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Abstract

We study soliton- and peakon-like solutions of the modified Camassa–Holm equation with variable coefficients and a
singular perturbation. This equation is a direct generalization of the well-known modified Camassa–Holm equation,
which is an integrable system having both smooth and peaked soliton solutions, named peakons.

The novelty of this paper lies in the development of a general methodology for constructing asymptotic peakon-
like solutions. We present a general scheme for finding approximations of any order and study their accuracy.

The results are illustrated by nontrivial examples of both soliton- and peakon-like solutions with global phase
function. The proposed technique can be used for studying wave-like solutions of other equations with variable
coefficients and small dispersion.
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1. Introduction

Nonlinear partial differential equations are widely used to describe the propagation of waves at the surface in
liquids. The Boussinesq equation [1]

utt − c2uxx − αu2
x − αuuxx − βuxxxx = 0, (1)

where c, α > 0 and β 6= 0, and the celebrated Korteweg–de Vries (KdV) equation [2]

ut + uux + uxxx = 0 (2)

are two early models that were successfully used to capture the dispersive features of water wave propagation.
These equations were studied with various methods and approaches, including analytical, numerical, and algebraic–
geometric techniques. The intensive research on the KdV equation motivated the development of the theory of
completely integrable infinite-dimensional dynamical systems and of new concepts, such as that of soliton [3, 4].
Solitons have become a central object of modern mathematical physics because they are an important peculiarity of
many integrable nonlinear evolution equations [5, 6, 7]. Soliton solutions describe wave processes localized in space,
propagating with a speed depending on the wave amplitude and interacting according to the nonlinear superposition
principle [8, 9].

The Boussinesq equation has only one-soliton solutions and is not an integrable system, whereas the Korteweg–de
Vries equation has one-, two-, and multi-soliton solutions and is completely integrable. Subsequently, several new
nonlinear partial differential equations with solitons were found, although not all of them are integrable systems. In
this connection, we can mention the regularized long-wave equation, which is also known as the Benjamin–Bona–
Mahony (BBM) equation [10, 11, 12]

ut + ux + αuux − uxxt = 0 (3)
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or the time regularized long–wave equation [13] also called the Joseph–Egri equation [14]

ut + ux + αuux + uxtt = 0. (4)

These “KdV–like“ equations, along with others of a similar nature, emerged during the search for potential alter-
natives to the original KdV equation in the study of shallow water wave phenomena [15, 16, 17]. For example, one
motivation of the BBM equation is that its solutions have better stability properties at high wave numbers.

In parallel, intense studies were carried out in the direction of looking for new classes of integrable equations. A
remarkable illustration of this fact is the Camassa–Holm (CH) equation, which was discovered twice: the first time
it appeared in a work by Fokas and Fuchssteiner [18] as a member of a new large class of completely integrable
nonlinear equations. Its hydrodynamic relevance was put in evidence only a few years later, when the same equation
was reproposed by Camassa and Holm [19] as an asymptotic model of the free-surface Euler equations. Subsequently,
the CH equation, along with other Camassa–Holm-type equations, was found to be effective in modeling turbulent
flows [20] and axisymmetric pipe flows [21, 22].

The CH equation was studied through a range of techniques and approaches including the inverse scattering
transform [23, 24], Hirota’s bilinear method [25], Bäcklund transformation [26], numerical methods [27, 28], etc.

After the paper by Camassa and Holm, this equation immediately attracted considerable interest: it turned out
to be better suited than the KdV equation in modeling the propagation of waves of larger amplitude, for which the
nonlinear effects are often predominant and wave-breaking effects can appear during the evolution. Many papers are
devoted to the study of wave breaking criteria. Here we just mention the early papers [19, 29], and the ”local-in-
space” blowup criterion [30], that encompasses the previous ones, and also shows that there is a deep connection
between solitons and wave breaking effects: if the initial profile decays faster than Camassa–Holm’s peaked solitons
at the spatial infinity, than blowup of the solution will occur after some time. The CH equation can be written in the
following form [19]:

ut − uxxt + 3uux = 2uxuxx + uuxxx. (5)

This paper focuses on the modified version of the above equation, commonly referred to in the literature as the
modified Camassa–Holm (mCH) equation, that is also often used for describing wave processes in shallow water (see,
e.g., [16]):

ut − uxxt + 3u2ux = 2uxuxx + uuxxx. (6)

Another example of an integrable system associated with (5) that is used to describe traveling waves in shallow
water is the two-component CH equation, which was successfully analyzed in detail in [31, 32] using the phase plane
method.

