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Abstract

The low-frequency L1 assumption has been extensively applied to the large-time asymptotics of

solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations

since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In

this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations

in the critical Lp framework. Precisely, it is proved that the Besov space Ḃσ12,∞-boundedness condition

(with d
2
− 2d

p
≤ σ1 <

d
2
−1) of the low-frequency part of initial perturbation is not only sufficient, but

also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that

the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of the

initial perturbation belongs to a nontrivial subset of Ḃσ12,∞. To the best of our knowledge, our work

is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous

fluids.
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1 Introduction and main results

In 1933, J. Leray in his pioneering work [32] introduced the concept of weak (turbulent) solutions

to the incompressible Navier-Stokes equations and established the global in time existence of solutions

with energy bounded initial data. Also, he addressed the question whether or not the energy of weak

solutions uniformly decays in L2(R3) as the time t goes to infinity. Schonbek [41–43] introduced the

Fourier splitting method and deduced uniform decay for solutions in the L2-energy space, provided the

L1-assumption on the initial data was additionally imposed. Wiegner [49] addressed the optimal decay by

a careful analysis of the relationship between the heat kernel and incompressible Navier-Stokes equations.

See for instance the recent survey by the first author and Schonbek [4].

In this paper, we are concerned with the following compressible Navier-Stokes equations ∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) +∇P (ρ) = Au,
(1.1)

which govern the motion of a general barotropic compressible fluid in whole space Rd (d ≥ 2). Here

u = u(t, x) ∈ Rd, with (t, x) ∈ R+×Rd and ρ = ρ(t, x) ∈ R+ denote the velocity and density of the fluid,

respectively. The pressure function P (ρ) depends only upon the density and is assumed to be suitably

smooth. The Lamé operator A takes the form

Au , µ∆u+ (µ+ λ)∇divu,

where the shear viscosity µ and the bulk viscosity λ are assumed to be constants for simplicity and to

satisfy

µ > 0, ν , 2µ+ λ > 0.

System (1.1) is supplemented with the initial data

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ Rd. (1.2)

We investigate the solution (ρ, u) to the Cauchy problem (1.1)-(1.2) fulfilling the constant far-field be-

havior

(ρ, u)→ (ρ̄, 0), |x| → ∞,
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where ρ̄ > 0 is a given constant.

The local existence and uniqueness of smooth solutions for System (1.1) were proved by Serrin [45] and

Nash [37]. The local existence of strong solutions with Sobolev regularity was obtained by Solonnikov

[47], Valli [48] and Fiszdon-Zajaczkowski [19]. The global smooth solutions to the Cauchy problem

of compressible and heat-conductive Navier-Stokes equations were first established by Matsumura and

Nishida [35, 36], in the case that initial data are small perturbations of a linearly stable constant state

in three dimensions. With the additional L1(R3) assumption of initial data, they deduced the following

decay rate of smooth solutions:

‖(ρ− ρ̄, u)(t)‖L2(R3) . 〈t〉−
3
4 with 〈t〉 ,

√
1 + t2, (1.3)

which coincides with that of heat kernel. Furthermore, Kawashima, Matsumura and Nishida [28] proved

that the solutions to the Boltzmann equation and the incompressible Navier-Stokes equations for small

initial data were asymptotically equivalent to that of the compressible and heat-conductive Navier-Stokes

equations at the rate with 〈t〉−5/4, as t → ∞. Ponce [40] obtained decay estimates in the general Lr

norm:

‖∇k(ρ− ρ̄, u)(t)‖Lr(Rd) . 〈t〉−
d
2 (1−

1
r )−

k
2 , 2 ≤ r ≤ ∞, 0 ≤ k ≤ 2, d = 2, 3. (1.4)

Later, Matsumura-Nishida’s results were extended to more physical situations, where the fluid domain is

not the whole Rd. For example, the exterior domain was investigated by Kobayashi [29] and Kobayashi-

Shibata [30], the half-space by Kagei & Kobayashi [26, 27]. For more general data, Xin [50] found that

any smooth solution to the Cauchy problem of the full compressible Navier-Stokes system without heat

conduction (including the baratropic case) would blow up in finite time if the initial density contains

vacuum. Huang, Li and Xin [22] constructed the global existence of classical solutions that have large

highly oscillations and can contain vacuum states. For the theory of weak solutions, a breakthrough is

due to P.-L. Lions [34], who obtained the global existence of weak solutions with finite energy initial

data. Later further developments were achieved by Feireisl, Novotny and Petzeltová [18] and Jiang &

Zhang [25] and since then this remained a very active research field.

As shown by earlier works [35,36,40–43,49], the additional L1 assumption for the data usually plays

a key role in the derivation of large-time decay rates for the solutions. Notice that the following Sobolev

embeddings

L1(Rd) ↪→ Ḃ0
1,∞ ↪→ Ḃ

− d2
2,∞. (1.5)

Although the latter space does not embed into Ḃ0
2,2, any function belonging to this space and concentrated

in low frequencies does also belong to Ḃ0
2,2 ∼ L2(Rd). This actually indicates the L1 regularity is stronger

than the L2 regularity at low frequencies. Inspired by this simple observation, it will be natural to

investigate the decay properties of the solutions, not under the stringent L1-condition, but rather under
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a more general low-frequency assumption for viscous compressible fluids in the Besov framework with

critical (minimal) regularity, in which the uniqueness of solutions holds.

As for many evolutionary equations coming from mathematical physics, scaling invariance plays a

fundamental role and suitable critical quantities (scaling invariance norms) may control the possible blow-

up of solutions. This approach is now classic. Recall the global existence results for the incompressible

Navier-Stokes equations which go back to the pioneering work [20] by Fujita-Kato (see also results by

Kozono-Yamazaki [31], Cannone [6], Cannone-Planchon [7], Chemin [9] for a small sample of the vast

literature). Observe that the compressible Navier-Stokes system (1.1) is invariant by the transform

ρ(x, t) ρ(lx, l2t), u(x, t) lu(lx, l2t), l > 0,

up to a change of the pressure term P into l2P . Danchin [12] solved (1.1)-(1.2) globally in the critical

homogeneous Besov space (Ḃ
d
2−1
2,1 ∩ Ḃ

d
2
2,1) × Ḃ

d
2−1
2,1 . Subsequently, the result of [12] has been extended

to the general Besov spaces modelled on Lp-norms by Charve-Danchin [8] and Chen-Miao-Zhang [11]

independently. Inspired by Hoff’s viscous effective flux in [23], Haspot [21] developed the Lp energy

argument and achieved essentially the same result. The readers are also referred to [13, 14] on the local

well-posedness subject to general initial data with critical regularity.

For convenience of the readers, we would like to recall a result about the global existence and unique-

ness of solutions to the Cauchy problem (1.1)-(1.2) in the critical Lp framework. Denote by Xp and Xp
the functional space and the corresponding energy norm:

Xp ,
{

(a, u)| (a, u)` ∈ Cb(R+; Ḃ
d
2−1
2,1 ) ∩ L1(R+; Ḃ

d
2+1
2,1 ),

ah ∈ Cb(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p

p,1), uh ∈ Cb(R+; Ḃ
d
p−1
p,1 ) ∩ L1(R+; Ḃ

d
p+1

p,1 )
}

and

Xp , ‖(a, u)‖`
L̃∞t (Ḃ

d
2
−1

2,1 )
+ ‖a‖h

L̃∞t (Ḃ
d
p
p,1)

+ ‖u‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

+ ‖(a, u)‖`
L1
t (Ḃ

d
2
+1

2,1 )
+ ‖a‖h

L1
t (Ḃ

d
p
p,1)

+ ‖u‖h
L1
t (Ḃ

d
p
+1

p,1 )

. (1.6)

The definition of Besov spaces and the `/h notation of low/high-frequency are referred to Section 2

below. Moreover, L̃∞t (Ḃsp,q) = L̃∞(R+, Ḃ
s
p,q) denotes a class of mixed space-time spaces, which are

first introduced by Chemin and Lerner [10] and can be regarded as the refinement of the usual spaces

L∞t (Ḃsp,q). Some assumptions are labeled as follows.

(H1): P ′(ρ̄) > 0;

(H2): a0 , ρ0 − ρ̄ ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p−1
p,1 , besides, (a`0, u

`
0) ∈ Ḃ

d
2−1
2,1 such that

Xp,0 , ‖(a0, u0)‖`
Ḃ
d
2
−1

2,1

+ ‖a0‖h
Ḃ
d
p
p,1

+ ‖u0‖h
Ḃ
d
p
−1

p,1

� 1. (1.7)
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The global existence and uniqueness of solutions to (1.1)-(1.2) in the critical Lp-framework are stated as

follows. See [8, 11,12,21].

Theorem 1.1. Let d ≥ 2 and p satisfy

2 ≤ p ≤ min(4, d∗) and, additionally, p 6= 4 if d = 2, (1.8)

where d∗ , 2d/(d−2). If assumptions (H1)-(H2) are fulfilled, then the Cauchy problem (1.1)-(1.2) admits

a unique global-in-time solution (ρ, u) with a , ρ− ρ̄ and (a, u) in the space Xp. Furthermore, there exists

some constant C = C(p, d, λ, µ, P, ρ̄) > 0 such that Xp ≤ CXp,0.

A natural problem is how to exhibit the large-time asymptotic behavior of the solution constructed

in Theorem 1.1. Although providing an accurate long-time asymptotics picture is still open, there are

a number of works concerning time-decay rates of Lr-type as in (1.3)-(1.4). Okita [39] established the

decay estimates of solutions to (1.1)-(1.2) in the L2 critical framework, by using a slight modification

of the method in [12]. The low-frequency assumption with respect to Ḃ0
1,∞ was additionally imposed.

However, the 2D case could not be covered. In the survey [15], Danchin proposed another description

of the time decay, which allows to handle any space dimensions d ≥ 2. Subsequently, Danchin and

the third author [17] further established the decay rates in the Lp critical spaces under the additional

condition that the low-frequency part of initial perturbation is suitably small in some Besov space Ḃσ0
2,∞

(σ0 , d
2−

2d
p ) which is exactly linked with the critical embedding Lp/2 ↪→ Ḃσ0

2,∞(2 ≤ p ≤ min{4, d∗}). The

third author [52] claimed a general low-frequency assumption in terms of Ḃσ1
2,∞ for the upper bound of

decay estimates, where the regularity exponent fulfills σ0 ≤ σ1 < d
2−1 (implies that ‖·‖`

Ḃ
d
2
−1

2,1

. ‖·‖`
Ḃ
σ1
2,∞

).

In other words, the optimal decay rates of strong solutions in Theorem 1.1 can be obtained, provided that

the low-frequency assumption is reasonably strengthened. These results all depend on the time-weighted

energy approach in the Fourier semi-group framework and the smallness of low frequencies of initial data

is usually needed. Later, Xin and the third author [51] developed a Lyapunov-type energy method in the

Lp critical spaces to obtain the time-decay rates. Their approach still requires the Ḃσ1
2,∞ condition on the

low-frequency part of initial data but not necessarily small.

To the best of our knowledge, whether the low-frequency assumption Ḃσ1
2,∞ is sharp or not for the large-

time behavior of strong solutions to the compressible Navier-Stokes equations in critical spaces remains an

open question. In the present paper, we shall give a positive answer to that issue and provide a necessary

and sufficient condition for the sharp time-decay rates of solutions to the Cauchy problem (1.1)-(1.2).

More precisely, we establish that both upper and lower bounds of time-decay estimates of solutions to

the Cauchy problem for (1.1)-(1.2) in the Lp critical spaces hold if and only if the low-frequency part of

initial data is bounded in a non-trivial subset of Ḃσ1
2,∞.

Without loss of generality, we set ρ̄ = 1. We denote by a = ρ−1 and reformulate the Cauchy problem
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(1.1)-(1.2) as 
∂ta+ divu = −div (au),

∂tu+∇a−Au = g,

(a, u)(x, 0) = (a0, u0)(x)

(1.9)

with the nonlinear term

g , −u · ∇u− k(a)∇a− I(a)Au, (1.10)

where k(a) , P ′(1+a)
1+a − 1 and I(a) , a

a+1 .

To study the decay characterization of solutions to (1.9), we introduce a subset of the Besov space

Ḃσ1
2,∞(σ1 ∈ R):

Ḃσ1
2,∞ ,

{
f ∈ Ḃσ1

2,∞ | ∃ two constants c0,M > 0 and a sequence of integers {jk}k=1,2,...

such that lim
k→∞

jk = −∞, |jk − jk+1| ≤M and 2σ1jk‖∆̇jkf‖L2 ≥ c0.
}
.

(1.11)

Note that Ḃσ1
2,∞ (with σ1 ∈ R) has a nontrivial intersection with Ḃσ2,1 when σ > σ1, which will be

characterized in Section 2.

Our main result is stated as follows.

Theorem 1.2. Let (a, u) be the global solution to the Cauchy problem (1.9) constructed in Theorem 1.1.

Let the real numbers σ0, σ1 satisfy σ0 , d
2 −

2d
p and σ0 ≤ σ1 < d

2 − 1. Then

• (Upper bounds): For any time t0 > 0, the solution (a, u) fulfills

‖(a, u)`(t)‖Ḃσ12,∞
≤ C, t > 0, (1.12)

‖(a, u)(t)‖Ḃσ2,p ≤ C〈t〉
− 1

2 (σ−σ1), t > t0, σ1 < σ ≤ d

2
, (1.13)

if and only if (a0, u0)` ∈ Ḃσ1
2,∞.

• (Upper and lower bounds): There exists a time t1 > 0 such that the solution (a, u) fulfills (1.13)

and

c〈t〉− 1
2 (σ−σ1) ≤ ‖(a, u)(t)‖Ḃσ2,p ≤ C〈t〉

− 1
2 (σ−σ1), t > t1, σ1 < σ ≤ d

2
, (1.14)

if and only if (a0, u0)` ∈ Ḃσ1
2,∞.

Here the hybrid norm ‖(a, u)(·, t)‖Ḃσ2,p is defined by

‖(a, u)(·, t)‖Ḃσ2,p , ‖(a, u)`(·, t)‖Ḃσ2,1 + ‖(a, u)(·, t)‖h
Ḃ
d
p
p,1

.
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The proof of Theorem 1.2 is motivated by Wiegner’s argument regarding the energy decay of Leray

solutions to the incompressible Navier-Stokes equations in the seminal work [49] and inverse Wiegner’s

argument in [46]. The inequality (1.12) can be interpreted as the nonlinear evolution of initial regularity.

In the “if” part, it plays a key role in the derivation of the two-sided time-decay estimates (1.13)-(1.14).

In fact, it is also indispensable in the “only if” part, see Proposition 5.1. As a direct consequence, one

can also get the sharp characterization of two-sided decay estimates in the L2 framework.

Corollary 1.1. There exists a time t1 > 0 such that for σ1 < σ ≤ d
2 , the global-in-time solution (a, u)

in Theorem 1.1 fulfills (1.12) and

c〈t〉− 1
2 (σ−σ1) ≤ ‖Λσ(a, u)(t)‖Ḃ0

2,1
≤ C〈t〉− 1

2 (σ−σ1), t > t1,

if and only if (a0, u0)` ∈ Ḃσ1
2,∞ with −d2 ≤ σ1 <

d
2 − 1.

We comment on a few points of immediate relevance:

• The low-frequency assumption in terms of Ḃσ1
2,∞(σ0 ≤ σ1 < d

2 − 1) is firstly introduced to give

the sharp decay characterization for the compressible Navier-Stokes system (1.1) in critical spaces.

To our knowledge, “only if” part is completely new, and this question has not been addressed for

compressible fluid flows in the existing literature. In addition, Theorem 1.2 actually indicates that

the upper bounds of algebraic time-decay rates obtained in [17,51,52] are optimal.

• It follows from Proposition 3.2 (see Section 2) that the low-frequency assumption (a0, u0)` ∈ Ḃσ1
2,∞

is equivalent to that
Pσ1

(a0, u0)+ , lim sup
r→0+

r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ <∞,

Pσ1
(a0, u0)− , lim inf

r→0+
r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ > 0

(1.15)

for any σ > σ1, which is closely linked with the theory of decay characters for incompressible

Navier-Stokes equations and related dissipative equations (see for example, [2, 3, 38]).

• Corollary 1.1 recovers the classical L2 decay rates of solutions if choosing σ1 = −d2 . The initial data

(a0, u0)` ∈ Ḃσ1
2,∞ are sharp in comparison with previous works [26–28, 33, 36, 40], which is not only

sufficient, but also necessary to achieve two-sided limits of decay estimates. For instance, Kagei

and Kobayashi [26, 27] investigated the special case that initial data satisfy that (a0, u0) ∈ L1(R3)

and â0(0) =
∫
R3 a0(0)dx 6= 0. Indeed, by the continuity of â0(ξ) near ξ = 0, there exists a small

constant r1 > 0 such that for 0 < r ≤ r1, |â0(ξ)| > 0 for |ξ| ≤ r. Thus, it is not difficult to deduce

that (σ1 = − 3
2 , σ = 0 and d = 3)

r−3
∫
{|ξ|≤r}

(|â0(ξ)|2 + |û0(ξ)|2)dξ ≥ 4

3
π inf
|ξ|≤r

|â0(ξ)|2 > 0, 0 < r ≤ r1
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and

r−3
∫
{|ξ|≤r}

(|â0(ξ)|2 + |û0(ξ)|2)dξ . ‖(a0, u0)‖2
Ḃ
− 3

2
2,∞

. ‖(a0, u0)‖2L1 , r > 0.

Hence, it follows from Proposition 3.2 that (a0, u0)` ∈ Ḃ−
3
2

2,∞. Li and Zhang [33] studied some

special initial data in Ḃ0
1,∞ satisfying |â0(ξ)| & 1 and |û0(ξ)| = 0 for |ξ| � 1, which also implies

that (a0, u0)` ∈ Ḃ−
3
2

2,∞ due to (1.5).

• We can construct the initial function (a0, u0) fulfilling (1.7) and (a0, u0)` ∈ Ḃσ1
2,∞, for example,

a0(x) = εF−1
(
|ξ|σ1− d2 φ(

ξ

ε
)
)

(x), u0(x) = F−1
(
F
(

sin(
x · ω1

ε
)ω2

)
(1− φ(

ξ

ε
))
)

(x), (1.16)

where ε > 0 is a suitably small constant, φ(ξ) is a smooth cut-off function such that φ(ξ) = 0 for

|ξ| ≥ 1, and ω1, ω2 stand for any unit vectors of Rd. Clearly, the initial data u0 presented by (1.16)

is large highly oscillating if p > d in physical dimensions d = 2, 3. See [8, 11] for more details.

• Last but not least, we would like to mention that the sharp decay characterization in critical spaces

is of independent interest, which gives a new attempt in the Fourier semi-group framework. Indeed,

our approach is to develop the theory of decay characters for linear compressible Navier-Stokes

equations with respect to Ḃσ1
2,∞. On the other hand, Inspired by Hoff-Zumbrun’s spectral analysis

( [24]), Wiegner’s argument and inverse Wiegner’s argument (bounding the discrepancy between

the nonlinear solution and the linear solution) are first employed in the critical framework, which

allow us to remove the smallness of low frequencies of initial data in contrast to prior works [17,52].

