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UE-PHOP045E. Ingénieur 4. Examen d’analyse

9 mai 2017
La durée recommandée pour cette partie du sujet est 1h30. Les documents et la calculatrice sont autorisés.
La justification des réponses et un soin particulier de la présentation seront pris en compte lors de la
notation.

Exercice 1. Posons, pour n ∈ N,

an =
(n!)2

(2n)!
.

1. Calculer an+1

an
et ensuite limn→+∞

an+1

an
.

2. Quel est le rayon de convergence de la série entière
∑

anx
n ?

3. En déduire le rayon de convergence de la série entière
∑

anx
2n.

4. On pose f(x) =
∑+∞

n=0 anx
n et g(x) =

∑+∞
n=0 anx

2n. Calculer les quatre valeurs f ′(0), f ′′(0), g′(0)
et g′′(0).

Exercice 2.

1. Expliquer pourquoi la série
∑ 1

k3/2
converge.

2. Calculer, pour a > 0, l’intégrale impropre
∫ +∞

a

1

x3/2
dx.

3. Posons

S =

+∞∑
k=1

1

k3/2
et Sn =

n∑
k=1

1

k3/2
.

À l’aide d’une comparaison série-intégrale, préciser le plus petit entier n tel que

0 ≤ S − Sn ≤ 10−2.

Exercice 3. Soit
f(x) =

1

1 + x2
,

où x ∈ R. On considère les deux séries∑
f(x− n) et

∑
f(nx).

1. Laquelle des deux séries est simplement convergente dans R ?

2. Laquelle est normalement convergente sur l’intervalle [1,+∞[ ?

3. Laquelle est normalement convergente sur l’intervalle [0, 1] ?

Justifier vos réponses.

1



Corrigé

Exercice 1
1. an+1

an
= (n+1)2

(2n+2)(2n+1) →
1
4 .

2. Le rayon de convergence R est la réciproque de la limite précédente : R = 4.

3. Posons y = x2. On sait grâce à la question précédente que la série entière
∑

any
n converge pour

−4 < R < 4 et diverge pour |y| > 4. Donc la série entière
∑

anx
2n converge pour −2 < x < 2 et

diverge pour |x| > 2. Le rayon de convergence de
∑

anx
2n est donc R′ = 2.

4. Pour f(x) =
∑∞

n=0 anx
n on a les formules f ′(0) = a1 et f ′′(2) = 2! a2. Donc f ′(0) = 1

2 et
f ′′(0) = 1

3 . Ensuite g′(0) = 0 (puisque, dans la série entière de g, le coefficient de x1 est nul) et
g′′(0) = 2! a1 = 1.

Exercice 2
1. C’est une série de Riemann d’exposant 3/2 > 1.

2.
∫ +∞
a x−3/2 dx = limb→+∞[−2x−1/2]ba = 2√

a
− limb→+∞

2√
b
= 2√

a
.

3. La fonction f(x) = x−3/2 est continue, positive et décroissante vers 0. Par comparaison entre série
et intégrale on sait que le reste d’ordre n de la série

∑
k−3/2, qui est donné par

Rn =
∑+∞

k=n+1 k
−3/2, vérifie∫ +∞

n+1
x−3/2 dx ≤ Rn ≤

∫ +∞

n
x−3/2 dx.

Mais Rn = S − Sn, ainsi
2√
n+ 1

< S − Sn <
2√
n
.

Le plus petit entier n vérifiant 0 ≤ S − Sn ≤ 10−2 est donc n = 40000.

Exercice 3
1. Fixons x ∈ R : la série

∑ 1
1+(x−n)2 converge puisque le terme général est ≥ 0 et vérifie

1
1+(x−n)2 ∼

1
n2 (pour n→ +∞) qui est le terme général d’une série de Riemann convergente. Donc

la première série converge simplement dans R. La seconde non. En effet, pour x = 0 on obtient
∑

1
qui est une série divergente.

2. Considérons n ≥ 1. On a supx≥1
1

1+(x−n)2 = 1 (atteint pour x = n) et
∑

1 diverge. Donc la

première série n’est pas normalement convergente sur [1,+∞[. Ensuite supx≥1
1

1+(nx)2
≤ 1

1+n2 ;
ceci est le terme général d’une śerie convergente (par comparaison avec une série de Riemann).
Donc la seconde série est normalement convergente sur l’intervalle [1,+∞[.

3. On a supx∈[0,1]
1

1+(x−n)2 ≤
1

1+(n−1)2 . De plus, 1
1+(n−1)2 ∼

1
n2 (pour n→ +∞) qui est le terme

général d’une série de Riemann convergente. Mais alors la première série est normalement
convergente dans [0, 1]. La seconde série n’est pas normalement convergente sur [0, 1] puisqu’elle
n’est même pas simplement convergente dans cet intervalle.
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