mLt2 σLt2

Value 2 10−3 3.998 4 103 2.112 0.7196 13.80 0.7806
Table 1
Numerical values of parameters of f

By defining a such source term, the test case is in accordance with assumptions.
Teh expectation and variance of f are plotted on Figure 4 and Figure 5.

Fig. 4. Time evolution of E[f(·, t)]

Fig. 5. Time evolution of
√

Var[f(·, t)]
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4.1.3 Observation points

Numerical validation of Theorem 3 result requires to define some points of
R+ × (D \ Σ), where the field randomness is simultaneously observed. Since
the previous homogenization results concern especially the far field, in the
following we consider two physical points far from the sources. The first point,
xA = (750 m, 200 m), is taken far from the domain boundaries and the second
point, xB = (750 m, 350 m), near from the top of the domain (see Figure 6).
We also define the two times t1 = 105 years and t2 = 106 years. This two
times are chosen such that concentrations respectively at points xA and xB

are non negligible.

Fig. 6. Test case domain and observation points

4.2 Convergence to u0

Figure 7, the evolution of E‖uε − u0‖2
L2(0,T ;L2(D)) versus ε is plotted in solid

line. The behavior of the Theorem 2 upper bound is plotted in dotted line. Nu-
merical results are in accordance with result (6). More precisely, they suggest
a decrease rate in a power of ε greatest than 2.

4.3 Convergence in law

Let X denote the following random variable:

X = ε−(d−1)/2(uε(tj, xj)− u0(tj, xj)).
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Fig. 7. Evolution of E‖uε − u0‖2
L2(0,T ;L2(D)) vs. ε

Theorem 3 gives the convergence in law of X to a gaussian random variable
with zero mean and σ2 variance (see (8)). This convergence is illustrated by
the computation of the Kolmogorov-Smirnov distance.

The time-space observation point sets considered are constituted of the two
spatial points xA and xB and the two times t1 and t2 as defined in section 4.1.3.
More precisely, we consider the observation point sets specified in Table 2.
The empirical cumulative distribution F̂Y is estimated on a sample of uε. The
sample have a size equal to 2000, it is computed by simulating the random
source term f and by using Equation (10).

{(t1, xA)} {(t1, xB)} {(t2, xA)} {(t2, xB)}
Table 2
Time-space observation point sets considered for the computation of DKS(F̂Y , FN0)

4.3.1 Statitical noise

Due to a statistical noise, DKS(F̂Y , FN0) cannot be strictly null, even Y follows
also the standard gaussian normal law. It means that, DKS(F̂N0 , FN0) is a posi-
tive random variable which can be assimilated with a residual noise of DKS for
empirical distributions. This residual noise depends upon the sample size. To
include this effect in the following results, 100 samples of N0 of size 2000 have
been simulated . Expectation and variance of the residual noise DKS(F̂N0 , FN0)
have been estimated from these simulations and are mentioned in Table 3. In
the following figures plotting DKS(F̂Y , FN0), these noise characteristics will be
plotted to visualize the quality of our results.
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Expectation 1.43 10−2 Variance 0.82 10−2

Table 3
Characteristics of the residual noise DKS(F̂N0 , FN0) for a size sample equal to 2000

Figure 8, evolutions of DKS(F̂Y , FN0) versus ε are plotted,corresponding to
the Theorem 3 configuration. The convergence in law is observed for all ob-
servation points. Indeed, for ε small enough, values of DKS(F̂Y , FN0) decrease
with ε to become of residual noise order.

Fig. 8. Evolution of DKS vs. ε
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