The suitable modification of approach is likely to be effective for other incompressible/compressible

fluid equations.

In what follows, let us introduce the theory of decay characters, first developed for a large class of

dissipative system  ∂tU = LU, x ∈ Rd, t > 0,

U(x, 0) = U0(x),
(1.17)

where L is a pseudo-differential operator with symbol

M(ξ) , P (ξ)−1D(ξ)P (ξ), a.e. ξ ∈ Rd.

D(ξ) and P (ξ) are, respectively, diagonal and orthogonal matrices of order n, with D(ξ)ij = −ci|ξ|2αδij
and ci ≥ c > 0 for all i = 1, ..., n and α > 0. P (ξ)i,j are homogeneous smooth functions outside ξ = 0.

Basic examples include the heat equation (in this case L = ∆ with P (ξ) = In and D(ξ) = −|ξ|2In) or

the fractional diffusion equation (P (ξ) = In and D(ξ) = −|ξ|2αIn). Bjorland-Schonbek [2] and Niche-

Schonbek [38] proved that any solution has a two-sided time decay estimate (1 + t)−σ/2α . ‖etLU0‖L2 .
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(1 + t)−σ/2α if the initial data satisfy

0 < lim
r→0+

r−2σ
∫
|ξ|≤r

|Û0(ξ)|2dξ <∞ (1.18)

for σ > 0. The condition (1.18) is closely linked with the decay character (see [2, 38]), however, it

is somehow too stringent as such a limit might not exist. In order to overcome this restriction, the

first author [3] improved the original definition of decay character and proved that a slight modification

of (1.18) is not only sufficient but also necessary condition for the two-sided decay estimates of solutions

to (1.17). More precisely,
lim inf
r→0+

r−2σ
∫
|ξ|≤r

|Û0(ξ)|2dξ > 0,

lim sup
r→0+

r−2σ
∫
|ξ|≤r

|Û0(ξ)|2dξ <∞
⇐⇒ U0 ∈ Ḃ−σ2,∞ ⇐⇒ (1 + t)−

σ
2α . ‖etLU0‖L2 . (1 + t)−

σ
2α . (1.19)

He also discussed the application to the decay of Leray-Hopf’s weak solutions to the incompresible Navier-

Stokes equations.

Generally speaking, those parabolic arguments in [2,3,38] cannot be directly applied to the compress-

ible Navier-Stokes system (1.9) due to its hyperbolic nature. We need to investigate the precise pointwise

behavior of solutions to the linear hyperbolic-parabolic mixed system
∂ta+ divu = 0,

∂tu−Au+∇a = 0,

(a, u)|t=0 = (a0, u0)(x) , U0(x).

(1.20)

Let {G(t)}t≥0 be the semi-group associated with (1.20). Observe that there is the following key pointwise

estimate at low frequencies (|ξ| � 1):

e−max{ ν2 ,µ}|ξ|
2t(|â0(ξ)|+ |û0(ξ)|) . |Ĝ(t)U0(ξ)| . e−min{ ν2 ,µ}|ξ|

2t(|â0(ξ)|+ |û0(ξ)|),

which enables us to obtain sufficient and necessary conditions for sharp decay estimates of solutions to

(1.20) under the the low-frequency assumption in terms of Ḃσ1
2,∞ or Ḃσ1

2,∞ (see Proposition 3.1). Fur-

thermore, we also perform Schonbek’s Fourier splitting methods (see [44]) and establish the equivalence

between the low-frequency assumption Ḃσ1
2,∞ and the theory of decay characters (see Proposition 3.2).

To establish the optimal time-decay bounds of the solution to the nonlinear problem (1.9), we will

adapt to the compressible Navier-Stokes equations (1.9) well known Wiegner’s argument from incom-

pressible flows (see [49]): namely we compute faster time-decay rates of the nonlinear terms compared

with that of the solution to the linear problem in Lp-type Besov spaces (see Proposition 4.2). Here, the

major difficulty lies in nonconservative terms, for example, u · ∇u and I(a)Au, which cannot provide

faster time-decay rates. To overcome the obstacle, as in [24], we consider the following Navier-Stokes
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system in terms of the momentum formulation: ∂ta+ divm = 0,

∂tm−Am+∇a = −divF,
(1.21)

where the nonlinear terms are given by

F , (1− I(a))m⊗m+H(a)Id + µ∇(I(a)m) + (µ+ λ)div (I(a)m) (1.22)

with H(a) , P (1 + a) − P (1) − P ′(1)a. Let (aL,mL) be the corresponding solution to the linearized

problem of (1.21). Precisely, one has
∂taL + divmL = 0,

∂tmL −AmL +∇aL = 0,

(aL,mL)(x, 0) = (a0,m0)(x) , (a0, ρ0u0)(x).

(1.23)

It should be noted that due to the smallness condition (1.7) and product laws for hybrid norms, (a0, u0)` ∈

Ḃσ1
2,∞ (resp. Ḃσ1

2,∞) if and only if (a0,m0)` ∈ Ḃσ1
2,∞ (resp. Ḃσ1

2,∞). Therefore, our key ingredient is to perform

time-weighted estimates on the difference (ã, m̃) , (a− aL,m−mL) satisfying the difference system
∂tã+ div m̃ = 0,

∂tm̃−Am̃+∇ã = −divF,

(ã, m̃)(x, 0) = (0, 0).

(1.24)

Indeed, by Duhamel’s principle, the structure of conservation law in (1.9) allows to the improvement

of time-decay rates of (ã, m̃) up to 1
2 -order in low frequencies. In order to remove the smallness of

‖(a0, u0)`‖Ḃσ12,∞
as in [17, 52], we take advantage of the decay of linearized system and decompose the

nonlinear terms in F as the sum of the linear part and the error part, for example,

m⊗m = mL ⊗mL + m̃⊗mL +m⊗ m̃.

Note that the time-decay rates of mL ⊗ mL (quadratic) are fast and are given by linear analysis, and

m̃⊗mL+m⊗m̃ can be bounded by the faster decay estimates of the difference with a small quantity from

(1.7). On the other hand, when we handle the high-frequency part of (ã, m̃), one has to overcome the

difficulty coming from the higher order term A(I(a)m) in (1.24)2 as it may cause a loss of one derivative

on a. For that end, we have to resort to the weighted Lp-energy estimate of (a, u), which, together

with the product law on m = u + au, implies the desired decay estimate of m. These new observations

enable us to establish refined time-weighted estimates for (ã, m̃) in the Fourier semi-group framework.

Furthermore, by combing the decay of (aL,mL) with the faster decay of (ã, m̃), one can establish the

upper and lower bounds of (a,m) (1.14), which depends mainly on non Lp standard product laws and

the elaborate use of Sobolev embeddings.
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Finally, we prove the necessary part of the low-frequency assumption in terms of Ḃσ1
2,∞ on the upper

and lower bounds for decay rates. For that purpose, we develop inverse Wiegner’s argument from incom-

pressible flows (see Skalák [46]) to the compressible Navier-Stokes equations (1.9) in the framework of

Lp-type Besov spaces. It can be shown that the solution (aL,mL) to (1.23) has the same decay rates as

the global-in-time solution (a, u) constructed in Theorem 1.1.

The rest of the paper unfolds as follows. In Section 2, we briefly recall the Littlewood-Paley de-

composition, Besov spaces and Chemin-Lerner spaces. Section 3 is devoted to the sharp time-decay

characterization for the linear compressible Navier-Stokes equations. In Section 4, we establish Wiegn-

er’s argument for nonlinear compressible Navier-Stokes equations and deduce the two-sided bounds for

decay rates. In Section 5, we develop the inverse Wiegner’s argument and justify the implication of

low-frequency assumptions. Appendix 6 collects some useful lemmas for non standard product laws and

composition of functions that will be used throughout the text.

Notations. For simplicity, C denotes a generic positive constant that may change from line to line.

A . B (A & B) means that both A ≤ CB (A ≥ CB), while A ∼ B means that both A . B and

A & B. For Banach space X, p ∈ [1,∞] and T > 0, the notation Lp(0, T ;X) or LpT (X) designates

the set of measurable functions f : [0, T ] → X with t 7→ ‖f(t)‖X in Lp(0, T ), endowed with the norm

‖ · ‖LpT (X) , ‖‖ · ‖X‖Lp(0,T ). Let F(f) = f̂ and F−1(f) = f̆ be the Fourier transform of f and its inverse,

and Λσf , F−1
(
|ξ|σF(f)

)
(σ ∈ R). In addition, we write 〈t〉 =

√
1 + t2, and for any s > 0, s− means

that s− ε for all ε > 0.

2 Preliminary

For the convenience of reader, we recall the Littewood-Paley decomposition, Besov spaces and Chemin-

Lerner spaces in this section. The reader is referred to Chapters 2 and 3 in [1] or [15] for more details.

Choose a smooth radial non-increasing function χ(ξ) compactly supported in B(0, 43 ) and satisfying

χ(ξ) = 1 in B(0, 34 ). Then ϕ(ξ) , χ( ξ2 )− χ(ξ) satisfies∑
j∈Z

ϕ(2−j ·) = 1, Supp ϕ ⊂ {ξ ∈ Rd | 3

4
≤ |ξ| ≤ 8

3
}.

For any j ∈ Z, define the homogeneous dyadic blocks ∆̇j by

∆̇ju , F−1
(
ϕ(2−j ·)F(u)

)
= 2jdh(2j ·) ? u, h , F−1ϕ.

Let P be the class of all polynomials on Rd and S ′h , S ′/P stand for the tempered distributions on Rd

modulo polynomials. One can get

u =
∑
j∈Z

∆̇ju in S ′h, ∀u ∈ S ′h, ∆̇j∆̇lu = 0, if |j − l| ≥ 2.
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With the help of those dyadic blocks, we give the definition of homogeneous Besov spaces and mixed

space-time Besov spaces as follow. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov space Ḃsp,r is

defined by

Ḃsp,r ,
{
u ∈ S ′h | ‖u‖Ḃsp,r , ‖{2

js‖∆̇ju‖Lp}j∈Z‖lr <∞
}
.

For T > 0, s ∈ R and 1 ≤ %, r, q ≤ ∞, we recall a class of mixed space-time Besov spaces L̃%(0, T ; Ḃsp,r)

that were initiated by Chemin and Lerner in [10]:

L̃%(0, T ; Ḃsp,r) ,
{
u ∈ L%(0, T ;S ′h) | ‖u‖L̃%T (Ḃsp,r) , ‖{2

js‖∆̇ju‖L%T (Lp)}j∈Z‖lr <∞
}
.

By the Minkowski inequality, it holds that

‖u‖L̃%T (Ḃsp,r) ≤ ‖u‖L%T (Ḃsp,r) if r ≥ % (resp. ‖u‖L̃%T (Ḃsp,r) ≥ ‖u‖L%T (Ḃsp,r) if r ≤ %),

where ‖ · ‖L%T (Ḃsp,r) is the usual Lebesgue-Besov norm. Moreover, we denote

Cb(R+; Ḃsp,r) ,
{
u ∈ C(R+; Ḃsp,r) | ‖f‖L̃∞(R+;Ḃsp,r)

<∞
}
.

In order to restrict Besov norms to the low frequency part and the high-frequency part, we often use

the following notations for any s ∈ R and p ∈ [1,∞]:
‖u‖`

Ḃsp,r
, ‖{2js‖∆̇ju‖Lp}j≤j0‖`r , ‖u‖h

Ḃsp,r
, ‖{2js‖∆̇ju‖Lp}j≥j0−1‖`r ,

‖u‖`
L̃%T (Ḃ

s
p,r)
, ‖{2js‖∆̇ju‖L%T (Lp)}j≤j0‖`r , ‖u‖h

L̃%T (Ḃ
s
p,r)
, ‖{2js‖∆̇ju‖L%T (Lp)}j≥j0−1‖`r ,

where j0 is called threshold between low frequencies and high frequnencies which was chosen in [8,11,21].

Denote by u` (resp. uh) the low-frequency (high-frequency) part of u ∈ S ′h as follows:

u` ,
∑

j≤j0−1

∆̇ju, uh , u− u` =
∑
j≥j0

∆̇ju.

It is easy to check for any s′ > 0 that
‖u`‖Ḃsp,r . ‖u‖

`
Ḃsp,r
. ‖u‖`

Ḃs−s
′

p,∞
, ‖uh‖Ḃsp,1 . ‖u‖

h
Ḃsp,r
. ‖u‖h

Ḃs+s
′

p,r
,

‖u`‖L̃%T (Ḃsp,r) . ‖u‖
`
L̃%T (Ḃ

s
p,r)
. ‖u‖`

L%T (Ḃ
s−s′
p,∞ )

, ‖uh‖L̃%T (Ḃsp,r) . ‖u‖
h
L̃%T (Ḃ

s
p,r)
. ‖u‖h

L%T (Ḃ
s+s′
p,r )

.
(2.1)

3 Two-sided bounds of decay for the linear compressible Navier-

Stokes equations

In this section, we are interested in establishing the theory of decay characters for the linear com-

pressible Navier-Stokes system 
∂ta+ divu = 0,

∂tu−Au+∇a = 0,

(a, u)(x, 0) = (a0, u0)(x).

(3.1)
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Denote by Ω , Λ−1 curlu the incompressible part of u and by v , Λ−1divu the compressible part of u.

Therefore, we see that Ω satisfies the heat equation

∂tΩ− µ∆Ω = 0, Ω(x, 0) = Λ−1 curlu0(x). (3.2)

On the other hand, one can get the hyperbolic-parabolic mixed system for (a, v): ∂ta+ Λv = 0,

∂tv − ν∆v − Λa = 0,
(3.3)

with ν = λ+ 2µ and (a, v)(x, 0) , (a0,Λ
−1divu0)(x).

It should be noted that the theory of decay characters developed in [2,3,38] is not applicable to (3.3) in

general due to the dispersion form in hyperbolic part, even though (3.2) is a pure heat equation. Indeed,

we have the following pointwise estimates of (a, u) to the system (3.1) in Fourier spaces.

Lemma 3.1. Let (a, u) satisfy System (3.1). It holds that
|â(ξ, t)|+ |û(ξ, t)| . e−R∗t(|â0(ξ)|+ |û0(ξ)|), if |ξ| ≥ 2

ν
,

|â(ξ, t)|+ |û(ξ, t)| . e−min{ ν2 ,µ}|ξ|
2t(|â0(ξ)|+ |û0(ξ)|), if |ξ| ≤ 2

ν

(3.4)

for R∗ , min{ν2 , µ}
4
ν2 > 0 and

|â(ξ, t)|+ |û(ξ, t)| & e−max{ ν2 ,µ}|ξ|
2t(|â0(ξ)|+ |û0(ξ)|), if |ξ| ≤ η, (3.5)

where η > 0 is sufficiently small.

Proof. Taking the Fourier transform to (3.2) with respect to the space variable yields

|Ω̂(ξ, t)| = e−µ|ξ|
2t|Ω̂0(ξ)|, ξ ∈ Rd. (3.6)

On the other hand, we have the following explicit expression for the Green matrix G of system (3.3)

( [24]):

Ĝ(ξ, t) ,

λ+e
λ−t−λ−eλ+t
λ+−λ− −

(
eλ+t−eλ−t
λ+−λ−

)
|ξ|(

eλ+t−eλ−t
λ+−λ−

)
|ξ| λ+e

λ+t−λ−eλ−t
λ+−λ−


with the eigenvalues

λ±(ξ) =

−
ν
2 |ξ|

2 ± i
√
|ξ|2 − ν2

4 |ξ|4, if |ξ| ≤ 2
ν ,

−ν2 |ξ|
2 ±

√
ν2

4 |ξ|4 − |ξ|2, if |ξ| ≥ 2
ν .

The upper bound (3.4)1 in high frequencies |ξ| ≥ 2/ν is classical (see for example [8, 24, 33]). We omit

details for brevity.

13



In low frequencies |ξ| ≤ 2/ν, we write b ,
√
|ξ|2 − ν2

4 |ξ|4. The direct computation gives

eλ+t − eλ−t

λ+ − λ−
= e−

ν
2 |ξ|

2 sin(bt)

b
,

λ+e
λ−t − λ−eλ+t

λ+ − λ−
= e−

ν
2 |ξ|

2
(

cos(bt) +
ν

2

sin(bt)

b
|ξ|2
)
,

λ+e
λ+t − λ−eλ−t

λ+ − λ−
= e−

ν
2 |ξ|

2
(

cos(bt)− ν

2

sin(bt)

b
|ξ|2
)
.

Therefore, we obtain

â(ξ, t) =
λ+e

λ−t − λ−eλ+t

λ+ − λ−
â0(ξ)− eλ+t − eλ−t

λ+ − λ−
|ξ|v̂0(ξ) = e−

ν
2 |ξ|

2tâ∗(ξ, t) (3.7)

and

v̂(ξ, t) =
eλ+t − eλ−t

λ+ − λ−
|ξ|â0(ξ) +

λ+e
λ+t − λ−eλ−t

λ+ − λ−
v̂0(ξ) = e−

ν
2 |ξ|

2tv̂∗(ξ, t), (3.8)

where a∗0(x) and v∗0(x) are defined by
â∗(ξ, t) ,

(
cos(bt) +

ν

2

sin(bt)

b
|ξ|2
)
â0(ξ)− sin(bt)

b
|ξ|v̂0(ξ),

v̂∗(ξ, t) ,
sin(bt)

b
|ξ|â0(ξ) +

(
cos(bt)− ν

2

sin(bt)

b
|ξ|2
)
v̂0(ξ).

Thus, the upper bound (3.4) in low frequencies can be derived from (3.6), (3.7) and (3.8) directly. Next,

we turn to prove (3.5) from below in low frequencies.

