Analysis on systems of diophantine equations

Simon Boyer

May 20, 2014

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$
- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
x=y
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
x=y \longrightarrow N(X) \sim X
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
\begin{array}{r}
x=y \longrightarrow N(X) \sim X \\
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{t}
\end{array}
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
\left.\begin{array}{rl}
x=y & \longrightarrow N(X)
\end{array}\right) X
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
\begin{aligned}
& x=y \longrightarrow N(X) \sim X \\
& x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{t} \longrightarrow N(X) \sim X^{s+t-1} \\
&\left\{\begin{array}{l}
x_{1}+x_{2}=y_{1}+y_{2} \\
x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right.
\end{aligned}
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
\begin{aligned}
x=y & \longrightarrow N(X) \\
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{t} & \longrightarrow N(X) \sim X^{s+t-1} \\
\left\{\begin{array}{l}
x_{1}+x_{2}=y_{1}+y_{2} \\
x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right. & \longrightarrow N(X) \sim 2!\cdot X^{2}
\end{aligned}
$$

- Integer solutions between 1 and X
- $N(X)$ denotes the number of such solutions
- Asymptotic behaviour of $N(X)$ when $X \rightarrow+\infty$

A few examples:

$$
\begin{aligned}
x=y & \longrightarrow N(X)
\end{aligned} \begin{aligned}
& x=X \\
& x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{t} \longrightarrow N(X) \sim X^{s+t-1} \\
&\left\{\begin{array}{l}
x_{1}+x_{2}=y_{1}+y_{2} \\
x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right. \longrightarrow N(X) \sim 2!\cdot X^{2}
\end{aligned}
$$

Not-risky-at-all observation
$N(X) \sim C \cdot X^{\text {something }}$

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{s} \\
x_{1}^{2}+\cdots+x_{s}^{2}=y_{1}^{2}+\cdots+y_{s}^{2} \\
\cdots \\
x_{1}^{k}+\cdots+x_{s}^{k}=y_{1}^{k}+\cdots+y_{s}^{k}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{s} \\
x_{1}^{2}+\cdots+x_{s}^{2}=y_{1}^{2}+\cdots+y_{s}^{2} \\
\cdots \\
x_{1}^{k}+\cdots+x_{s}^{k}=y_{1}^{k}+\cdots+y_{s}^{k}
\end{array}\right.
$$

If s is sufficiently large in terms of k, the number $N_{s, k}(X)$ of solutions satisfies $N_{s, k}(X)=C \cdot X^{2 s-\frac{k(k+1)}{2}}+$ error term, where $C \geq 0$ does not depend on X.

$$
N_{s, k}(X)=C \cdot X^{2 s-\frac{k(k+1)}{2}}+\text { error term }
$$

$$
N_{s, k}(X)=C \cdot X^{2 s-\frac{k(k+1)}{2}}+\text { error term }
$$

General rule
Number of solutions $=$ order of X at the power of (number of unknowns minus sum of degrees)

$$
N_{s, k}(X)=C \cdot X^{2 s-\frac{k(k+1)}{2}}+\text { error term }
$$

General rule

Number of solutions $=$ order of X at the power of (number of unknowns minus sum of degrees)

First issue: How large must be s in terms of k ?

$$
N_{s, k}(X)=C \cdot X^{2 s-\frac{k(k+1)}{2}}+\text { error term }
$$

General rule

Number of solutions $=$ order of X at the power of (number of unknowns minus sum of degrees)

First issue: How large must be s in terms of k ?
Second issue : What if $C=0$?

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{s} \\
x_{1}^{2}+\cdots+x_{s}^{2}=y_{1}^{2}+\cdots+y_{s}^{2} \\
\cdots \\
x_{1}^{k}+\cdots+x_{s}^{k}=y_{1}^{k}+\cdots+y_{s}^{k}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{s} \\
x_{1}^{2}+\cdots+x_{s}^{2}=y_{1}^{2}+\cdots+y_{s}^{2} \\
\cdots \\
x_{1}^{k}+\cdots+x_{s}^{k}=y_{1}^{k}+\cdots+y_{s}^{k}
\end{array}\right.
$$

Theorem (Wooley, 2014)
If $s \geq k^{2}-k+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{s}=y_{1}+\cdots+y_{s} \\
x_{1}^{2}+\cdots+x_{s}^{2}=y_{1}^{2}+\cdots+y_{s}^{2} \\
\cdots \\
x_{1}^{k}+\cdots+x_{s}^{k}=y_{1}^{k}+\cdots+y_{s}^{k}
\end{array}\right.
$$

Conjecture
If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture
If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture
If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture verified for $k=1,2$ and 3 , meaning that :

Conjecture

If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture verified for $k=1,2$ and 3 , meaning that :
$N_{s, 1}(X) \sim C \cdot X^{2 s-1}$ for every $s \geq 2$

Conjecture

If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture verified for $k=1,2$ and 3 , meaning that :
$N_{s, 1}(X) \sim C \cdot X^{2 s-1}$ for every $s \geq 2$
$N_{s, 2}(X) \sim C \cdot X^{2 s-3}$ for every $s \geq 4$

Conjecture

If $s \geq \frac{k(k+1)}{2}+1$, then there exists $C>0$ such that

$$
N_{s, k}(X) \sim C \cdot X^{2 s-\frac{k(k+1)}{2}}
$$

Conjecture verified for $k=1,2$ and 3 , meaning that :
$N_{s, 1}(X) \sim C \cdot X^{2 s-1}$ for every $s \geq 2$
$N_{s, 2}(X) \sim C \cdot X^{2 s-3}$ for every $s \geq 4$
$N_{s, 3}(X) \sim C \cdot X^{2 s-6}$ for every $s \geq 7$

Proof overview

Proof overview
We write $e(t)=\exp (2 i \pi t)$.