Like the CH equation (5), the mCH equation (6) is a completely integrable dynamical system and was studied
by numerous methods, including the Riemann–Hilbert approach [33]. Several results are available for the stability of
peakon solutions [34, 35], the well-posedness [36], the existence of global solutions, as well as blowup phenomena
[37].

Both the CH equation and the mCH equation have solutions with different properties, including soliton solutions,
multi-soliton solutions, periodic solutions, and so on. For example, the soliton solutions to the mCH equation can be
written as [38]:

u(x, t) =
8µ2

(µ+A cosh (2t− x)−A sinh (2t− x))
2 −

8µ

µ+A cosh (2t− x)−A sinh (2t− x)
, (7)

where A, µ are reals and µA > 0.
In addition to the general properties of soliton systems, the CH and mCH equations (5), (6) have the specificity

of admitting peaked solitons, called peakons. Similar features are also inherent in the famous Degasperis–Procesi
equation [39, 40] associated with (5).

Peakons have a peak at their crest, so their derivative at that point is discontinuous and has opposite signs on the
left and right. Because of such a singularity, peakons are solutions of the corresponding equations in a weak sense, but
otherwise they enjoy the usual properties of smoother soliton solutions. In particular, they describe localized waves
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that interact without collision and have a velocity that depends on the wave amplitude. The peakon solutions of the
CH equation (5) are given [19] by the expression

u(x, t) = c exp (−|x− ct|), (8)

and describe moving waves with a speed c > 0 equal to the height of the peakon. If c < 0, then the wave moves to
the left with a downward peak, and it is sometimes called an anti-peakon. Detailed analysis of the complex dynamics
of peaked solitons associated with the CH-equation can be found in [41].

For describing wave processes in liquids with heterogeneous characteristics, the above equations are no longer
sufficient: to this purpose, more general versions with variable coefficients have been proposed. In this extended case,
the exact form of the solutions is not known, as most traditional analytical methods lose their effectiveness because
of the variable coefficients. Consequently, it is reasonable to seek approximate solutions that are similar to the exact
solutions of the corresponding equations with constant coefficients.

In situations characterized by a small dispersion in the medium or the influence of an external force, the effective
techniques of asymptotic analysis have demonstrated their utility [5, 42, 43]. In this regard it is worth noting some
papers. In [44, 45, 46], Lax and Levermore effectively employed asymptotic analysis to examine the weak limit of the
solution to the initial value problem for the KdV equation, as the dispersion tends to zero. In [47], Miura and Kruskal
developed the nonlinear Wentzel–Kramers–Brillioun (WKB) method to study nearly-periodic solutions of the KdV
equation with a small dispersion.

The WKB method has proven to be useful for constructing soliton-like solutions of KdV-like equations with vari-
able coefficients. For instance, asymptotic one phase and multi-phase soliton-like solutions were developed for the
Korteweg–de Vries equation with variable coefficients (vcKdV) and singular perturbations [48, 49, 50]. The charac-
teristics of these solutions are similar to those of the classical KdV equation with constant coefficients. Nontrivial
examples of such systems are presented in [51, 52, 53].

Analogously, for the singularly perturbed BBM equation with variable coefficients, soliton-like solutions were
found in [54]. Due to the absence of multi-soliton solutions to the BBM equation with constant coefficients, the
so-called asymptotic Σ-soliton solutions to the singularly perturbed BBM equation with variable coefficients were
obtained [55]. The concept of the asymptotic Σ-soliton solution is based on the idea of splitting multi–soliton solutions
into a set of one-soliton solutions at large values of the independent variables.

The present paper deals with the modified Camassa–Holm equation with variable coefficients (vcmCH) and a
singular perturbation of the form [42]:

a(x, t, ε)ut − ε2uxxt + b(x, t, ε)u2ux − 2ε2uxuxx − ε2uuxxx = 0. (9)

Here, ε is a small parameter. We assume that the functions a(x, t, ε) and b(x, t, ε) with (x, t) ∈ R × [0;T ] for
some T > 0 can be presented as

a(x, t, ε) =

N∑
k=0

εkak(x, t) +O(εN+1), b(x, t, ε) =

N∑
k=0

εkbk(x, t) +O(εN+1), (10)

and a0(x, t) b0(x, t) 6= 0 for all (x, t) ∈ R× [0;T ].
In the sequel, we use the following notation from asymptotic analysis [56]: if Ψ is a function defined in R× [0;T ]

and depending on a small parameter ε > 0, then Ψ(x, t, ε) = O(εN ) for integer N ≥ 0 means that for any bounded
and closed set K ⊂ Rn × [0;T ], there exists a positive value C, possibly depending on the set K, and ε0 > 0,
independent of (x, t), such that the inequality |Ψ(x, t, ε)| ≤ C εN holds for all ε ∈ (0, ε0) and all (x, t) ∈ K.