Since b is real when |ξ| ≤ 2/ν, we have

|â∗(ξ, t)|2 = â∗(ξ, t)â∗(ξ, t) =
(

cos(bt) +
ν

2

sin(bt)

b
|ξ|2
)2
|â0(ξ)|2 +

| sin(bt)|2

b2
|ξ|2|v̂0(ξ)|2

− ν

2

| sin(bt)|2

b2
|ξ|3
(
â0(ξ)v̂0(ξ) + â0(ξ)v̂0(ξ)

)
− cos(bt) sin(bt)

b
|ξ|
(
â0(ξ)v̂0(ξ) + â0(ξ)v̂0(ξ)

)
(3.9)

and

|v̂∗(ξ, t)|2 = v̂∗(ξ, t)v̂∗(ξ, t) =
| sin(bt)|2

b2
|ξ|2|â0(ξ)|2 +

(
cos(bt)− ν

2

sin(bt)

b
|ξ|2
)2
|v̂0(ξ)|2

− ν

2

| sin(bt)|2

b2
|ξ|3
(
â0(ξ)v̂0(ξ) + â0(ξ)v̂0(ξ)

)
+

cos(bt) sin(bt)

b
|ξ|
(
â0(ξ)v̂0(ξ) + â0(ξ)v̂0(ξ)

)
. (3.10)

Owing to the fact that b = |ξ|+ O(|ξ|3) as |ξ| → 0, we see that the last terms on the right-hand side of

(3.9) and (3.10) are of zero-order with respect to the variable ξ, which turn out to be some obstacles to

get the dissipative estimate (3.5). To handle the difficulty, special assumptions were imposed in earlier

works (e.g., [26, 27, 33]). In the present paper, it is observed that the two “bad" terms standing for

the hyperbolic dispersion effect could be cancelled if one adds (3.9) and (3.10) together. Indeed, using
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| cos(bt)|2 + | sin(bt)|2
b2 |ξ|2 = 1 +O(|ξ|4), we have

|â∗(ξ, t)|2 + |v̂∗(ξ, t)|2 =
(
| cos(bt)|2 +

| sin(bt)|2

b2
|ξ|2 + ν

sin(bt) cos(bt)

b
|ξ|2 +

ν2

4

| sin(bt)|2

b2
|ξ|4
)
|â0(ξ)|2

+
(
| cos(bt)|2 +

| sin(bt)|2

b2
|ξ|2 − ν sin(bt) cos(bt)

b
|ξ|2 +

ν2

4

| sin(bt)|2

b2
|ξ|4
)
|v̂0(ξ)|2

− ν | sin(bt)|2

b2
|ξ|3
(
â0(ξ)v̂0(ξ) + â0(ξ)v̂0(ξ)

)
≥(1− Cν |ξ|)(|â0(ξ)|2 + |v̂0(ξ)|2)− Cν |ξ||â0(ξ)||v̂0(ξ)|

≥1

2
(|â0(ξ)|2 + |v̂0(ξ)|2)

for |ξ| ≤ η , min{1/3Cν , 2/ν}. Therefore, (3.5) is followed by (3.6) and the fact that |v̂(ξ, t)|2+|Ω̂(ξ, t)|2 ∼

|û(ξ, t)|2.

The pointwise estimates (3.4)-(3.5) indicate that the total energy of (a, u) to (3.1) behaves like that

of heat kernel from above and below in low frequencies, which motivates us to establish a sharp decay

characterization for (3.1) in terms of the Besov regularity. First of all, we establish the following sufficient

and necessary conditions for the upper and lower bounds of decay of solutions to (3.1).

Proposition 3.1. Let σ, σ1 ∈ R such that σ > σ1. Assume that (a, u) satisfies System (3.1) and

(a0, u0) ∈ Ḃσ2,1. For any given time tL ≥ 0, the following properties hold:

(1) The solution (a, u) has upper bounds of time-decay estimate

‖(a, u)(t)‖Ḃσ2,1 . 〈t〉
− 1

2 (σ−σ1), t > tL, (3.11)

if and only if (a0, u0) ∈ Ḃσ1
2,∞;

(2) The solution (a, u) has upper and lower bounds of time-decay estimate

〈t〉− 1
2 (σ−σ1) . ‖(a, u)(t)‖Ḃσ2,1 . 〈t〉

− 1
2 (σ−σ1), t > tL, (3.12)

if and only if (a0, u0) ∈ Ḃσ1
2,∞.

Proof. We first justify (3.11). Under the additional condition (a0, u0) ∈ Ḃσ1
2,∞, it follows from (3.4) that

‖(a, u)(t)‖Ḃσ2,1 .
∑

j≤[log2
2
ν ]

e−
9
16 min{ ν2 ,µ}2

2jt2jσ‖∆̇j(a0, u0)‖L2 +
∑

j≥[log2
2
ν ]+1

e−R∗t2jσ‖∆̇j(a0, u0)‖L2

. t−
1
2 (σ−σ1)‖(a0, u0)‖Ḃσ12,∞

+ e−R∗t‖(a0, u0)‖Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1), t > 1,

where we used the fact

sup
t>0

∑
j∈Z

t
1
2 (σ−σ1)2j(σ−σ1)e−

9
16 min{ ν2 ,µ}2

2jt <∞
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for σ > σ1.

On the other hand, since (a0, u0) ∈ Ḃσ2,1, one can get from (3.4) and Parseval’s theorem that

‖(a, u)(t)‖Ḃσ2,1 . ‖(a0, u0)‖Ḃσ2,1 . 〈t〉
− 1

2 (σ−σ1), 0 < t ≤ 1. (3.13)

Therefore, the upper bound (3.11) follows.

Conversely, assume that (a, u) satisfies (3.11) for t > tL. In fact, by virtue of (3.13), (3.11) holds for

t > 0. The Fourier transform (â0, û0) can be represented by

(â0, û0)(ξ) =
2 max{ν2 , µ}

Γ( 1
2 (σ − σ1) + 1)

∫ ∞
0

t
1
2 (σ−σ1)|ξ|σ−σ1+2e−2max{ ν2 ,µ}|ξ|

2t(â0, û0)(ξ)dt,

where Γ(s) =
∫∞
0
ts−1e−tds. This implies for any integer j ≤ [log2 2/ν] that

‖∆̇j(a0, u0)‖L2 ∼ ‖ϕ(2−j |ξ|)(â0, û0)‖L2

.
∫ ∞
0

t
1
2 (σ−σ1)2(−σ1+2)je−

9
16 max{ ν2 ,µ}2

2jt‖|ξ|σe−max{ ν2 ,µ}|ξ|
2t(â0, û0)‖L2dt.

(3.14)

In view of (3.5), (3.11) and Parseval’s theorem, it holds that

‖|ξ|σe−max{ ν2 ,µ}|ξ|
2t(â0, û0)‖L2 . ‖|ξ|σ(â, û)(t)‖L2 ∼ ‖(a, u)(t)‖Ḣσ . 〈t〉

− 1
2 (σ−σ1). (3.15)

Substituting (3.15) into (3.14) and using the fact that ‖(a0, u0)‖Ḃσ2,1 <∞, we get

‖(a0, u0)‖Ḃσ12,∞
. sup
j≤[log2

2
ν ]

2σ1j‖∆̇j(a0, u0)‖L2 + sup
j≥[log2

2
ν ]+1

2σ1j‖∆̇j(a0, u0)‖L2

.
∫ ∞
0

22je−
9
16 max{ ν2 ,µ}2

2jtdt+
(2

ν

)−σ+σ1 ∑
j≥[log2

2
ν ]+1

2σj‖∆̇j(a0, u0)‖L2 . 1.
(3.16)

Next, we turn to prove the two-sided bounds (3.12). Assume (a0, u0) ∈ Ḃσ1
2,∞. The upper bound in

(3.12) follows directly from (3.11). In order to derive the lower bound, it follows from the definition Ḃσ1
2,∞

as in (1.11) that there exists two constants c,M > 0 and a sequence {jk}k=1,2,... such that

jk → −∞ as k →∞, |jk − jk+1| ≤M, 2σ1jk‖∆̇jk(a0, u0)‖L2 ≥ c, k = 1, 2, ... (3.17)

Without loss of generality, we assume that jk, k = 1, 2, ..., is less than [log2 η]. It follows from Parseval’s

theorem and (3.5) that

‖(a, u)(t)‖Ḃσ2,1 ≥
∑

j≤[log2 η]

2σj‖∆̇j(a, u)(t)‖L2

=
∑

j≤[log2 η]

2σj‖ϕ(2−j ·)(â, û)(t)‖L2

&
∑

j≤[log2 η]

e−
64
9 max{ ν2 ,µ}2

2jt2σj‖∆̇j(a0, u0)‖L2 .

(3.18)
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For all t > tL, since jk tends to −∞ as k → ∞, we are able to find a maximal integer jk0 satisfying

jk0 ≤ − 1
2 log2(1 + tL + t). Then we have jk0 > −M − 1

2 log2(1 + tL + t); otherwise, from (3.17) another

integer jk0−1 fulfills jk0−1 ≤ jk0 +M ≤ − 1
2 log2(1 + tL + t) which contradicts with the maximality of jk0 .

Therefore, it follows from (3.17) and the fact 2jk0 ∼ 〈t〉− 1
2 that∑

j≤[log2 η]

e−
64
9 max{ ν2 ,µ}2

2jt2σj‖∆̇j(a0, u0)‖L2

& e−
64
9 max{ ν2 ,µ}2

2jk0 t2(σ−σ1)jk0 2σ1jk0 ‖∆̇jk0
(a0, u0)‖L2

& 2(σ−σ1)jk0

& 〈t〉− 1
2 (σ−σ1),

from which one can deduce the lower bound in (3.12).

Conversely, if we assume that (a, u) satisfy the two-sided bounds (3.12) for t > tL. The upper

bound in (3.12) implies that (a0, u0) ∈ Ḃσ1
2,∞. It suffices to construct a sequence {jk}k=1,2,... such that

jk → −∞, |jk− jk+1| ≤M , and 2σ1jk‖∆̇jk(a0, u0)‖ ≥ c. For that end, we deduce from the high-frequency

bound in (3.4) and (3.12) that∑
j≤[log2

2
ν ]

2σj‖∆̇j(a, u)(t)‖L2 = ‖(a, u)(t)‖Ḃσ2,1 −
∑

j≥[log2
2
ν ]+1

2σj‖∆̇j(a, u)(t)‖L2

& 〈t〉− 1
2 (σ−σ1) − e−R∗t

∑
j≥[log2

2
ν ]+1

2σj‖∆̇j(a0, u0)‖L2

& 〈t〉− 1
2 (σ−σ1), t� 1,

which, together with the low-frequency bound (3.4), implies that there exists a suitably large time t∗ > tL

and a constant η∗ > 0 independent of time such that∑
j∈Z

e−
9
16 min{ ν2 ,µ}2

2jt2σjt
1
2 (σ−σ1)‖∆̇j(a0, u0)‖L2 > η∗ > 0, t ≥ t∗. (3.19)

In particular, (3.19) holds true with t = t∗ + k for all k = 1, 2, ..., and then we define

j1,k , −
[1

2
log2(t∗ + k)

]
.

Making use of (3.19) and the fact 2−2j1,k−2 ≤ t∗ + k ≤ 2−2j1,k , we get∑
j∈Z

e−
9
16 min{ ν2 ,µ}2

2(j−j1,k)−2

2(σ−σ1)(j−j1,k)2σ1j‖∆̇j(a0, u0)‖L2 > η∗ > 0.

Shifting the index j − j1,k to j′, we deduce that∑
j′∈Z

e−
9
16 min{ ν2 ,µ}2

2j′−2

2j
′(σ−σ1)

(
2(j
′+j1,k)σ1‖∆̇j′+j1,k(a0, u0)‖L2

)
> η∗ > 0. (3.20)

Due to the fact that e−
9
16 min{ ν2 ,µ}2

2j′−2

2j
′(σ−σ1) ∈ l1(Z) holds for σ > σ1, there exists a sufficiently large

integer J > 0 such that ∑
|j′|>J

e−
9
16 min{ ν2 ,µ}2

2j′−2

2j
′(σ−σ1) <

η∗
2‖(a0, u0)‖Ḃσ12,∞

+ 1
.
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Consequently, we have∑
|j′|>J

e−
9
16 min{ ν2 ,µ}2

2j′−2

2j
′(σ−σ1)

(
2(j
′+j1,k)σ1‖∆̇j′+j1,k(a0, u0)‖L2

)
<
η∗
2
. (3.21)

It follows from (3.20) and (3.21) that∑
|j′|≤J

e−
9
16 min{ ν2 ,µ}2

2j′−2

2j
′(σ−σ1)

(
2(j
′+j1,k)σ1‖∆̇j′+j1,k(a0, u0)‖L2

)
>
η∗
2
> 0. (3.22)

For every given j1,k, let j2,k ∈ [−J, J ] be the integer such that

2(j2,k+j1,k)σ1‖∆̇j2,k+j1,k(a0, u0)‖L2 = max
|j′|≤J

2(j
′+j1,k)σ1‖∆̇j′+j1,k(a0, u0)‖L2 .

If we define

jk , j1,k + j2,k, k = 1, 2, ...,

then it follows from (3.22) and the definitions of j1,k, j2,k that jk → −∞ as k →∞,

|jk − jk+1| ≤ 2J +
1

2
log2(1 +

1

t∗
) + 1 and 2σ1jk‖∆̇jk(a0, u0)‖L2 ≥ η∗

4J
e−

64
9 min{ ν2 ,µ}2

2J

.

This implies that (a0, u0) ∈ Ḃσ1
2,∞. The proof of Proposition 3.1 is complete.

Furthermore, it is shown that (a0, u0) ∈ Ḃσ1
2,∞ is equivalent to those conditions on the theory of decay

characters developed by [2, 3, 38]. Precisely, we have the following proposition.

Proposition 3.2. Let σ, σ1 ∈ R such that σ > σ1. Assume that (a, u) satisfy System (3.1) and (a0, u0) ∈

Ḃσ2,1. Then the following two statements are equivalent:

(1) (a0, u0) ∈ Ḃσ1
2,∞;

(2) (a0, u0) satisfies
Pσ1

(a0, u0)+ , lim sup
r→0+

r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ <∞,

Pσ1
(a0, u0)− , lim inf

r→0+
r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ > 0.

(3.23)

Proof. We first prove that (a0, u0) ∈ Ḃσ1
2,∞ implies (3.23). For r > 0, let the integer j = [log2 r] such

that 2j ≤ r < 2j+1. Owing to (a0, u0) ∈ Ḃσ1
2,∞, we have

r−2(σ−σ1)j

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ

≤ 2−2(σ−σ1)j

∫
{|ξ|≤2j+1}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ

≤ 2−2(σ−σ1)j
∑

j′≤j+1

22j
′(σ−σ1) sup

j′≤j+1
22j
′σ1‖∆̇j′(a0, u0)‖2L2

. ‖(a0, u0)‖2
Ḃ
σ1
2,∞

,
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which implies Pσ1
(a0, u0)+ <∞.

Moreover, from our assumption we can take {jk}k=1,2,... as in the definition of Ḃσ1
2,∞. For any 0 < r <

2j1 , let jk be the largest integer of the sequence {jk}k=1,2,... such that 2jk ≤ r. Then we have 2jk+M ≥ r;

otherwise, from ‖jk − jk+1‖l∞ ≤ M we would find another integer jl ∈ [jk, jk + M ] such that 2jl ≤ r,

which contradicts the maximality of jk. Hence, we have 2jk ≤ r ≤ 2jk+M . Consequently,

r−2(σ−σ1)jk

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ

& 2−2(σ−σ1)jk

∫
{ 3

4 2
jk≤|ξ|≤ 8

3 2
jk}

22σjk(|â0(ξ)|2 + |û0(ξ)|2)dξ

& 22σ1jk‖∆̇jk(a0, u0)‖2L2 & 1.

This indicates Pσ1
(a0, u0)− > 0.

Conversely, if (3.23) holds, then there exists some constants r0, c1, c2 > 0 such that for any 0 < r ≤ r0,

it holds that

0 < c1r
2(σ−σ1) ≤

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ ≤ c2r2(σ−σ1). (3.24)

In order to show (a0, u0) ∈ Ḃσ1
2,∞, it suffices to prove the two-sided bounds of decay estimates of the

solution (a, u) to (3.1) under the condition (3.24). To do this, we perform Schonbek’s Fourier splitting

methods as in [44] to the compressible Navier-Stokes equations (3.1). Applying the operator ṠνΛσ with

the low-frequency cut-off Ṡνz ,
∑
j≤[log2

2
ν ]

∆̇jz to (3.1), we get ∂tṠνΛσa+ div ṠνΛσu = 0,

∂tṠνΛσu−AṠνΛσu+∇ṠνΛσa = 0.
(3.25)

Multiplying the first equation of (3.25) by ṠνΛσa, the second one by ṠνΛσu, adding the resulting equations

together, then integrating it over Rd, we have

1

2

d

dt
‖ṠνΛσ(a, u)(t)‖2L2 +

∫
Rd

(
µ|∇ṠνΛσu|2 + (µ+ λ)(div ṠνΛσu)2

)
dx = 0. (3.26)

To capture the dissipation of ṠνΛσa, it follows from (3.25) that

d

dt

∫
Rd
ṠνΛσu · ∇ṠνΛσa dx+ ‖∇ṠνΛσa‖2L2

− ‖div ṠνΛσu‖2L2 −
∫
Rd
AṠνΛσu · ∇ṠνΛσa dx = 0.

(3.27)

Define

L(t) ,
1

2
‖ṠνΛσ(a, u)(t)‖2L2 + ε

∫
Rd
ṠνΛσu · ∇ṠνΛσa dx

for some constant ε > 0. We are able to choose ε sufficiently small such that

L(t) ∼ ‖Ṡν(a, u)(t)‖2
Ḣσ
. (3.28)
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Furthermore, combining with (3.26)-(3.27), we obtain

d

dt
L(t) + c∗‖∇Ṡν(a, u)‖2

Ḣσ
≤ 0, (3.29)

where c∗ > 0 is a uniform constant. For any function R(t), the classical Fourier splitting idea [44] is then

used to deduce the estimate

‖∇Ṡν(a, u)‖2
Ḣσ
≥
∫
{|ξ|≥R(t)}

|ξ|2+2σ(|̂̇Sνa|2 + |̂̇Sνu|2)dξ

≥ R2(t)
(∫

Rd
|ξ|2σ(|̂̇Sνa|2 + |̂̇Sνu|2)dξ −

∫
{|ξ|≤R(t)}

|ξ|2σ(|̂̇Sνa|2 + |̂̇Sνu|2)dξ
)

≥ R2(t)L(t)−R2σ(t)

∫
{|ξ|≤R(t)}

|ξ|2σ(|̂̇Sνa|2 + |̂̇Sνu|2)dξ.

This, together with (3.29), leads to

d

dt
L(t) + c∗R2(t)L(t) . R2(t)

∫
{|ξ|≤R(t)}

|ξ|2σ(|â(ξ, t)|2 + |û(ξ, t)|2)dξ. (3.30)

For some sufficiently large constant β, choosing now

R(t) =
β

c∗
〈t〉− 1

2 ≤ min{2

ν
, r0} for t > t∗1 =

( β

c∗min{ 2ν , r0}

)2
.

Hence, it follows from (3.4) and (3.24) that∫
{|ξ|≤R(t)}

|ξ|2σ(|â(ξ, t)|2 + |û(ξ, t)|2)dξ .
∫
{|ξ|≤R(t)}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ

. R2(σ−σ1)(t) ∼ 〈t〉−(σ−σ1), t > t∗1.

(3.31)

Multiplying (3.30) by the factor 〈t〉β with β > σ − σ1 + 1, furthermore, we obtain

d

dt

(
〈t〉βL(t)

)
. 〈t〉β−1−(σ−σ1). (3.32)

Then integrating (3.32) over [t∗1, t] yields

〈t〉β‖Ṡν(a, u)(t)‖2
Ḣσ
. 〈t∗1〉β‖Ṡν(a, u)(t∗1)‖2

Ḣσ
+ 〈t〉β−(σ−σ1).

On the other hand, one deduces from the pointwise estimates (3.4) and Parseval’s theorem that

‖Ṡν(a, u)(t∗1)‖2
Ḣσ
. ‖(a0, u0)‖2

Ḣσ
.