Proof overview
We write $e(t)=\exp (2 i \pi t)$.

$$
\int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

Proof overview
We write $e(t)=\exp (2 i \pi t)$.

$$
\int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

This integral is 1 if $\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right)$ is a solution of the j-th equation, and 0 otherwise.

Proof overview
We write $e(t)=\exp (2 i \pi t)$.

$$
\int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

This integral is 1 if $\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right)$ is a solution of the j-th equation, and 0 otherwise. So

$$
\prod_{j=1}^{k} \int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

is 1 if $\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right)$ is a solution of the system, and 0 otherwise.

We can count the number $N_{s, k}(X)$ of solutions:

We can count the number $N_{s, k}(X)$ of solutions:

$$
N_{s, k}(X)=\sum_{\substack{1 \leq x_{1}, \ldots, x_{s} \leq X \\ 1 \leq y_{1}, \ldots, s_{s} \leq x}} \prod_{j=1}^{k} \int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

We can count the number $N_{s, k}(X)$ of solutions:

$$
N_{s, k}(X)=\sum_{\substack{1 \leq x_{1}, \ldots, x_{s} \leq X \\ 1 \leq y_{1}, \ldots, y_{s} \leq X}} \prod_{j=1}^{k} \int_{0}^{1} e\left(\left(x_{1}^{j}+\cdots+x_{s}^{j}-y_{1}^{j}-\cdots-y_{s}^{j}\right) t\right) \mathrm{d} t
$$

A calculation shows that

$$
N_{s, k}(X)=\int_{[0,1]^{k}}\left|\sum_{1 \leq x \leq x} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)\right|^{2 s} \mathrm{~d} \alpha
$$

By writing $f(\boldsymbol{\alpha})=\sum_{1 \leq x \leq x} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)$, we have

$$
N_{s, k}(X)=\int_{[0,1]^{k}}|f|^{2 s}
$$

By writing $f(\boldsymbol{\alpha})=\sum_{1 \leq x \leq x} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)$, we have

$$
N_{s, k}(X)=\int_{[0,1]^{k}}|f|^{2 s}
$$

The underlying idea here is to divide $[0,1]^{k}$ into two parts \mathfrak{M} and \mathfrak{m}, called respectively major and minor arcs.

By writing $f(\boldsymbol{\alpha})=\sum_{1 \leq x \leq x} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)$, we have

$$
N_{s, k}(X)=\int_{[0,1]^{k}}|f|^{2 s}
$$

The underlying idea here is to divide $[0,1]^{k}$ into two parts \mathfrak{M} and \mathfrak{m}, called respectively major and minor arcs. Then

$$
\begin{aligned}
& \int_{\mathfrak{M}}|f|^{2 s} \sim C \cdot X^{2 s-\frac{k(k+1)}{2}} \\
& \int_{\mathfrak{m}}|f|^{2 s}=\text { error term }
\end{aligned}
$$

GENERALISATION

GENERALISATION

$$
\left\{\begin{array}{l}
a_{1,1} x_{1}^{d_{1}}+\cdots+a_{1, s} x_{s}^{d_{1}}=0 \\
\cdots \\
a_{k, 1} x_{1}^{d_{k}}+\cdots+a_{k, s} x_{s}^{d_{k}}=0
\end{array}\right.
$$

with $a_{i, j}$ nonzero integers and d_{i} positive and strictly increasing integers.

GENERALISATION

$$
\left\{\begin{array}{l}
a_{1,1} x_{1}^{d_{1}}+\cdots+a_{1, s} x_{s}^{d_{1}}=0 \\
\cdots \\
a_{k, 1} x_{1}^{d_{k}}+\cdots+a_{k, s} x_{s}^{d_{k}}=0
\end{array}\right.
$$

with $a_{i, j}$ nonzero integers and d_{i} positive and strictly increasing integers. What can we say ?

GENERALISATION

$$
\left\{\begin{array}{l}
a_{1,1} x_{1}^{d_{1}}+\cdots+a_{1, s} x_{s}^{d_{1}}=0 \\
\cdots \\
a_{k, 1} x_{1}^{d_{k}}+\cdots+a_{k, s} x_{s}^{d_{k}}=0
\end{array}\right.
$$

with $a_{i, j}$ nonzero integers and d_{i} positive and strictly increasing integers. What can we say ? It works:

GENERALISATION

$$
\left\{\begin{array}{l}
a_{1,1} x_{1}^{d_{1}}+\cdots+a_{1, s} x_{s}^{d_{1}}=0 \\
\cdots \\
a_{k, 1} x_{1}^{d_{k}}+\cdots+a_{k, s} x_{s}^{d_{k}}=0
\end{array}\right.
$$

with $a_{i, j}$ nonzero integers and d_{i} positive and strictly increasing integers. What can we say ? It works:
Theorem
If $s \geq 2 d_{k}^{2}-2 d_{k}+1$ and if there exists one nonsingular real solution and one nonsingular p-adic solution (for every p), then there exists $C>0$ such that

$$
\mathcal{J}_{s, k}(X) \sim C \cdot X^{s-\left(d_{1}+\cdots+d_{k}\right)}
$$

First issue

First issue We should be able to find a better condition on s when some degrees are missing.

First issue We should be able to find a better condition on s when some degrees are missing.

Second issue

First issue We should be able to find a better condition on s when some degrees are missing.

Second issue It becomes incredibly difficult if we allow too many $a_{i, j}$ to be zero.

Thanks for your attention