Therefore, we obtain

‖Ṡν(a, u)(t)‖Ḣσ . 〈t〉
− 1

2 (σ−σ1), t > 0.

Consequently, noticing that the exponential decay property in (3.4) at high frequencies, the upper bound

of decay follows that

‖(a, u)(t)‖Ḣσ ≤ ‖Ṡν(a, u)(t)‖Ḣσ + ‖(Id− Ṡν)(a, u)(t)‖Ḣσ

. 〈t〉− 1
2 (σ−σ1) + e−R∗t‖(a0, u0)‖Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1).

(3.33)
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Finally, performing the same procedure leading to (3.14)-(3.16), we arrive at (a0, u0) ∈ Ḃσ1
2,∞.

On the other hand, it follows from (3.5), (3.24) and Parseval’s theorem that

‖(a, u)(t)‖2
Ḃσ2,1
& ‖Λσ(a, u)(t)‖2L2

& e−2max{ ν2 ,µ}r
2t

∫
{|ξ|≤r}

|ξ|2σ(|â0(ξ)|2 + |û0(ξ)|2)dξ

& r2(σ−σ1) ∼ 〈t〉−(σ−σ1),

(3.34)

where we have chosen r = r0〈t〉−
1
2 ≤ r0. According to Proposition 3.1 and (3.34), we therefore prove

(a0, u0) ∈ Ḃσ1
2,∞. The proof of Proposition 3.2 is complete.

By employing a similar argument in the proof of Propositions 3.1-3.2, one can present the sharp decay

characterization with the Besov regularity for a large class of dissipative systems (including incompressible

Stokes flows) studied in [2, 3, 38].

Corollary 3.1. Let σ, σ1 ∈ R such that σ > σ1. Assume that U satisfies System (1.17) and U0 ∈ Ḃσ2,1.

Then the following three statements are equivalent:

(1) U0 ∈ Ḃσ1
2,∞;

(2) U0 satisfies 
Pσ1(U0)+ , lim sup

r→0+
r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ|Û0(ξ)|2dξ <∞,

Pσ1(U0)− , lim inf
r→0+

r−2(σ−σ1)

∫
{|ξ|≤r}

|ξ|2σ|Û0(ξ)|2dξ > 0;

(3) For any tL ≥ 0, U has upper and lower bounds of time-decay:

〈t〉− 1
2α (σ−σ1) . ‖U(t)‖Ḃσ2,1 . 〈t〉

− 1
2α (σ−σ1), t > tL.

4 Sufficient condition

It suffices to show that the solution constructed in Theorem 1.1 satisfies (1.13) (resp. (1.14)) if

and only if (a0, u0) ∈ Ḃσ1
2,∞ (resp. (a0, u0) ∈ Ḃσ1

2,∞), since (1.12) is the direct consequence of Lemma

5.1 in [51]. In this section, we shall develop Wiegner’s argument from incompressible Navier-Stokes

equations to compressible Navier-Stokes equations, and prove the “if" part. Compared with the classical

works [17, 52], the additional smallness of low frequencies is no longer needed in the Fourier semi-group

framework.
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4.1 Wiegner’s argument for compressible Navier-Stokes equations

Our argument depends on the momentum formulation of compressible Navier-Stokes equations (1.1)

and is to establish the decay estimate of difference (ã, m̃) , (a − aL,m − mL), where (aL,mL) is the

solution to the linear problem (1.23) subject to the initial data (a0,m0) with m0 = (1 + a0)u0. First of

all, we have the following sharp decay characterization of (aL,mL).

Proposition 4.1. Let p satisfy (1.8). It holds that

‖(aL,mL)‖`
L̃∞t (Ḃ

d
2
−1

2,1 )
+ ‖eRτ (∇aL,mL)‖h

L̃∞t (Ḃ
d
p
−1

p,1 )

+ ‖eRτmL‖h
L̃∞(1,t;Ḃ

d
p
+1

p,1 )

+ ‖(aL,mL)‖`
L1
t (Ḃ

d
2
+1

2,1 )
+ ‖(aL,∇mL)‖h

L1
t (Ḃ

d
p
p,1)

. Xp,0,
(4.1)

where R > 0 is some constant and Xp,0 is defined by (1.7). Moreover, if assume that σ0 ≤ σ1 <
d
2 − 1

and σ > σ1, then for any tL ≥ 0 the following decay properties hold:

‖(aL,mL)`(t)‖Ḃσ2,1 . 〈t〉
− 1

2 (σ−σ1), t > tL, (4.2)

if and only if (a0, u0)` ∈ Ḃσ1
2,∞;

〈t〉− 1
2 (σ−σ1) . ‖(aL,mL)`(t)‖Ḃσ2,1 . 〈t〉

− 1
2 (σ−σ1), t > tL, (4.3)

if and only if (a0, u0)` ∈ Ḃσ1
2,∞.

Proof. By employing the same procedure as in [15] (see pages 1882-1884), one can arrive at

‖(aL,mL)‖`
L̃∞t (Ḃ

d
2
−1

2,1 )
+ ‖(∇aL,mL)‖h

L̃∞t (Ḃ
d
p
−1

p,1 )

+ ‖(aL,mL)‖`
L1
t (Ḃ

d
2
+1

2,1 )
+ ‖(aL,∇mL)‖h

L1
t (Ḃ

d
p
p,1)

. ‖(a0,m0)‖`
Ḃ
d
2
−1

2,1

+ ‖(∇a0,m0)‖h
Ḃ
d
p
−1

p,1

, X ∗p,0.
(4.4)

In addition, the Lp energy method developed in [17] implies that there exists a generic constant R > 0

such that

‖eRτ (∇aL,mL)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. X ∗p,0. (4.5)

To establish gain of regularity and decay altogether for the high frequencies of momentum, we reformulate

the second equation in (1.23) as follows

∂t(χ(t)mL)−A(χ(t)mL) = χ′(t)mL − χ(t)∇aL, (4.6)

where χ(t) ∈ C1(R+) satisfies χ(t) = t for 0 ≤ t ≤ 1
2 and χ(t) = eRt for t > 1. Then it follows from the

maximal regularity estimate for Lamé semi-group in Lemma 6.11 that

‖χ(t)mL‖h
L̃∞t (Ḃ

d
p
+1

p,1 )

. ‖eRτ (mL,∇aL)|h
L̃∞t (Ḃ

d
p
−1

p,1 )

. X ∗p,0, (4.7)

22



where we used the fact χ(t)mL|t=0 = 0. Hence, in order to get (4.1), it only need to show that

X ∗p,0 . Xp,0. (4.8)

Indeed, from Lemma 6.3 and Bernstein’s inequality, we arrive at

‖m0‖h
Ḃ
d
p
−1

p,1

. ‖u0‖h
Ḃ
d
p
−1

p,1

+ ‖a0‖
Ḃ
d
p
p,1

‖u0‖
Ḃ
d
p
−1

p,1

. Xp,0,

where the boundedness of Xp,0 in (1.7) is used. On the other hand, bounding ‖m0‖`
Ḃ
d
2
−1

2,1

is a little bit

complicated and follows from the similar strategy as in [15]. To this end, we employ the following two

inequalities:

‖Tfg‖
Ḃ
s−1+ d

2
− d
p

2,1

. ‖f‖
Ḃ
d
p
−1

p,1

‖g‖Ḃsp,1 if d ≥ 2 and
d

d− 1
≤ p ≤ min(4, d∗), (4.9)

‖R(f, g)‖
Ḃ
s−1+ d

2
− d
p

2,1

. ‖f‖
Ḃ
d
p
−1

p,1

‖g‖Ḃsp,1 if s > 1−min
(d
p
,
d

p′

)
and 1 ≤ p ≤ 4 (4.10)

with 1/p+ 1/p′ = 1 and d∗ , 2d
d−2 . By using Bony’s para-product decomposition, one has

a0u0 = Tu0a0 +R(u0, a0) + Ta0u
`
0 + Ta0u

h
0 . (4.11)

Thanks to (4.9) and (4.10) with s = d
p , one can get

‖Tu0a0‖`
Ḃ
d
2
−1

2,1

. ‖u0‖
Ḃ
d
p
−1

p,1

‖a0‖
Ḃ
d
p
p,1

, ‖R(a0, u0)‖`
Ḃ
d
2
−1

2,1

. ‖u0‖
Ḃ
d
p
−1

p,1

‖a0‖
Ḃ
d
p
p,1

.

Since T maps L∞ × Ḃ
d
2−1
2,1 to Ḃ

d
2−1
2,1 , we have

‖Ta0u`0‖`
Ḃ
d
2
−1

2,1

. ‖a0‖L∞‖u`0‖
Ḃ
d
2
−1

2,1

. ‖a0‖
Ḃ
d
p
p,1

‖u0‖`
Ḃ
d
2
−1

2,1

.

In order to handle the last term on the right-side of (4.11), we observe that owing to the spectral cut-off,

there exists a universal integer N0 such that(
Ta0u

h
0

)`
= Ṡk0+1

( ∑
|j−k0|≤N0

Ṡj−1a0∆̇ju
h
0

)
.

Hence ‖Ta0uh0‖`
Ḃ
d
2
−1

2,1

≈ 2k0(
d
2−1)

∑
|j−k0|≤N0

‖Ṡj−1a0∆̇ju
h
0‖L2 . If 2 ≤ p ≤ min(d, d∗) then one may use for

|j − k0| ≤ N0,

2k0(
d
2−1)‖Ṡj−1a0∆̇ju

h
0‖L2 . ‖Ṡj−1a0‖Ld

(
2j(

d
d∗−1)‖∆̇ju

h
0‖Ld∗

)
. ‖a0‖

Ḃ
d
p
−1

p,1

‖u0‖h
Ḃ
d
p
−1

p,1

,

and if d ≤ p ≤ 4, then it holds that

2k0(
d
2−1)‖Ṡj−1a0∆̇ju

h
0‖L2 .

(
2j

d
4 ‖Ṡj−1a0‖L4

)(
2j(

d
4−1)‖∆̇ju

h
0‖L4

)
.
(

2j(
d
p−1)‖a0‖Lp

)(
2j(

d
p−1)‖∆̇ju

h
0‖Lp

)
. ‖a0‖

Ḃ
d
p
−1

p,1

‖u0‖h
Ḃ
d
p
−1

p,1

.
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Hence, the inequality (4.8) follows directly by combining above estimates.

Under the assumption (1.7), we claim that (a0,m0)` ∈ Ḃσ1
2,∞ ⇐⇒ (a0, u0)` ∈ Ḃσ1

2,∞ for σ0 ≤ σ1 < d
2−1.

Indeed, it follows from m0 = u0 + a0u0 that

‖m`
0‖Ḃσ12,∞

. ‖u`0‖Ḃσ12,∞
+ ‖a0u0‖`Ḃσ12,∞

. (4.12)

It is convenient to decompose the product a0u0 in terms of low-frequency and high-frequency parts:

a0u0 = a0u
`
0 + a0u

h
0 . According to Lemma 6.7, we arrive at

‖a0u`0‖`Ḃσ12,∞
. ‖a0‖

Ḃ
d
p
p,1

‖u`0‖Ḃσ12,∞
.
(
‖a`0‖

Ḃ
d
2
−1

2,1

+ ‖ah0‖
Ḃ
d
p
p,1

)
‖u`0‖Ḃσ12,∞

. (4.13)

Bounding a0uh0 is divided into cases 2 ≤ p ≤ d and p > d. If 2 ≤ p < d, then (6.8) with σ = d
p − 1

yields

‖a0uh0‖`Ḃσ12,∞
. ‖a0uh0‖`Ḃσ02,∞

.
(
‖a0‖

Ḃ
d
p
−1

p,1

+ ‖a`0‖Lp∗
)
‖uh0‖

Ḃ
1− d

p
p,1

, (4.14)

since σ0 ≤ σ1. In the limit case p = d, one can get by the Sobolev embedding that

‖a0uh0‖`Ḃσ12,∞
. ‖a0uh0‖`Ḃσ02,∞

. ‖a0uh0‖L d2 ≤ ‖a0‖Ld‖u
h
0‖Ld . ‖a0‖Ḃ0

d,1
‖uh0‖Ḃ0

d,1
. (4.15)

Furthermore, combining (4.14)-(4.15) and using the embeddings Ḃ
d
p

2,1 ↪→ Lp
∗
and Ḃ

d
p−1
p,1 ↪→ Ḃ0

d,1, we

obtain

‖a0uh0‖`Ḃσ12,∞
.
(
‖a`0‖

Ḃ
d
2
−1

2,1

+ ‖ah0‖
Ḃ
d
p
p,1

)
‖uh0‖

Ḃ
d
p
−1

p,1

, (4.16)

due to the fact d
2 − 1 ≤ d

p and 1− d
p ≤

d
p − 1. If p > d, applying (6.8) with σ = 1− d

p once again implies

that

‖a0uh0‖`Ḃσ12,∞
.
(
‖a0‖

Ḃ
1− d

p
p,1

+ ‖a`0‖Lp∗
)
‖uh0‖

Ḃ
d
p
−1

p,1

. (4.17)

By using the embedding Ḃ
d
2
2,1 ↪→ Ḃ

d
p

2,1 ↪→ Lp∗ in low frequencies and the fact d
2 − 1 < 1− d

p ≤
d
p owing to

p > d, we obtain

‖a0uh0‖`Ḃσ12,∞
.
(
‖a`0‖

Ḃ
d
2
−1

2,1

+ ‖ah0‖
Ḃ
d
p
p,1

)
‖uh0‖

Ḃ
d
p
−1

p,1

. (4.18)

Together with (4.12), (4.13), (4.16) and (4.18), we conclude that the “if" part of this claim is true.

Conversely, the proof of “only if" part follows from the similar procedure if noticing that u0 = m0 +

I(a0)m0 and using the composite estimate in Lemma 6.9.

Furthermore, it can be shown that (a0,m0)` ∈ Ḃσ1
2,∞ if and only if (a0, u0)` ∈ Ḃσ1

2,∞. If (a0,m0)` ∈ Ḃσ1
2,∞,

24



then it follows from (4.12)-(4.13), (4.16) and (4.18) that

2σ1jk‖∆̇jk(a0, u0)`‖L2

≥ 2σ1jk‖∆̇jk(a0,m0)`‖L2 − ‖a0u0‖`Ḃσ12,∞

≥ 2σ1jk‖∆̇jk(a0,m0)`‖L2 − C(‖a`0‖
Ḃ
d
2
−1

2,1

+ ‖ah0‖
Ḃ
d
p
p,1

)(‖u`0‖Ḃσ12,∞
+ ‖uh0‖

Ḃ
d
p
−1

p,1

)

≥ c0 − CXp,0 − CX 2
p,0 ≥

c0
2
> 0,

which implies that (a0, u0)` ∈ Ḃσ1
2,∞, where the sequence {jk}k=1,2,... comes from the definition (1.11) of

Ḃσ1
2,∞ and the smallness assumption in (1.7) has been used. Similarly, one can prove that (a0, u0)` ∈ Ḃσ1

2,∞

implies that (a0,m0)` ∈ Ḃσ1
2,∞.

Applying the low-frequency cut-off operator Ṡj0 to (1.23) gives
∂ta

`
L + divm`

L = 0,

∂tm
`
L −Am`

L +∇a`L = 0,

(a`L,m
`
L)(x, 0) = (a`0,m

`
0)(x).

(4.19)

Note that ‖(a0,m0)`‖Ḃσ2,1 . ‖(a0,m0)`‖Ḃσ12,∞
with σ > σ1, the upper bound (4.2) and two-sided bounds

(4.3) hold for t > tL, respectively, according to Proposition 3.1.

From Theorem 1.1, we see that the Cauchy problem (1.21) with initial data (a,m)|t=0 = (a0, (1+a0)u0)

admits the global-in-time unique solution (a,m) with m = (1 + a)u satisfying

(a,m)` ∈ Cb(R+; Ḃ
d
2−1
2,1 ) ∩ L1(R+; Ḃ

d
2+1
2,1 ), ah ∈ Cb(R+; Ḃ

d
p

p,1) ∩ L1(R+; Ḃ
d
p

p,1),

mh ∈ Cb(R+; Ḃ
d
p−1
p,1 ) ∩ L̃2(R+; Ḃ

d
p

p,1). (4.20)

For the case of compressible fluids (1.21), we get the following analogue of Wiegner’s theorem (see [49]).

Proposition 4.2. Assume that the initial data satisfy (a0, u0)` ∈ Ḃσ1
2,∞ with σ0 ≤ σ1 < d

2 − 1. Then the

difference (ã, m̃) , (a− aL,m−mL) fulfills the time-weighted inequality

D̃p(t) . 1 (4.21)

for t > 0, where the difference functional D̃p(t) is defined as

D̃p(t) , sup
σ1<σ<

d
2

‖〈τ〉 12 (σ−σ1+σ2)(ã, m̃)‖`
L∞t (Ḃσ2,1)

+ ‖〈τ〉α∗(∇ã, m̃)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

+ ‖τα∗m̃‖h
L̃∞(1,t;Ḃ

d
p
p,1)

with α∗ = 1
2 (d2 − σ1 + σ2)− and the number σ2 ∈ (0, 1] given by

σ2 =



1, if σ1 < σ ≤ d
2 − 1, σ1 <

d
2 − 2,

1−, if σ1 < σ ≤ d
2 − 1, σ1 = d

2 − 2,

d
2 − 1− σ1, if σ1 < σ ≤ d

2 − 1, d
2 − 2 < σ1 <

d
2 − 1,

min{ 12 , (
d
2 − 1− σ1)−}, if d

2 − 1 < σ < d
2 .

(4.22)
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4.1.1 Bounds for the low frequencies

Let us keep in mind that due to product laws on m = u+ au, the global solution (a,m) in Theorem

1.1 satisfies

‖a‖
L̃∞t (Ḃ

d
p
p,1)

+ ‖m‖
L̃∞t (Ḃ

d
p
−1

p,1 )
+ ‖m‖

L̃2
t (Ḃ

d
p
p,1)
. Xp,0 � 1 for all t > 0. (4.23)

As shown by Proposition 4.1, the assumption (a0, u0)` ∈ Ḃσ1
2,∞ is equivalent to the upper bound of decay

of solutions to (1.23):

‖(aL,mL)`(t)‖Ḃσ2,1 . 〈t〉
− 1

2 (σ−σ1), σ > σ1, t > 0. (4.24)

In what follows, we shall use repeatedly that for 0 ≤ γ1 ≤ γ2,

∫ t

0

〈t− τ〉−γ1〈τ〉−γ2dτ .


〈t〉−γ1 , if γ2 > 1,

〈t〉−(γ1−), if γ2 = 1,

〈t〉−γ1−γ2+1, if γ2 < 1.

(4.25)

Apply ∆̇j to the difference system (1.24). It follows from Lemma 3.1 and Duhamel’s principle that

‖∆̇j(ã, m̃)(t)‖L2 .
∫ t

0

e−R32
2j(t−τ)2j‖∆̇jF‖L2dτ (4.26)

for j ≤ j0 ∈ Z and R3 = max{R∗, 4
ν222j0

min{ 1ν , µ}}. It is easy to see that (σ′ ∈ (0, 1])

t
σ−σ1+σ′

2

∑
j≤j0

2j(σ−σ1+σ
′)2j(σ1+1−σ′)e−R32

2jt‖∆̇jF‖L2

. ‖F‖`
Ḃ
σ1+1−σ′
2,∞

∑
j∈Z

(
√
t2j)σ−σ1+σ

′
e−R32

2jt . ‖F‖`
Ḃ
σ1+1−σ′
2,∞

and ∑
j≤j0

2j(σ−σ1+σ
′)2j(σ1+1−σ′)e−R32

2jt‖∆̇jF‖L2 . ‖F‖`
Ḃ
σ1+1−σ′
2,∞

∑
j≤j0

2j(σ−σ1+σ
′) . ‖F‖`

Ḃ
σ1+1−σ′
2,∞

for σ − σ1 + σ′ > 0, where we used the series inequalities (s > 0):∑
j≤j0

2js ≤ Cs, sup
t≥0

∑
j∈Z

t
s
2 2jse−c02

2jt ≤ Cs.

Consequently, we get

‖(ã, m̃)(t)‖`
Ḃσ2,1
.
∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ

′)‖F‖`
Ḃ
σ1+1−σ′
2,∞

dτ, σ > σ1. (4.27)

Regarding the integral on right-hand side of (4.27), we consider cases 0 < t ≤ 2 and t > 2 separately.
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Lemma 4.1. Let p satisfy (1.8) and σ0 ≤ σ1 < d
2 − 1. It holds that∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ

′)‖F‖`
Ḃ
σ1+1−σ′
2,∞

dτ

. 〈t〉− 1
2 (σ−σ1+σ2)(Xp,0 + X 2

p,0)(‖(a,m)`‖L∞t (Ḃ
σ1
2,∞) + Xp,0) (4.28)

for 0 < t ≤ 2 and σ′, σ2 ∈ (0, 1].

Proof. The case 0 < t ≤ 2 implies that 〈t〉 ≈ 1 and 〈t− τ〉 ≈ 1 for 0 ≤ τ ≤ t ≤ 2. Set

F = F ` + Fh

with

F ` = F `1 + F `2 + F `3 , Fh = Fh1 + Fh2 + Fh3 ,

where

F `1 = (1− I(a))m⊗m`, F `2 = (P ′′(1) +G(a))aa`Id, F `3 = µ∇(I(a)m`) + (µ+ λ)div (I(a)m`)Id,

Fh1 = (1− I(a))m⊗mh, Fh2 = (P ′′(1) +G(a))aahId, Fh3 = µ∇(I(a)mh) + (µ+ λ)div (I(a)mh)Id.

Here G(a) satisfies G(0) = 0 and (P ′′(1) + G(a))a2 = P (1 + a) − P (1) − P ′(1)a. Due to d
2 − 1 ≤ d

p , it

follows from the lemmas 6.7 and 6.9 that

‖F `1‖`Ḃσ1+1−σ′
2,∞

. ‖F `1‖`Ḃσ12,∞
. ‖F `1‖`

Ḃ
σ1+ d

p
− d

2
2,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)‖m‖
Ḃ
d
p
−1

p,1

‖m`‖
Ḃ
σ1+ d

p
− d

2
+1

2,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)‖m‖
Ḃ
d
p
−1

p,1

‖m`‖Ḃσ12,∞
. (Xp,0 + X 2

p,0)‖m`‖L∞t (Ḃ
σ1
2,∞).

Similarly, one also has

‖F `2‖`Ḃσ1+1−σ′
2,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)‖a‖
Ḃ
d
p
p,1

‖a`‖Ḃσ12,∞
. (Xp,0 + X 2

p,0)‖a`‖L∞t (Ḃ
σ1
2,∞)

and

‖F `3‖`Ḃσ1+1−σ′
2,∞

. ‖a‖
Ḃ
d
p
p,1

‖m`‖Ḃσ12,∞
. Xp,0‖m`‖L∞t (Ḃ

σ1
2,∞).

To limit the term withm⊗mh, we use a similar procedure leading to (4.16) and (4.18). More precisely,

if 2 ≤ p < d, then (6.8) with σ = d
p − 1 yields

‖m⊗mh‖`
Ḃ
σ1
2,∞
.
(
‖m‖

Ḃ
d
p
−1

p,1

+ ‖m`‖Lp∗
)
‖mh‖

Ḃ
1− d

p
p,1

. (4.29)

In the limit case p = d, one can get

‖m⊗mh‖`
Ḃ
σ1
2,∞
. ‖m⊗mh‖`

Ḃ
σ0
2,∞
. ‖m⊗mh‖

L
d
2
. ‖m‖Ḃ0

d,1
‖mh‖Ḃ0

d,1
. (4.30)
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Employing the embeddings Ḃ
d
p

2,1 ↪→ Lp
∗
and Ḃ

d
p−1
p,1 ↪→ Ḃ0

d,1 in (4.29)-(4.30) gives

‖m⊗mh‖`
Ḃ
σ1
2,∞
.
(
‖m`‖

Ḃ
d
2
−1

2,1

+ ‖mh‖
Ḃ
d
p
−1

p,1

)
‖mh‖

Ḃ
d
p
−1

p,1

. X 2
p,0, (4.31)

due to the fact that d
2 − 1 ≤ d

p and 1− d
p ≤

d
p − 1. If p > d, applying (6.8) with σ = 1− d

p again implies

that

‖m⊗mh‖`
Ḃ
σ1
2,∞
.
(
‖m‖

Ḃ
1− d

p
p,1

+ ‖m`‖Lp∗
)
‖mh‖

Ḃ
d
p
−1

p,1

. (4.32)

By using the embedding Ḃ1+σ0
2,1 ↪→ Ḃ

1− dp
p,1 and d

2 − 1 < 1 + σ0 owing to p > d, we obtain

‖m⊗mh‖`
Ḃ
σ1
2,∞
.
(
‖m`‖

Ḃ
d
2
−1

2,1

+ ‖mh‖
Ḃ
d
p
p,1

)
‖mh‖

Ḃ
d
p
−1

p,1

. X 2
p,0. (4.33)

On the other hand, using Lemma 6.9 and Bony’s decomposition, we follow from those lines of bounding

(4.11) and arrive at

‖(I(a)m)`‖Lp∗ . ‖(I(a)m)`‖
Ḃ
d
2
−1

2,1

. ‖a‖
Ḃ
d
p
p,1

(
‖m`‖

Ḃ
d
2
−1

2,1

+ ‖mh‖
Ḃ
d
p
−1

p,1

)
, (4.34)

and one can thus bound the term corresponding to I(a)m ⊗mh as m ⊗mh. Consequently, we deduce

that

‖Fh1 ‖`Ḃσ1+1−σ′
2,∞

. ‖Fh1 ‖`Ḃσ12,∞
. (1 + ‖a‖

Ḃ
d
p
p,1

)
(
‖m`‖

Ḃ
d
2
−1

2,1

+ ‖mh‖
Ḃ
d
p
p,1

)
‖mh‖

Ḃ
d
p
−1

p,1

. (1 + Xp,0)X 2
p,0. (4.35)

In order to bound the term with Fh2 , we mimic the proof of (4.35) and get

‖Fh2 ‖`Ḃσ1+1−σ′
2,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)
(
‖a`‖

Ḃ
d
2
−1

2,1

+ ‖ah‖
Ḃ
d
p
p,1

)
‖ah‖

Ḃ
d
p
−1

p,1

. (1 + Xp,0)X 2
p,0. (4.36)

Using the composition inequality in Lebesgue spaces and the embeddings Ḃ
d
p

2,1 ↪→ Ḃσ0
p,1 ↪→ Lp

∗
, we get

‖I(a)`‖Lp∗ . ‖a‖Lp∗ . ‖a`‖
Ḃ
d
p
2,1

+ ‖ah‖Ḃσ0p,1 . ‖a
`‖
Ḃ
d
2
−1

2,1

+ ‖ah‖
Ḃ
d
p
p,1

. (4.37)

Consequently, we have

‖Fh3 ‖`Ḃσ1+1−σ′
2,∞

.
(
‖a`‖

Ḃ
d
2
−1

2,1

+ ‖ah‖
Ḃ
d
p
p,1

)
‖mh‖

Ḃ
d
p
−1

p,1

. X 2
p,0. (4.38)

Therefore, the proof of Lemma 4.1 is complete.

For the nontrivial case t > 2, we shall proceed differently depending on whether σ1 < σ ≤ d
2 − 1 or

d
2 − 1 < σ < d

2 . For the case σ1 < σ ≤ d
2 − 1, we choose σ′ = 1 in (4.27) and have the following lemma.

Lemma 4.2. Let p satisfy (1.8) and σ0 ≤ σ1 < d
2 − 1. It holds that∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ . 〈t〉− 1
2 (σ−σ1+σ2)(Xp,0 + X 2

p,0)(‖(a,m)`‖L∞1 (Ḃ
σ1
2,∞) + Xp,0)

+〈t〉− 1
2 (σ−σ1+σ2)

(
(1 + Xp,0)(‖(aL,mL, a,m)`‖

L∞t (Ḃ
σ1+σ2
2,∞ )

+ Xp,0)D̃p(t)
)

(4.39)
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for t > 2 and σ1 < σ ≤ d
2 − 1, where

σ2 =


1, if σ1 <

d
2 − 2,

1−, if σ1 = d
2 − 2,

d
2 − 1− σ1, if d

2 − 2 < σ1 <
d
2 − 1.

Proof. For t > 2, we write∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ

=

∫ 1

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ +

∫ t

1

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ. (4.40)

It follows from the same computations in Lemma 4.1 that∫ 1

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ . 〈t〉− 1
2 (σ−σ1+σ2)(Xp,0 + X 2

p,0)(‖(a,m)`‖L∞1 (Ḃ
σ1
2,∞) + Xp,0).

To handle with the second integral on [1, t] for t > 2, we decompose F in terms of linear part and

difference part of solutions:

F = FL + F̃L + F̃

with

FL , (1− I(a))mL ⊗mL + (P ′′(1) +G(a))a2LId

+ µ∇((1 + Ĩ(a))aLmL) + (µ+ λ)div ((1 + Ĩ(a))aLmL) , F1L + F2L + F3L, (4.41)

F̃L , (1− I(a))m̃⊗mL + (P ′′(1) +G(a))ãaLId

+ µ∇((1 + Ĩ(a))ãmL) + (µ+ λ)div ((1 + Ĩ(a))ãmL) , F̃1L + F̃2L + F̃3L, (4.42)

F̃ , (1− I(a))m⊗ m̃+ (P ′′(1) +G(a))aãId

+ µ∇((1 + Ĩ(a))am̃) + (µ+ λ)div ((1 + Ĩ(a))am̃), (4.43)

where Ĩ(a) is a smooth function Ĩ vanishing at zero and satisfies I(a) = (1 + Ĩ(a))a.

We first claim that

‖FL‖`Ḃσ12,∞
. (1 + Xp,0 + X 2

p,0)〈t〉− 1
2 (
d
2−σ1), t > 1. (4.44)

Indeed, decompose mL ⊗mL = m`
L ⊗m`

L +mh
L ⊗m`

L +mL ⊗mh
L. It follows from Lemma 6.3 that

‖m`
L ⊗m`

L‖`Ḃσ12,∞
. ‖m`

L‖
Ḃ
d
2
−1

2,1

‖m`
L‖Ḃσ1+1

2,∞
, (4.45)

where we used the fact that σ1 < d
2 − 1 and σ1 + d

2 ≥ d−
2d
p ≥ 0. Thanks to Lemma 6.5, we get

‖mh
L ⊗m`

L‖`Ḃσ12,∞
. ‖mh

L ⊗m`
L‖`

Ḃ
d
p
− d

2
+σ1

2,∞

. ‖mh
L‖

Ḃ
d
p
− d

2
+σ1

p,1

‖m`
L‖

Ḃ
d
p
2,1

. ‖mh
L‖

Ḃ
d
p
−1

p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

.

(4.46)
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To handle the term corresponding to mL ⊗mh
L, we observe that applying Lemma 6.8 and tracking those

lines from (4.29) to (4.33) yields

‖mL ⊗mh
L‖`Ḃσ12,∞

.
(
‖m`

L‖
Ḃ
d
2
−1

2,1

+ ‖mh
L‖

Ḃ
d
p
p,1

)
‖mh

L‖
Ḃ
d
p
−1

p,1

. (4.47)

Hence, in view of (4.1) and (4.2), we deduce that

‖mL ⊗mL‖`Ḃσ12,∞
. (1 + Xp,0)〈t〉− 1

2 (
d
2−σ1), t > 1. (4.48)

Similarly, we write

I(a)mL ⊗mL = I(a)m`
L ⊗m`

L + I(a)mh
L ⊗m`

L + I(a)mL ⊗mh
L.

Now, arguing as for proving (4.45), it easily follows from Lemmas 6.5 and 6.9 that

‖I(a)m`
L ⊗m`

L‖`Ḃσ12,∞
. ‖I(a)‖

Ḃ
d
p
p,1

‖m`
L ⊗m`

L‖Ḃσ12,∞
. ‖a‖

Ḃ
d
p
p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

‖m`
L‖Ḃσ1+1

2,∞
. (4.49)

Note also that if σ0 < σ1 <
d
2 − 1 and d

2 − 1 ≤ d
p , as (4.46), we have

‖I(a)mh
L ⊗m`

L‖`Ḃσ12,∞
. ‖I(a)mh

L‖
Ḃ
d
p
− d

2
+σ1

p,1

‖m`
L‖

Ḃ
d
p
2,1

. ‖a‖
Ḃ
d
p
p,1

‖mh
L‖

Ḃ
d
p
− d

2
+σ1

p,1

‖m`
L‖

Ḃ
d
p
2,1

. ‖a‖
Ḃ
d
p
p,1

‖mh
L‖

Ḃ
d
p
−1

p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

,
(4.50)

where we used the second item of Lemma 6.3 with σ0 + σ1 > 0. If σ1 = σ0, then by (6.4) it holds that

‖I(a)mh
L ⊗m`

L‖`Ḃσ12,∞
. ‖I(a)mh

L‖
Ḃ

1− d
p

p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

. ‖a‖
Ḃ
d
p
p,1

‖mh
L‖

Ḃ
d
p
−1

p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

. (4.51)

Keep in mind that (4.34), one can bound the term corresponding to I(a)mL⊗mh
L as mL⊗mh

L. Precisely,

‖I(a)mL ⊗mh
L‖`Ḃσ12,∞

. ‖a‖
Ḃ
d
p
p,1

(
‖m`

L‖
Ḃ
d
2
−1

2,1

+ ‖mh
L‖

Ḃ
d
p
p,1

)
‖mh

L‖
Ḃ
d
p
−1

p,1

. (4.52)

Consequently, by combining (4.49)-(4.51) and (4.1)-(4.2), we obtain

‖I(a)mL ⊗mL‖`Ḃσ12,∞
. (Xp,0 + X 2

p,0)〈t〉− 1
2 (
d
2−σ1), t > 1. (4.53)

Bounding F2L and F3L follows from the same arguments as F1L. As a matter of fact, it can be shown

that
‖F2L‖`Ḃσ12,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)
(
‖a`L‖

Ḃ
d
2
−1

2,1

‖a`L‖Ḃσ1+1
2,∞

+ ‖ahL‖
Ḃ
d
p
p,1

‖a`L‖
Ḃ
d
2
−1

2,1

+ ‖ahL‖2
Ḃ
d
p
p,1

)
. (1 + Xp,0)2〈t〉− 1

2 (
d
2−σ1)

and

‖F3L‖`Ḃσ12,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)
(
‖a`L‖

Ḃ
d
2
−1

2,1

‖m`
L‖Ḃσ1+1

2,∞
+ ‖ahL‖

Ḃ
d
p
p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

+ (‖a`L‖
Ḃ
d
2
−1

2,1

+ ‖ahL‖
Ḃ
d
p
p,1

)‖mh
L‖

Ḃ
d
p
−1

p,1

)
. (1 + Xp,0)2〈t〉− 1

2 (
d
2−σ1).
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Therefore, the claim (4.44) is proved.

Regarding F̃L, our aim is to show that

‖(F̃L, F̃ )‖`
Ḃ
σ1
2,∞
. (1 + Xp,0)(‖(a,m, aL,mL)`‖

Ḃ
σ1+σ2
2,∞

+ Xp,0)〈t〉− 1
2 (
d
2−σ1)D̃p(t) (4.54)

for t > 1, where σ2 ∈ (0, 1] is to be confirmed.

Firstly, we write mL ⊗ m̃ = m`
L ⊗ m̃` + mh

L ⊗ m̃` + mL ⊗ m̃h. Owing to σ1 + σ2 ≤ σ1 + 1 < d
2 , it

follows from the third item of Lemma 6.3 and the definition of D̃p(t) that

‖m`
L ⊗ m̃`‖Ḃσ12,∞

. ‖m`
L‖Ḃσ1+σ2

2,∞
‖m̃`‖

Ḃ
d
2
−σ2

2,1

. 〈t〉− 1
2 (
d
2−σ1)‖m`

L‖Ḃσ1+σ2
2,∞

D̃p(t). (4.55)

Arguing as (4.46), we have

‖mh
L ⊗ m̃`‖Ḃσ12,∞

. ‖mh
L‖

Ḃ
d
p
−1

p,1

‖m̃`‖
Ḃ
d
2
−1

2,1

. 〈t〉− 1
2 (
d
2−σ1)Xp,0D̃p(t), (4.56)

where we used (4.1) and that 〈t〉− 1
2 (
d
2−1−σ1+σ2)e−Rt ≤ 〈t〉− 1

2 (
d
2−σ1) in the last inequality. From (4.47),

(4.1)-(4.2), we get

‖mL ⊗ m̃h‖Ḃσ12,∞
. (‖m`

L‖
Ḃ
d
2
−1

2,1

+ ‖mh
L‖

Ḃ
d
p
p,1

)‖m̃h‖
Ḃ
d
p
−1

p,1

. 〈t〉− 1
2 (
d
2−σ1)Xp,0D̃p(t) (4.57)

for t > 1. Together with (4.55)-(4.57), we thus get

‖mL ⊗ m̃‖`Ḃσ12,∞
. 〈t〉− 1

2 (
d
2−σ1)(‖m`

L‖Ḃσ1+σ2
2,∞

+ Xp,0)D̃p(t), t > 1. (4.58)

Bounding the composite term with I(a)mL ⊗ m̃ follows essentially from (4.49)-(4.51) and yields

‖I(a)m̃⊗mL‖`Ḃσ12,∞
. 〈t〉− 1

2 (
d
2−σ1)(‖m`

L‖Ḃσ1+σ2
2,∞

+ Xp,0)Xp,0D̃p(t), t > 1. (4.59)

Similarly, we have

‖F̃2L‖`Ḃσ12,∞
. (1 + ‖a‖

Ḃ
d
p
p,1

)
(
‖a`L‖Ḃσ1+σ2

2,∞
‖ã`‖

Ḃ
d
2
−σ2

2,1

+ ‖ahL‖
Ḃ
d
p
p,1

‖ã`‖
Ḃ
d
2
−1

2,1

+ (‖a`L‖
Ḃ
d
2
−1

2,1

+ ‖ahL‖
Ḃ
d
p
p,1

)‖ãh‖
Ḃ
d
p
−1

p,1

)
. 〈t〉− 1

2 (
d
2−σ1)(1 + Xp,0)(‖a`L‖Ḃσ1+σ2

2,∞
+ Xp,0)D̃p(t)

(4.60)

and
‖F̃3L‖`Ḃσ12,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)
(
‖m`

L‖Ḃσ1+σ2
2,∞

‖ã`‖
Ḃ
d
2
−σ2

2,1

+ ‖mh
L‖

Ḃ
d
p
p,1

‖ã`‖
Ḃ
d
2
−1

2,1

+ (‖m`
L‖

Ḃ
d
2
−1

2,1

+ ‖ahL‖
Ḃ
d
p
p,1

)‖ãh‖
Ḃ
d
p
−1

p,1

)
. 〈t〉− 1

2 (
d
2−σ1)(1 + Xp,0)(‖m`

L‖Ḃσ1+σ2
2,∞

+ Xp,0)D̃p(t), t > 1.

(4.61)
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In addition, those terms in F̃ can be treated along the same lines as F̃L, and is thus omitted. Consequently,

(4.54) holds. It follows from (4.44) and (4.54) that∫ t

1

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ

. 〈t〉− 1
2 (σ−σ1+σ2)

(
(1 + Xp,0)(‖(aL,mL, a,m)`‖

L∞t (Ḃ
σ1+σ2
2,∞ )

+ Xp,0)D̃p(t)
)
,

where σ2 is given by (4.22). In fact, we performed the following inequality that due to (4.25),

∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (
d
2−σ1)dτ .


〈t〉− 1

2 (σ−σ1+1), if 1
2 (d2 − σ1) > 1,

〈t〉− 1
2 (σ−σ1+1)−, if 1

2 (d2 − σ1) = 1,

〈t〉− 1
2 (σ−σ1+

d
2−1−σ1), if 1

2 (d2 − σ1) < 1

for σ1 < σ ≤ d
2 − 1. The proof of Lemma 4.2 is complete.

The case d
2 − 1 < σ < d

2 requires more elaborate estimates. In (4.27), we take σ′ = σ2 on the part of

FL and σ′ = 1 on the part of F̃L + F̃ and prove the following lemma.

Lemma 4.3. Let p satisfy (1.8) and σ0 ≤ σ1 < d
2 − 1. For all t > 2 and d

2 − 1 < σ < d
2 , it holds that∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ2)‖FL‖`Ḃσ1+1−σ2

2,∞
dτ +

∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)‖(F̃L, F̃ )‖`

Ḃ
σ1
2,∞

dτ

. 〈t〉− 1
2 (σ−σ1+σ2)(Xp,0 + X 2

p,0)(‖(a,m)`‖L∞1 (Ḃ
σ1
2,∞) + Xp,0)

+ 〈t〉− 1
2 (σ−σ1+σ2)

(
(1 + Xp,0)(‖(aL,mL, a,m)`‖

L∞t (Ḃ
σ1+σ3
2,∞ )

+ Xp,0)D̃p(t)
)
,

where FL, F̃L and F̃ are defined by (4.41), (4.42) and (4.43), respectively, and σ2, σ3 > 0 are given by

σ2 = min
{1

2
,
(d

2
− 1− σ1

)
−
}
, σ3 = min

{d
2
− σ, d

2
− 1− σ1 − σ2

}
.

Proof. We deal with the first term on the left-hand side of (4.62). Since the integral on [0, 1] can be

handled similarly as in Lemma 4.1, we deal with the following integral with t > 2 only:∫ t

1

〈t− τ〉− 1
2 (σ−σ1+σ2)‖FL‖`Ḃσ1+1−σ2

2,∞
dτ,

where σ2 ∈ (0, 1) is to be confirmed. According to Lemmas 4.1 and 6.3, we arrive at

‖m`
L ⊗m`

L‖`Ḃσ1+1−σ2
2,∞

. ‖m`
L‖

Ḃ
d
2
2,1

‖m`
L‖Ḃσ1+1−σ2

2,∞
. 〈t〉− 1

2 (
d
2−σ1+1−σ2). (4.62)

Here we noticed that σ1 ≤ σ1 + 1− σ2 < d
2 and σ1 + 1− σ2 + d

2 ≥ d−
2d
p + 1− σ2 ≥ 0. Combining with

(4.46)-(4.47), one can get

‖mL ⊗mL‖`Ḃσ1+1−σ2
2,∞

. (1 + Xp,0)〈t〉− 1
2 (
d
2−σ1+1−σ2), t > 1. (4.63)
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Let us next look at the composite term with I(a)mL⊗mL, which resorts to the more elaborate analysis.

We consider cases σ1 +1−σ2 < d
2 −1 and d

2 −1 ≤ σ1 +1−σ2 < d
2 separately. The case σ1 +1−σ2 < d

2 −1

implies that σ1 + 1− σ2 < d
p . Note that σ1 + 1− σ2 + d

p > 0, it follows from Lemmas 6.6 and 6.9 that

‖I(a)m`
L ⊗m`

L‖`Ḃσ1+1−σ2
2,∞

. ‖a‖
Ḃ
d
p
p,1

‖m`
L ⊗m`

L‖Ḃσ1+1−σ2
2,∞

. 〈t〉− 1
2 (
d
2−σ1+1−σ2). (4.64)

If d2 − 1 ≤ σ1 + 1− σ2 < d
2 , thanks to

d
2 − 1 ≤ d

p , we end up with

‖I(a)m`
L ⊗m`

L‖`Ḃσ1+1−σ2
2,∞

. ‖I(a)m`
L ⊗m`

L‖`
Ḃ
d
2
−1

2,∞

. ‖a‖
Ḃ
d
p
p,1

‖m`
L ⊗m`

L‖
Ḃ
d
2
−1

2,1

. ‖a‖
Ḃ
d
p
p,1

‖m`
L‖

Ḃ
d
2
−1

2,1

‖m`
L‖

Ḃ
d
2
2,1

. 〈t〉− 1
2 (
d
2−σ1)‖a‖

Ḃ
d
p
p,1

. (4.65)

Furthermore, due to the decomposition a = aL + ã, it follows from Proposition 4.1 and the definition of

D̃p(t) that

‖a‖
Ḃ
d
p
p,1

≤ ‖aL‖
Ḃ
d
p
p,1

+ ‖ã‖
Ḃ
d
p
p,1

. 〈t〉− 1
2 (
d
2−σ1)(1 + D̃p(t)). (4.66)

Noticing that 1
2 (d2 − σ1 + 1− σ2) < 1

2 (d2 − σ1 + 1) < d
2 − σ1, from (4.65)-(4.66) we obtain

‖I(a)m`
L ⊗m`

L‖`Ḃσ1+1−σ2
2,∞

. 〈t〉− 1
2 (
d
2−σ1+1−σ2)(1 + D̃p(t)). (4.67)

To handle those terms involving I(a)mh
L ⊗m`

L and I(a)mL ⊗mh
L, by repeating the procedure leading to

(4.50)-(4.52), we conclude that

‖I(a)mL ⊗mL‖`Ḃσ1+1−σ2
2,∞

. 〈t〉− 1
2 (
d
2−σ1+1−σ2)(1 + D̃p(t)), t > 1. (4.68)

The nonlinear terms F2L and F3L can be essentially estimated at the same way. Consequently, one can

arrive at ∫ t

1

〈t− τ〉− 1
2 (σ−σ1+σ2)‖FL‖`Ḃσ1+1−σ2

2,∞
dτ

. (1 + Xp,0 + D̃p(t))
∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ2)〈τ〉− 1

2 (
d
2−σ1+1−σ2)dτ

. 〈t〉− 1
2 (σ−σ1+σ2)(1 + Xp,0 + D̃p(t)),

(4.69)

if choosing

σ2 , min
{1

2
,
(d

2
− 1− σ1

)
−
}
,

which leads to that σ − σ1 + σ2 ≤ d
2 − σ1 + 1− σ2 and 1

2 (d2 − σ1 + 1− σ2) > 1 for d
2 − 1 < σ < d

2 .

Then, we bound the second term on the left-hand side of (4.62) concerning the integral with the

difference (ã, m̃). Without loss of generality, we only estimate∫ t

1

〈t− τ〉− 1
2 (σ−σ1+1)‖(F̃L, F̃ )‖`

Ḃ
σ1
2,∞

dτ.
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Let σ3 ∈ (0, 1) be sufficiently small (to be confirmed). Applying the product law in Lemma 6.3 gives

‖m`
L ⊗ m̃`‖`

Ḃ
σ1
2,∞
. ‖m`

L‖Ḃσ1+σ3
2,∞

‖m̃`‖
Ḃ
d
2
−σ3

2,1

. 〈t〉− 1
2 (
d
2−σ1+σ2−σ3)‖m`

L‖Ḃσ1+σ3
2,∞

D̃p(t), (4.70)

where we noticed that σ1 + σ3 <
d
2 and σ1 + d

2 ≥ 0. Similar to (4.56)-(4.57), we obtain

‖mh
L ⊗ m̃`‖`

Ḃ
σ1
2,∞
. ‖mh

L‖
Ḃ
d
p
−1

p,1

‖m̃`‖
Ḃ
d
2
−1

2,1

. 〈t〉− 1
2 (
d
2−σ1+σ2−σ3)Xp,0D̃p(t) (4.71)

and

‖mL ⊗ m̃h‖`
Ḃ
σ1
2,∞
. (‖m`

L‖
Ḃ
d
2
−1

2,1

+ ‖mh
L‖

Ḃ
d
p
p,1

)‖m̃h‖
Ḃ
d
p
−1

p,1

. 〈t〉− 1
2 (
d
2−σ1+σ2−σ3)Xp,0D̃p(t), t > 1. (4.72)

Likewise, we see that, using those inequalities for composition in Lemma 6.9,

‖I(a)mL ⊗ m̃‖`Ḃσ12,∞
. 〈t〉− 1

2 (
d
2−σ1+σ2−σ3)(‖m`

L‖Ḃσ1+σ3
2,∞

+ Xp,0)Xp,0D̃p(t), t > 1. (4.73)

Bounding F̃2L, F̃3L and F̃ can be proceeded along the same lines as F̃1L. The details are left to the

interested reader. Thus, we conclude that∫ t

1

〈t− τ〉− 1
2 (σ−σ1+1)‖(F̃L, F̃ )‖`

Ḃ
σ1
2,∞

dτ

.
∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (
d
2−σ1+σ2−σ3)dτ

(
(1 + Xp,0)(‖(aL,mL, a,m)`‖

Ḃ
σ1+σ3
2,∞

+ Xp,0)
)
D̃p(t).

It follows from (4.25) that∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (
d
2−σ1+σ2−σ3)dτ

.


〈t〉− 1

2 (σ−σ1+1), if 1
2 (d2 − σ1 + σ2 − σ3) > 1,

〈t〉− 1
2 (σ−σ1+1)−, if 1

2 (d2 − σ1 + σ2 − σ3) = 1,

〈t〉− 1
2 (σ−σ1+

d
2−1−σ1−σ3), if 1

2 (d2 − σ1 + σ2 − σ3) < 1,

if 1
2 (σ − σ1 + 1) ≤ 1

2 (d2 − σ1 + σ2 − σ3) or that∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (
d
2−σ1+σ2−σ3)dτ

.


〈t〉− 1

2 (
d
2−σ1+σ2−σ3), if 1

2 (σ − σ1 + 1) > 1,

〈t〉− 1
2 (
d
2−σ1+σ2−σ3)−, if 1

2 (σ − σ1 + 1) = 1,

〈t〉− 1
2 (σ−σ1+

d
2−1−σ1−σ3), if 1

2 (σ − σ1 + 1) < 1,

if 1
2 (d2 − σ1 + σ2 − σ3) ≤ 1

2 (σ − σ1 + 1). Recalling that σ2 = min{ 12 , (
d
2 − 1 − σ1)−} < d

2 − 1 − σ1 and
d
2 − 1 < σ < d

2 , it is shown that above two integrals can be both controlled by 〈t〉− 1
2 (σ−σ1+σ2) provided

that σ3 > 0 is chosen small enough such that

σ3 = min
{d

2
− σ, d

2
− 1− σ1 − σ2

}
.

Hence, the proof of Lemma 4.3 is finished.
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Combining those time-weighted estimates in Lemmas 4.1-4.3, we conclude from (4.27) that

sup
σ1<σ<

d
2

‖〈τ〉 12 (σ−σ1+σ2)(ã, m̃)‖`
L∞t (Ḃσ2,1)

. (Xp,0 + X 2
p,0)(‖(a,m)`‖L∞t (Ḃ

σ1
2,∞) + Xp,0)

+
(

(1 + Xp,0)(‖(aL,mL, a,m)`‖
L∞t (Ḃ

σ1+σ∗
2,∞ )

+ Xp,0)
)
D̃p(t),

(4.74)

where the exponent σ∗ > 0 is given by σ∗ = σ2 for σ1 < σ ≤ d
2 − 1 and σ∗ = σ3 for d

2 − 1 < σ < d
2 .

4.1.2 Bounds for the high frequencies

To achieve the high-frequency estimates of (ã, m̃) in Proposition 4.2, it is natural to look at the

difference system (1.24) with the nonlinear term divF . The problem is that divF (for example A(I(a)u))

will cause a loss of one derivative. In the critical regularity framework, however, one cannot afford any

loss of regularity for the high frequency part of a. To overcome the difficulty, we use the decomposition

ã = a− aL, m̃ = (1 + a)u−mL,

which implies that it suffices to estimate (a, u) instead of (ã, m̃). The proof is proceeded into two steps.

Firstly, we consider the system (1.9)-(1.10) and track the decay exponent for high frequencies according

to the definition of D̃p(t), by the energy approach in terms of effective velocity w = ∇(−∆)−1(a− divu)

that has been successfully developed by Haspot [21] to prove Theorem 1.1 (see also [15]). Precisely, we

have the following lemma about weighted estimate of (a, u) in high frequencies.

Lemma 4.4. If p satisfy (1.8), then it holds that

‖〈τ〉α∗(∇a, u)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

+ ‖τα∗u‖h
L̃∞(1,t;Ḃ

d
p
+1

p,1 )

. 1 + Xp,0 + X 2
p,0 + ‖τ 1

2 (
d
2−σ1)−u‖

L̃∞(1,t;Ḃ
d
p
p,1)

+ Xp,0
(
‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
+ D̃p(t)

) (4.75)

with α∗ = 1
2 (d2 − σ1 + σ2)−.

Proof. We shall modify the Lp time-weighted energy argument performed in [17] slightly. With the aid

of the effective velocity, one can end up with

‖〈τ〉α∗(∇a, u)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. ‖(∇a0, u0)‖h
Ḃ
d
p
−1

p,1

+
∑

j≥j0−1

2j(
d
p−1) sup

0≤τ≤t

(
〈τ〉α∗

∫ τ

0

e−c(τ−s)Zj(s)ds
) (4.76)

with Zj = Z1
j + · · ·+ Z5

j and

Z1
j , ‖∆̇j(au)‖Lp , Z2

j , ‖∇∆̇j(adivu)‖Lp , Z3
j , ‖divu‖L∞‖∇∆̇ja‖Lp ,

Z4
j ,

∑
i,k

‖[ui, ∆̇j ]∂
2
ika‖L2 , Z5

j , ‖∆̇jg‖Lp .
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Without loss of generality, one can assume that t > 2. First, let us handle the time-weighted integral in

(4.76) for 0 ≤ τ ≤ 2. It is easy to see that

I1 , sup
0≤τ≤2

(
〈τ〉α∗

∫ τ

0

e−c(τ−s)Zj(s)ds
)
≤
∫ 2

0

Zj(s)ds.

For the integral with 2 ≤ τ ≤ t, it is convenient to split it into two parts: [0, 1] and [1, τ ]. It is also simple

to handle:

I2 , sup
2≤τ≤t

(
〈τ〉α∗

∫ 1

0

e−c(τ−s)Zj(s)ds
)
≤ sup

2≤τ≤t

(
〈τ〉α∗e− c2 τ

)∫ 1

0

Zj(s)ds ≤
∫ 1

0

Zj(s)ds

since 2 ≤ τ ≤ t and 0 ≤ s ≤ 1. On the other hand, note that s ≈ 1 + s ≈ 〈s〉, the integral on the part

[1, τ ] can be dealt with as follows:

I3 , sup
2≤τ≤t

(
〈τ〉α∗

∫ τ

1

e−c(τ−s)Zj(s)ds
)

. sup
2≤τ≤t

sup
1≤s≤τ

(sα∗Zj(s))〈τ〉α∗
∫ τ

1

e−c(τ−s)s−α∗ds . sup
1≤τ≤t

(τα∗Zj(τ)).

Consequently, by employing Lemmas 6.9 and 6.10, we obtain∑
j≥j0−1

2j(
d
p−1)(I1 + I2)

. ‖a‖
L̃2
t (Ḃ

d
p
p,1)
‖u‖

L̃2
t (Ḃ

d
p
p,1)

+ ‖a‖2
L̃2
t (Ḃ

d
p
p,1)

+ ‖a‖
L̃∞t (Ḃ

d
p
p,1)
‖u‖

L1
t (Ḃ

d
p
+1

p,1 )
. X 2

p,0,

(4.77)

where the interpolation inequalities are also used. Next, we focus on the nontrivial case∑
j≥j0−1

2j(
d
p−1)I3 .

∑
j≥j0−1

2j(
d
p−1) sup

1≤τ≤t
(τα∗Zj(τ)).

We shall use repeatedly the following inequalities:

‖〈τ〉 12 ( d2−σ1)−aL‖
L̃∞t (Ḃ

d
p
p,1)
. 1 + Xp,0; ‖〈τ〉α∗ ã‖

L̃∞t (Ḃ
d
p
p,1)
. D̃p(t). (4.78)

Indeed, it follows from the embedding, the definition of D̃p and tilde norms that

‖〈τ〉 12 ( d2−σ1)−aL‖
L̃∞t (Ḃ

d
p
p,1)
. ‖〈τ〉 12 ( d2−σ1)−a`L‖

L∞t (Ḃ
d
2
−

2,1 )
+ ‖eRτaL‖h

L̃∞t (Ḃ
d
p
p,1)

. 1 + Xp,0

and

‖〈τ〉α∗ ã‖
L̃∞t (Ḃ

d
p
p,1)
. ‖〈τ〉α∗ ã‖`

L∞t (Ḃ
d
2
−

2,1 )
+ ‖〈τ〉α∗ ã‖h

L̃∞t (Ḃ
d
p
p,1)

. D̃p(t).

Noticing that α∗ < d
2 − σ1, it is clear that∑

j≥j0−1

2j(
d
p−1) sup

1≤τ≤t
(τα∗Z1

j (τ)) = ‖τα∗au‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

. ‖τα∗aLu‖h
L̃∞(1,t;Ḃ

d
p
p,1)

+ ‖τα∗ ãu‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

. ‖〈τ〉 12 ( d2−σ1)−aL‖
L̃∞t (Ḃ

d
p
p,1)
‖τ 1

2 (
d
2−σ1)−u‖

L̃∞(1,t;Ḃ
d
p
p,1)

+ ‖u‖
L̃∞(1,t;Ḃ

d
p
−1

p,1 )
‖〈τ〉α∗ ã‖

L̃∞t (Ḃ
d
p
p,1)

. ‖τ 1
2 (
d
2−σ1)−u‖

L̃∞(1,t;Ḃ
d
p
p,1)

+ Xp,0D̃p(t),

(4.79)
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where we used the decomposition au = aLu+ ãu and (4.78). Furthermore, it follows from the embedding

Ḃ
d
p

p,1 ↪→ L∞ and Lemma 6.10 that∑
j≥j0−1

2j(
d
p−1) sup

1≤τ≤t
(τα∗(Z2

j + Z3
j + Z4

j )(τ))

. ‖a‖
L̃∞t (Ḃ

d
p
p,1)
‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
. Xp,0‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
.

(4.80)

Next, let us pay attention to the term Z5
j associated with g = −u · ∇u − k(a)∇a − I(a)Au. It follows

from product laws in Lemma 6.3 adapted to the tilde spaces that

‖τα∗u · ∇u‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

. ‖u‖
L̃∞t (Ḃ

d
p
−1

p,1 )
‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
. Xp,0‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )

and

‖τα∗I(a)Au‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

. ‖a‖
L̃∞t (Ḃ

d
p
p,1)
‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
. Xp,0‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
.

Regarding to the pressure term with k(a)∇a, we use the following decomposition:

k(a)∇a = k(aL)∇aL + (k(a)− k(aL))∇aL + k(a)∇ã.

Then Lemma 6.3, Lemma 6.9 and (4.78) ensure that

‖τα∗k(aL)∇aL‖
L̃∞(1,t;Ḃ

d
p
−1

p,1 )
. ‖〈τ〉 12 ( d2−σ1)−aL‖2

L̃∞t (Ḃ
d
p
p,1)

. 1 + X 2
p,0,

‖τα∗(k(a)− k(aL))∇aL‖
L̃∞(1,t;Ḃ

d
p
−1

p,1 )
. ‖aL‖

L̃∞t (Ḃ
d
p
p,1)
‖〈τ〉α∗ ã‖

L̃∞t (Ḃ
d
p
p,1)
. Xp,0D̃p(t)

and

‖τα∗k(a)∇ã‖
L̃∞(1,t;Ḃ

d
p
−1

p,1 )
. ‖a‖

L̃∞t (Ḃ
d
p
p,1)
‖〈τ〉α∗ ã‖

L̃∞t (Ḃ
d
p
p,1)
. Xp,0D̃p(t).

Therefore, we obtain∑
j≥j0−1

2j(
d
p−1) sup

1≤τ≤t
(τα∗Z5

j (τ)) . 1 + X 2
p,0 + Xp,0

(
‖〈τ〉α∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
+ D̃p(t)

)
. (4.81)

Putting all above estimates (4.77)-(4.81) together, it thus follows from (4.76) that

‖〈τ〉α∗(∇a, u)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. 1 + Xp,0 + X 2
p,0 + ‖τ 1

2 (
d
2−σ1)−u‖

L̃∞(1,t;Ḃ
d
p
p,1)

+ Xp,0
(
‖τα∗u‖

L̃∞(1,t;Ḃ
d
p
+1

p,1 )
+ D̃p(t)

)
.

(4.82)

Finally, we are going to establish gain of regularity and decay altogether for the high frequencies of u,

which strongly depends on the parabolic maximal regularity for the Lamé semi-group (see Lemma 6.11).

It follows from the velocity equation in (1.9) that
∂t(tu)−A(tu) = u− t∇a+ tg,

tu|t=0 = 0
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with 0 ≤ t ≤ 1. Consequently, the regularity property in Lemma 6.11, standard product laws and

composite estimates enable us to get

‖tu‖h
L̃∞(0,1;Ḃ

d
p
+1

p,1 )

. ‖(u,∇a)‖h
L̃∞(0,1;Ḃ

d
p
−1

p,1 )

+ ‖tg‖h
L̃∞(0,1;Ḃ

d
p
−1

p,1 )

. Xp,0 + X 2
p,0 + Xp,0‖tu‖h

L̃∞(0,1;Ḃ
d
p
+1

p,1 )

,

which, together with Xp,0 � 1, leads to

sup
t∈[0,1]

‖u(t)‖h
Ḃ
d
p
+1

p,1

. Xp,0. (4.83)

To obtain decay estimates of u for t > 1, we reformulate the velocity equation in (1.9) as follows

∂t(τ
α∗u)−A(τα∗u) = α∗τ

α∗−1u− τα∗(∇a− g)

with 1 ≤ τ ≤ t. Thus, employing Lemma 6.11 again implies that

‖τα∗u‖h
L̃∞(1,t;Ḃ

d
p
+1

p,1 )

. ‖u(1)‖
Ḃ
d
p
+1

p,1

+ ‖τα∗−1u‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

+ ‖τα∗a‖h
L̃∞(1,t;Ḃ

d
p
p,1)

+ ‖τα∗g‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

.
(4.84)

Due to that fact τ ≥ 1, we see that

‖τα∗−1u‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

. ‖〈τ〉α∗u‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

, ‖τα∗a‖h
L̃∞(1,t;Ḃ

d
p
p,1)

. ‖〈τ〉α∗a‖h
L̃∞t (Ḃ

d
p
p,1)

.

Bounding the norm ‖τα∗g‖h
L̃∞(1,t;Ḃ

d
p
−1

p,1 )

is exactly the same as (4.81), and one thus arrive at (4.75)

readily.

Secondly, we establish several calculus inequalities to deduce the desired high-frequency decay of

(ã, m̃) in Proposition 4.2.

Lemma 4.5. If p satisfy (1.8), then it holds that

‖〈τ〉α∗m̃‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. ‖〈τ〉α∗u‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

+ 1 + Xp,0 + X 2
p,0 + Xp,0D̃p(t),

‖τα∗m̃‖h
L̃∞(1,t;Ḃ

d
p
p,1)

. ‖τα∗u‖h
L̃∞(1,t;Ḃ

d
p
+1

p,1 )

+ 1 + Xp,0 + X 2
p,0 + Xp,0D̃p(t),

‖τα∗u`‖
L̃∞(1,t;Ḃ

d
p
+1

p,1 )
. 1 + Xp,0 + X 2

p,0 + (1 + Xp,0)D̃p(t),

‖τ 1
2 (
d
2−σ1)−u‖

L̃∞(1,t;Ḃ
d
p
p,1)
. 1 + Xp,0 + X 2

p,0 + (1 + Xp,0)D̃p(t).

(4.85)

Proof. Bounding the first and second inequalities in (4.85) are almost the same, which both depends on

the decomposition

m̃ = (1 + a)u−mL = u−mL + I(a)m̃+ I(aL)mL + (I(a)− I(aL))mL with I(a) =
a

1 + a
. (4.86)
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Let us take a look at (4.85)1 for example. It follows from Proposition 4.1 that

‖〈τ〉α∗mL‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

≤ ‖eRτmL‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. Xp,0. (4.87)

The definition of D̃p, product laws and composite estimates in Lemmas 6.3 and 6.9 allow to get

‖〈τ〉α∗I(a)m̃‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

≤ ‖〈τ〉α∗I(a)m̃`‖h
L̃∞t (Ḃ

d
p
p,1)

+ ‖〈τ〉α∗I(a)m̃h‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. ‖a‖
L̃∞t (Ḃ

d
p
p,1)

(‖〈τ〉α∗m̃`‖
L∞t (Ḃ

d
2
−

2,1 )
+ ‖〈τ〉α∗m̃h‖

L̃∞t (Ḃ
d
p
−1

p,1 )
)

. Xp,0D̃p(t).

(4.88)

Similarly, by (4.78), we have

‖〈τ〉α∗I(aL)mL‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

≤ ‖〈τ〉α∗I(aL)m`
L‖h

L̃∞t (Ḃ
d
p
p,1)

+ ‖〈τ〉α∗I(aL)mh
L‖h

L̃∞t (Ḃ
d
p
−1

p,1 )

. ‖〈τ〉 12 ( d2−σ1)−aL‖
L̃∞t (Ḃ

d
p
p,1)

(
‖〈τ〉 12 ( d2−σ1)−m`

L‖
L∞t (Ḃ

d
2
−

2,1 )
+ ‖〈τ〉 12 ( d2−σ1)−mh

L‖
L̃∞t (Ḃ

d
p
−1

p,1 )

)
. (1 + Xp,0)2.

(4.89)

Also, it follows from (4.1), (4.78) and Lemma 6.9 that

‖〈τ〉α∗(I(a)− I(aL))mL‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

. ‖〈τ〉α∗ ã‖
L̃∞t (Ḃ

d
p
p,1)
‖mL‖

L̃∞t (Ḃ
d
p
−1

p,1 )
. Xp,0D̃p(t). (4.90)

Therefore, combining with (4.86), (4.87), (4.88), (4.89) and (4.90) lead to (4.85)1 directly.

To show (4.85)3-(4.85)4, it suffices to use the decomposition that u = m−I(a)m = m̃+mL−I(a)(m̃+

mL). Keeping in mind that σ2 ≤ 1, by Proposition 4.1, we arrive at

‖〈τ〉α∗u`‖
L̃∞(1,t;Ḃ

d
p
+1

p,1 )
. ‖〈τ〉α∗m̃`‖

L∞(1,t;Ḃ
d
2
−

2,1 )
+ ‖〈τ〉 12 ( d2+1−σ1)−m`

L‖
L∞(1,t;Ḃ

d
2
+1−

2,1 )

+ ‖〈τ〉α∗I(a)m̃‖`
L̃∞(1,t;Ḃ

d
p
p,1)

+ ‖〈τ〉α∗I(a)mL‖`
L̃∞(1,t;Ḃ

d
p
p,1)

. 1 + Xp,0 + X 2
p,0 + (1 + Xp,0)D̃p(t).

(4.91)

Bounding (4.85)4 is totally similar, and thus those details can be omitted.

Plugging (4.85) into (4.75), and remembering the smallness of Xp,0 and the fact that the high-frequency

part of aL decays exponentially in the norm of L̃∞t (Ḃ
d
p

p,1), we eventually conclude that

‖〈τ〉α∗(∇ã, m̃)‖h
L̃∞t (Ḃ

d
p
−1

p,1 )

+ ‖τα∗m̃‖h
L̃∞(1,t;Ḃ

d
p
p,1)

. 1 + Xp,0D̃(t). (4.92)

Finally, adding up (4.92) to (4.74), we conclude that there exists a constant σ∗ ∈ (0, 1] such that

D̃p(t) . 1 + ‖(a,m)`‖L∞t (Ḃ
σ1
2,∞) + (‖(aL,mL, a,m)`‖

L∞t (Ḃ
σ1+σ∗
2,∞ )

+ Xp,0)D̃p(t), t > 0. (4.93)
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As shown by the priori work [51] (see Lemma 5.1), there is the nonlinear evolution to the solution (a, u)

at low frequencies:

‖(a, u)`‖L∞t (Ḃ
σ1
2,∞) ≤ C0. (4.94)

for t > 0, where the constant C0 depends on Xp,0 and the norm ‖(a0, u0)`‖Ḃσ12,∞
with σ0 ≤ σ1 <

d
2 − 1. Arguing similarly as those lines (4.12), (4.13), (4.16) and (4.18), one can deduce from (4.94)

that ‖(a,m)`‖L∞t (Ḃ
σ1
2,∞) ≤ C0, provided that Theorem 1.1 holds. Combining this with the interpolation

(6.1), the fact σ1 < σ1 + σ∗ ≤ d
2 and ‖(a,m)`‖

L∞t (Ḃ
d
2
2,1)
≤ ‖(a,m)`‖

L∞t (Ḃ
d
2
−1

2,1 )
. Xp,0, we deduce

‖(a,m)`‖
L∞t (Ḃ

σ1+σ∗
2,∞ )

. ‖(a,m)`‖θ∗
L∞t (Ḃ

σ1
2,∞)
‖(a,m)`‖1−θ∗

L∞t (Ḃ
d
2
2,1)
. Cθ∗0 X

1−θ∗
p,0 << 1, (4.95)

with θ∗ ∈ (0, 1) satisfying σ1θ∗ + (1− θ)d2 = σ1 + σ∗. Since ‖(aL,mL)`‖Ḃσ2,1 is uniformly bounded for all

σ > σ1 due to (4.2), a similar interpolation argument implies that

‖(aL,mL)`‖
L∞t (Ḃ

σ1+σ∗
2,∞ )

<< 1. (4.96)

According to (4.93), (4.95) and (4.96), the time-weighted difference estimate (4.21) follows. This com-

pletes the proof of Proposition 4.2.

4.2 Lower and upper bounds for decay rates

The subsection is devoted to the proof of “if" part of Theorem 1.2. We first prove (1.13) under the

assumption (a0, u0)` ∈ Ḃσ1
2,∞ with σ0 ≤ σ1 <

d
2 − 1. Indeed, (1.12) is exactly the same as (4.94), which

has been shown by [51]. From Lemmas 4.4-4.5, we have

‖(a, u)(t)‖h
Ḃ
d
p
p,1

. 〈t〉− 1
2 (
d
2−σ1+σ2)− (4.97)

for t > 1 and σ2 ∈ (0, 1] given by (4.22). Note that ‖(a, u)(t)‖h
Ḃ
d
p
p,1

is bounded for t > t0 with t0 ∈ (0, 1)

due to Theorem 1.1 and (4.83). Thus, (4.97) holds true for t > t0 with any t0 > 0. So we only need to

show the decay of the low-frequency part of (a, u). In fact, it follows from Propositions 4.1 and 4.2 that

‖(a,m)`(t)‖Ḃσ2,1 ≤ ‖(aL,mL)`(t)‖Ḃσ2,1 + ‖(a− aL,m−mL)(t)‖`
Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1) + 〈t〉− 1

2 (σ−σ1+σ2) . 〈t〉− 1
2 (σ−σ1)

(4.98)

for σ1 < σ ≤ d
2 and t > 0. The endpoint case σ = d

2 can be handled due to the low-frequency localization

and the faster decay rates of the difference (a − aL,m −mL). To derive the decay of u`, we resort to

the decomposition that u = m − I(a)m` − I(a)mh again. By employing product laws and composite in
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Lemmas (6.4) and (6.9), we deduce that

‖I(a)m`‖`
Ḃσ2,1
. ‖I(a)‖

Ḃ
d
p
p,1

‖m`‖Ḃσ2,1

. (‖a`‖
Ḃ
d
2
2,1

+ ‖ah‖
Ḃ
d
p
p,1

)‖m`‖Ḃσ2,1 . 〈t〉
− 1

2 (σ−σ1+
d
2−σ1), σ1 < σ ≤ d

p
, (4.99)

‖I(a)m`‖`
Ḃσ2,1
. ‖I(a)m`‖`

Ḃ
d
p
2,1

. ‖a‖
Ḃ
d
p
p,1

‖m`‖
Ḃ
d
p
2,1

. 〈t〉−
1
2 (
d
p−σ1+

d
2−σ1) . 〈t〉− 1

2 (σ−σ1),
d

p
≤ σ ≤ d

2
, (4.100)

where (4.97) and (4.98) were used. Concerning I(a)mh, we take advantage of the low-frequency cut-off

and argue similarly as in (4.14)-(4.18) to get

‖I(a)mh‖`
Ḃσ2,1
. ‖I(a)mh‖`

Ḃ
σ1
2,∞
. (‖a`‖

Ḃ
d
2
−1

2,1

+ ‖ah‖
Ḃ
d
p
p,1

)‖mh‖
Ḃ
d
p
−1

p,1

. 〈t〉− 1
2 (
d
2−σ1+σ2). (4.101)

Together with (4.98)-(4.101), it is shown that

‖u`(t)‖Ḃσ2,1 . ‖m
`(t)‖Ḃσ2,1 + ‖I(a)m`‖`

Ḃσ2,1
+ ‖I(a)mh‖`

Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1), σ1 < σ ≤ d

2
.

(4.102)

Hence, by (4.97), (4.98) and (4.102), we immediately get the upper bound (1.13).

Furthermore, we establish the two-sided decay (1.14) under the stronger assumption that (a0, u0)` ∈

Ḃσ1
2,∞ with σ0 ≤ σ1 < d

2 − 1. It suffices to show the lower bound in (1.14), since Ḃσ1
2,∞ is a subset of Ḃσ1

2,∞.

For that end, by virtue of Propositions 4.1 and 4.2, we arrive at

‖(a,m)`(t)‖Ḃσ2,1 ≥ ‖(aL,mL)`(t)‖Ḃσ2,1 − ‖(a− aL,m−mL)(t)‖`
Ḃσ2,1

≥ 1

C0
〈t〉− 1

2 (σ−σ1) − C0〈t〉−
1
2 (σ−σ1+σ2)

≥ 1

2C0
〈t〉− 1

2 (σ−σ1)

(4.103)

for σ1 < σ ≤ d
2 and suitably large time t > t1, where C0 > 1 is chosen into a greater constant if necessary.

The endpoint case σ = d
2 is due to faster rates of (a − aL,m −mL) under some low-frequency cut-off.

Since the product I(a)m decays at faster rates (see (4.99)-(4.101)), one can get

‖(a, u)`(t)‖Ḃσ2,1 ≥ ‖(a,m)`(t)‖Ḃσ2,1 − ‖I(a)m‖`
Ḃσ2,1
≥ 1

4C0
〈t〉− 1

2 (σ−σ1)

for σ1 < σ ≤ d
2 and suitably large time t > t1. This completes the proof of the two-sided time-decay

estimate (1.14).

5 Necessary condition

The section is devoted to the proof of “only if” part of Theorem 1.2. That is, if the solution (a, u) admits

the upper bounds (1.13) (resp., two-sided bounds (1.14)), then (a0, u0)` ∈ Ḃσ1
2,∞ (resp., (a0, u0)` ∈ Ḃσ1

2,∞)
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with σ0 ≤ σ1 < d
2 − 1. The crucial ingredient of this claim is to develop the inverse Wiegner’s argument

from incompressible Navier-Stokes equations (as shown by Skalák [46] and the first author et al. [5]) to

compressible Navier-Stokes equations.

5.1 Inverse Wiegner’s argument for compressible Navier-Stokes equations

Our aim is to derive the following result, which can be regarded as the analogue of inverse Wiegner’s

Theorem in [5, 46].

Proposition 5.1. Let σ0 ≤ σ1 < d
2 −1. If the solution (a, u) to the Cauchy problem (1.9) satisfies (1.12)

and (1.13), then (ã, m̃) , (a− aL,m−mL) has faster decay rates at low frequencies:

‖(ã, m̃)(t)‖`
Ḃσ2,1
. 〈t〉− 1

2 (σ−σ1+σ2) (5.1)

for σ1 < σ ≤ d
2 and t > 0, where σ2 ∈ (0, 1] is defined in (4.22).

Proof. The proof follows from the similar procedure leading to Lemmas 4.1-4.3 in fact. We recall (4.27)

that

‖(ã, m̃)(t)‖`
Ḃσ2,1
.
∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ

′)‖F‖`
Ḃ
σ1+1−σ′
2,∞

dτ, σ > σ1 (5.2)

for σ′ ∈ (0, 1] and t > 0. We focus on the integral on the right-hand side of (5.2) and consider cases

0 < t ≤ 2 and t > 2 separately. The case 0 < t ≤ 2 implies that 〈t〉 ≈ 1 and 〈t− τ〉 ≈ 1 for 0 ≤ τ ≤ t ≤ 2.

The nonlinear term F in (1.21) can be rewritten as

F = (1 + a)u⊗ u+ (P ′′(1) +G(a))a2Id + µ∇(au) + (µ+ λ)div (au)Id

with (P ′′(1) + G(a))a2 = P (1 + a) − P (1) − P ′(1)a satisfying G(0) = 0. It follows from the proof of

Lemma 4.1 that

‖F‖`
Ḃ
σ1+1−σ′
2,∞

. ‖F‖`
Ḃ
σ1
2,∞
. (1 + ‖a‖

Ḃ
d
p
p,1

)(‖a‖
Ḃ
d
p
p,1

+ ‖u‖
Ḃ
d
p
−1

p,1

)‖(a, u)`‖Ḃσ12,∞

+ (1 + ‖a‖
Ḃ
d
p
p,1

)(‖(a, u)`‖
Ḃ
d
2
−1

2,1

+ ‖(a, u)h‖
Ḃ
d
p
p,1

)‖(a, u)h‖
Ḃ
d
p
−1

p,1

. (Xp,0 + X 2
p,0)(‖(a, u)`‖

L∞t (Ḃ
σ1+1−σ′
2,∞ )

+ Xp,0).

(5.3)

Hence, for 0 < t ≤ 2, we arrive at∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ

′)‖F‖`
Ḃ
σ1+1−σ′
2,∞

dτ . Xp,0(1 + Xp,0)2〈t〉− 1
2 (
d
2−σ1), (5.4)

where we have used (1.12).

To handle the integral in (5.2) for t > t0, we divide it into two cases σ1 < σ ≤ d
2−1 and d

2−1 < σ ≤ d
2 .

Case 1: σ1 < σ ≤ d
2 − 1
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We write (choosing σ′ = 1 in (4.27))∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ

=

∫ t0

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ +

∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ. (5.5)

Arguing as (5.4) yields∫ t0

0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ . Xp,0(1 + Xp,0)2〈t〉− 1
2 (
d
2−σ1). (5.6)

On the other hand, employing the similar estimates as (4.45)-(4.52) gives that

‖F‖`
Ḃ
σ1
2,∞
. (1 + ‖a‖

Ḃ
d
p
p,1

)‖(a, u)`‖
Ḃ
d
2
−1

2,1

‖(a, u)`‖
Ḃ
σ1+1
2,1

+ (1 + ‖a‖
Ḃ
d
p
p,1

)(‖(a, u)`‖
Ḃ
d
2
−1

2,1

+ ‖(a, u)h‖
Ḃ
d
p
p,1

)‖(a, u)h‖
Ḃ
d
p
−1

p,1

. (1 + Xp,0)〈t〉− 1
2 (
d
2−σ1)

(5.7)

for t > t0, where (1.13) and the fact that σ1 < d
2 − 1 were used. Consequently, it follows from (5.5) and

(5.7) that ∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+1)‖F‖`

Ḃ
σ1
2,∞

dτ . (1 + Xp,0)〈t〉− 1
2 (σ−σ1+σ2),

where we have performed the time-weighted inequality due to (4.25):∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (
d
2−σ1)dτ

.


〈t〉− 1

2 (σ−σ1+1), if 1
2 (d2 − σ1) > 1,

〈t〉− 1
2 (σ−σ1+1)−, if 1

2 (d2 − σ1) = 1,

〈t〉− 1
2 (σ−σ1+

d
2−1−σ1), if 1

2 (d2 − σ1) < 1.

Case 2: d
2 − 1 < σ ≤ d

2

For brevity, we only deal with the integral on [t0, t] with t > t0. We rewrite the nonlinear term F by

F = F `1 + Fh2

with

F `1 , (1 + a)u` ⊗ u` + (P ′′(1) +G(a))(a`)2Id + µ∇(a`u`) + (µ+ λ)div (a`u`)Id,

Fh2 , (1 + a)(uh ⊗ u` + u⊗ uh) + (P ′′(1) +G(a))(aha` + aah)Id

+ µ∇(uha` + uah) + (µ+ λ)div (uha` + uah)Id.

For those terms with low-frequencies, following from the line from (4.62), we choose σ′ = σ2 ∈ (0, 1)

in (5.2) and get

‖F `1‖`Ḃσ1+1−σ2
2,∞

. (1 + ‖a‖
Ḃ
d
p
p,1

)‖(a, u)`‖
Ḃ
σ1+1−σ2
2,∞

‖(a, u)`‖
Ḃ
d
2
2,1

. 〈t〉− 1
2 (
d
2−σ1+1−σ2)(1 + Xp,0), t > t0.
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The choice of σ2 , min
{

1
2 ,
(
d
2 − 1 − σ1

)
−
}

indicates that σ − σ1 + σ2 ≤ d
2 − σ1 + 1 − σ2 and

1
2 (d2 − σ1 + 1− σ2) > 1 for d

2 − 1 < σ < d
2 . Consequently, we are led to∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+σ2)‖F `1‖`Ḃσ1+1−σ2

2,∞
dτ

. (1 + Xp,0)

∫ t

0

〈t− τ〉− 1
2 (σ−σ1+σ2)〈τ〉− 1

2 (
d
2−σ1+1−σ2)dτ . (1 + Xp,0)〈t〉− 1

2 (σ−σ1+σ2).

On the other hand, we take σ′ = 1 in (5.2) in order to bound those terms with high frequencies. Performing

similar computations leading to (4.71)-(4.72) gives

‖Fh2 ‖`Ḃσ12,∞
. (1 + ‖a‖

Ḃ
d
p
p,1

)
(
‖(a, u)h‖

Ḃ
d
p
p,1

‖(a, u)`‖
Ḃ
d
2
−1

2,1

+ ‖(a, u)h‖2
Ḃ
d
p
p,1

)
. 〈t〉− 1

2 (d−1−σ2)(1 + Xp,0), t > t0,

which enables us to obtain∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+1)‖Fh2 ‖`Ḃσ12,∞

dτ

. (1 + Xp,0)

∫ t

t0

〈t− τ〉− 1
2 (σ−σ1+1)〈t〉− 1

2 (d−1−2σ1)dτ . (1 + Xp,0)〈t〉− 1
2 (σ−σ1+σ2).

Indeed, owing to (4.25), we performed the following integral inequalities∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (d−1−2σ1)dτ

.


〈t〉− 1

2 (σ−σ1+1), if 1
2 (d− 1− 2σ1) > 1,

〈t〉− 1
2 (σ−σ1+1)−, if 1

2 (d− 1− 2σ1) = 1,

〈t〉− 1
2 (σ−σ1+d−2−2σ1), if 1

2 (d− 1− 2σ1) < 1,

if 1
2 (σ − σ1 + 1) ≤ 1

2 (d− 1− 2σ1) and∫ t

0

〈t− τ〉− 1
2 (σ−σ1+1)〈τ〉− 1

2 (d−1−2σ1)dτ

.


〈t〉− 1

2 (d−1−2σ1), if 1
2 (σ − σ1 + 1) > 1,

〈t〉− 1
2 (d−1−2σ1)−, if 1

2 (σ − σ1 + 1) = 1,

〈t〉− 1
2 (σ−σ1+d−2−2σ1), if 1

2 (σ − σ1 + 1) < 1,

if 1
2 (σ − σ1 + 1) > 1

2 (d − 1 − 2σ1), which are both controlled by 〈t〉− 1
2 (σ−σ1+σ2) due to the choice of σ2

for σ ∈ (d2 − 1, d2 ]. Hence, the proof of Proposition 5.1 is complete.

5.2 The implication of low-frequency assumptions

As the second step of Inverse Wiegner’s argument is to show that the solution (aL,mL) to the linear

problem (1.23), actually, has the same decay rates as the global-in-time solution (a, u) to the Cauchy

problem (1.9) given by Theorem 1.1.
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By employing similar estimates as (4.99)-(4.101), we see that ‖au(t)‖Ḃσ2,1 decays in time at the faster

rate 〈t〉− 1
2 (σ−σ1+σ̃) with some σ̃ > 0. This then gives, together with (1.13), that

‖m`(t)‖Ḃσ2,1 ≤ ‖u
`(t)‖Ḃσ2,1 + ‖au(t)‖`

Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1), t > t0, σ1 < σ ≤ d

2
.

(5.8)

According to Proposition 5.1, we find that (ã, m̃) satisfies the faster decay (5.1). Furthermore, it follows

from (1.13), (5.1) and (5.8) that

‖(aL,mL)`(t)‖Ḃσ2,1 . ‖(a,m)`(t)‖Ḃσ2,1 + ‖(a− aL,m−mL)`(t)‖Ḃσ2,1

. 〈t〉− 1
2 (σ−σ1) + 〈t〉− 1

2 (σ−σ1+σ2)

. 〈t〉− 1
2 (σ−σ1), t > t0, σ1 < σ ≤ d

2
.

Hence, the upper bound of decay estimates of (aL,mL) implies that (a0, u0)` ∈ Ḃσ1
2,∞ with σ0 ≤ σ1 < d

2−1

with the aid of Proposition 4.1.

Next, we justify that (a0, u0)` ∈ Ḃσ1
2,∞ with σ0 ≤ σ1 <

d
2 − 1 provided that (a, u) satisfies (1.12) and

(1.14). Notice that, for σ1 < σ ≤ d
2 ,

‖(a,m)`(t)‖Ḃσ2,1 ≥ ‖(a, u)`(t)‖Ḃσ2,1 − ‖au(t)‖`
Ḃσ2,1
≥ 1

C2
〈t〉− 1

2 (σ−σ1), t > t2 (5.9)

for suitably large t2 > t1, where C2 > 1 is chosen into a greater constant if necessary.

By using (5.1) and (5.9), we obtain

‖(aL,mL)`(t)‖Ḃσ2,1 ≥ ‖(a,m)`(t)‖Ḃσ2,1 − ‖(a− aL,m−mL)`(t)‖Ḃσ2,1

≥ 1

C2
〈t〉− 1

2 (σ−σ1) − C3〈t〉−
1
2 (σ−σ1+σ2)

≥ 1

2C2
〈t〉− 1

2 (σ−σ1)

for t > t3 , max{t2, (2C2C3)
2
σ2 }, where C3 > 0 is some constant. Therefore, applying Proposition 4.1

again, we have (a0, u0)` ∈ Ḃσ1
2,∞. This concludes the proof of Theorem 1.2.

6 Appendix

In the last section, we collect useful analysis tools which make the paper as self-contained as possible.

The first lemma is devoted to the classical Bernstein’s inequality.

Lemma 6.1. Let 0 < r < R, 1 ≤ p ≤ q ≤ ∞ and k ∈ N. Then for any function u ∈ Lp and λ1 > 0, it

holds Supp û ⊂ {ξ ∈ Rd | |ξ| ≤ λ1R} ⇒ ‖Dku‖Lq . λ
k+d( 1

p−
1
q )

1 ‖u‖Lp ;

Supp û ⊂ {ξ ∈ Rd | λ1r ≤ |ξ| ≤ λ1R} ⇒ ‖Dku‖Lp ∼ λk1‖u‖Lp .
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We state the interpolation inequality that is repeatedly used throughout the paper.

Lemma 6.2 ([1]). The following real interpolation property is satisfied for 1 ≤ p ≤ ∞, s1 < s2 and

θ ∈ (0, 1):

‖u‖
Ḃ
θs1+(1−θ)s2
p,1

.
1

θ(1− θ)(s2 − s1)
‖u‖θ

Ḃ
s1
p,∞
‖u‖1−θ

Ḃ
s2
p,∞

. (6.1)

In addition, there are classical product estimates which play a fundamental role in bounding bilinear

terms.

Lemma 6.3. Let 1 ≤ p, r ≤ ∞. Then

‖FG‖Ḃsp,r . ‖F‖L∞ ‖G‖Ḃsp,r + ‖G‖L∞‖F‖Ḃsp,r , if s > 0;

‖FG‖
Ḃ
s1+s2−

d
p

p,1

. ‖F‖Ḃs1p,1‖G‖Ḃs2p,1 , if s1, s2 ≤
d

p
and s1 + s2 > dmax

(
0,

2

p
− 1
)

;

‖FG‖
Ḃ
s1+s2−

d
p

p,∞

. ‖F‖Ḃs1p,1‖G‖Ḃs2p,∞ , if s1 ≤
d

p
, s2 <

d

p
and s1 + s2 ≥ dmax

(
0,

2

p
− 1
)
.

In order to match different Lebesgue indices at low frequencies and high frequencies, non classical

product estimates are further developed in the Lp framework (see [17,52]). Precisely,

Lemma 6.4. Let the real numbers s1, s2, p1 and p2 be such that

s1 + s2 > 0, s1 ≤
d

p1
, s2 ≤

d

p2
, s1 ≥ s2,

1

p1
+

1

p2
≤ 1.

Then it holds that

‖FG‖Ḃs2q,1 . ‖F‖Ḃs1p1,1 ‖G‖Ḃ
s2
p2,1

with
1

q
=

1

p1
+

1

p2
− s1

d
·

Additionally, for exponents s > 0 and 1 ≤ p1, p2, q ≤ ∞ satisfying

d

p1
+

d

p2
− d ≤ s ≤ min

(
d

p1
,
d

p2

)
and

1

q
=

1

p1
+

1

p2
− s

d
,

one has

‖FG‖Ḃ−sq,∞ . ‖F‖Ḃsp1,1 ‖G‖Ḃ−sp2,∞ .

In particular, we have the following non product inequalities with respect to the regularity requirement

in main results, which are employed in time-weighted energy methods.

Lemma 6.5. Let σ0 ≤ σ1 < d
2 − 1 with σ0 = d

2 −
2d
p and p satisfy (1.8). It holds that

‖FG‖Ḃσ12,∞
. ‖F‖

Ḃ
d
p
p,1

‖G‖Ḃσ12,1
, (6.2)

‖FG‖
Ḃ
σ1+ d

p
− d

2
2,∞

. ‖F‖
Ḃ
σ1+ d

p
− d

2
p,1

‖G‖
Ḃ
d
p
2,1

. (6.3)

In addition, we have

‖FG‖`
Ḃ
σ0
2,∞
. ‖F‖

Ḃ
d
p
−1

p,1

‖G‖
Ḃ

1− d
p

p,1

(6.4)

for 2 ≤ p ≤ d.

46



On the other hand, the third estimate in Lemma 6.3 can be also extended to the non classical form

(see [51]).

Lemma 6.6. Let the real numbers s1, s2, p1 and p2 be such that

s1 + s2 ≥ 0, s1 ≤
d

p1
, s2 < min

( d
p1
,
d

p2

)
and

1

p1
+

1

p2
≤ 1.

Then it holds that

‖FG‖
Ḃ
s1+s2−

d
p1

p2,∞

. ‖F‖Ḃs1p1,1‖G‖Ḃ
s2
p2,∞

. (6.5)

Actually, we mainly employed the following product estimates.

Lemma 6.7. Let σ0 ≤ σ1 < d
2 − 1 and p satisfy (1.8). It holds that

‖FG‖Ḃσ12,∞
. ‖F‖

Ḃ
d
p
p,1

‖G‖Ḃσ12,∞
, (6.6)

‖FG‖
Ḃ
σ1+ d

p
− d

2
2,∞

. ‖F‖
Ḃ
d
p
−1

p,1

‖G‖
Ḃ
σ1+ d

p
− d

2
+1

2,∞

. (6.7)

However, only resorting to Lemmas 6.4 and 6.6 is not enough to establish the desired decay estimates

in particular in case of the oscillation case p > d, non standard product estimates with high frequencies

are also needed (see [17]).

Lemma 6.8. There exists a universal integer N0 such that for any 2 ≤ p ≤ 4 and s > 0, we have

‖FGh‖`
Ḃ
σ0
2,∞
≤ C(‖F‖Ḃsp,1 + ‖Ṡj0+N0

F‖Lp∗ )‖Gh‖Ḃ−sp,∞ (6.8)

‖FhG‖`
Ḃ
σ0
2,∞
≤ C(‖Fh‖Ḃsp,1 + ‖Ṡj0+N0F

h‖Lp∗ ) ‖G‖Ḃ−sp,∞ (6.9)

with σ0 = d
2 −

2d
p and 1

p∗ ,
1
2 −

1
p , and C depending only on j0, d and s.

System (1.9) also involves composite of functions (through I(a) and k(a)) and they are bounded

according to the following conclusion (see [1, 17]).

Lemma 6.9. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and s > 0, it holds that

F (u) ∈ Ḃsp,r ∩ L∞ for u ∈ Ḃsp,r ∩ L∞, and

‖F (u)‖Ḃsp,r ≤ C ‖u‖Ḃsp,r

with C depending only on ‖u‖L∞ , F ′ (and higher derivatives), s, p and d.

In the case s > −min
(
d
p ,

d
p′

)
then u ∈ Ḃsp,r ∩ Ḃ

d
p

p,1 implies that F (u) ∈ Ḃsp,r ∩ Ḃ
d
p

p,1, and

‖F (u)‖Ḃsp,r ≤ C(1 + ‖u‖
Ḃ
d
p
p,1

)‖u‖Ḃsp,r .

The following commutator estimates is useful to control nonlinearities in high frequencies ( [1]):
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Lemma 6.10. Let 1 ≤ p ≤ ∞ and −dp − 1 ≤ s ≤ 1 + d
p . Then it holds∑

j∈Z
2js‖[u, ∆̇j ]∂xia‖Lp . ‖u‖

Ḃ
d
p
+1

p,1

‖a‖Ḃsp,1 , i = 1, 2, ..., d,

with the commutator [A,B] , AB −BA.

Finally, we present the endpoint maximal regularity property for the Lamé system below (see for

instance [1]).

Lemma 6.11. Let T > 0, µ > 0, 2µ+ λ > 0, s ∈ R, 1 ≤ p, r ≤ ∞ and 1 ≤ %2 ≤ %1 ≤ ∞. Assume that

u0 ∈ Ḃsp,r and f ∈ L̃ρ2(0, T ; Ḃ
s−2+ 2

%2
p,r ) hold. If u is a solution of ∂tu− µ∆u− (µ+ λ)∇divu = f, x ∈ Rd, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Rd,

then u satisfies

min{µ, 2µ+ λ}
1
%1 ‖u‖

L̃
%1
T (Ḃ

s+ 2
%1

p,r )
. ‖u0‖Ḃsp,r + min{µ, 2µ+ λ}

1
%1
−1‖f‖

L̃
ρ2
T (Ḃ

s−2+ 2
%2

p,r )
.
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