Equation (9) generalizes the mCH equation (6). Let us recall that peakon and soliton solutions of the latter are
written, respectively, as [57]

u(x, t) = 2 sinh−2

(
|x− 2t|

2
+ arccoth

√
2

)
, (11)

and

u(x, t) = −2 cosh−2

(
x− 2t

2

)
. (12)
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The main aim of this paper is to describe peakon-like solutions to the vcmCH equation (9). Since in some cases
peakon solutions can be found as the limit of soliton solutions [58], the problem of constructing soliton-like solutions
of equation (9) is also considered. To attack these problems, we will apply the nonlinear WKB method and make use
of an appropriate modification of the basic ideas previously introduced to find soliton-like solutions of the KdV–like
equations [48] with variable coefficients, as well as step-like solutions of the Burgers equation with a singular pertur-
bation [59]. For these two problems, we will outline the main steps of the algorithm for determining the asymptotic
solutions. We will derive the equations for the terms of the asymptotic expansions and establish the solvability of
these equations in appropriate functional spaces.

The main result of this paper is the obtaining soliton- and peakon-like solutions of the mCH with variable coeffi-
cients (9).

We stress the fact that the peakon- and soliton-like solutions do not coincide, which is natural, but their disconti-
nuity curve is the same. This discontinuity curve is determined by a first-order ordinary differential equation, rather
than a second-order equation, as in the case of the KdV and the BBM equations [48, 54].

The peakon-like solutions obtained for the vcmCH equation (9), in the special case where a(x, t, ε) and b(x, t, ε)
are constant, reduce to the exact peakon-like solutions of the mCH equation (6). This demonstrates that the peakon-
like solutions found for the vcmCH equation should be interpreted as a deformation of the peakon solutions for the
mCH equation (6), resulting from the introduction of variable coefficients.

The paper is organized as follows. In Section 2, we present preliminary remarks and formulate auxiliary notions,
among which is the definition of an asymptotic soliton-like solution.

In Section 3, we describe in detail a technique for finding soliton-like solution to (9). We discuss the procedure
for recursively finding the terms of the asymptotic expansions. In particular, we specify the conditions under which
the terms appearing in the singular part of the expansion hold the requirement for the definition of the asymptotic
soliton-like solution. We also discuss the accuracy with which the obtained solution satisfies the given equation. In
the last part of Section 3 we illustrate an example of the application of the general technique.

Section 4 focuses on implementing a similar program for peakon-like solutions. We present here a nontrivial
example of a peakon-like solution for the vcmCH equation.

2. Main definitions and form of the solutions

We denote by C
∞
0 (R) the space of infinitely differentiable functions u:R→ R, satisfying the relation

dnu

dxn
(x) → 0 as |x| → +∞,

for any nonnegative integer n.
Let S(R) be the Schwartz space, i.e., the space of infinitely differentiable functions on R such that for all integers

m,n ≥ 0 the condition

sup
x∈R

∣∣∣∣xm dnu

dxn
(x)

∣∣∣∣ < +∞

holds.
By Hs(R), s ∈ R, we denote the Sobolev space [60, 61], i.e., the space of tempered distributions S∗(R), whose

Fourier transforms F [g](ξ) satisfy the condition

||g||2s =

+∞∫
−∞

(1 + |ξ|2)s |F [g](ξ)|2 dξ < +∞. (13)

The definitions of the spaces G and G0 below are taken from [48, 62]. We denote by G the space of infinitely
differentiable functions f :R× [0;T ]× R→ R satisfying the two following conditions:

1) For any nonnegative integers n, p, q and r

lim
τ→+∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0,

uniformly with respect to (x, t) ∈ K, in any compact set K ⊂ R× [0;T ].
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2) There exists a differentiable function f−:R× [0;T ]→ R such that, for any nonnegative integers n, p, q and r

lim
τ→−∞

τn
∂ p

∂ xp
∂ q

∂ tq
∂ r

∂ τ r
(
f(x, t, τ)− f−(x, t)

)
= 0,

uniformly with respect to (x, t) ∈ K, in any compact set K ⊂ R× [0;T ].

Let G0 be the subspace of G, consisting of all functions f ∈ G such that

lim
τ→−∞

f(x, t, τ) = 0,

uniformly with respect to the variables (x, t) ∈ K, in any compact set K ⊂ R× [0;T ].
We denote by G̃ the space of infinitely differentiable functions g: [0;T ] × R → R, satisfying the two following

conditions:

1) For any nonnegative integers n, p and q

lim
τ→+∞

τn
∂ p

∂tp
∂ q

∂ τ q
g(t, τ) = 0,

uniformly with respect to t ∈ [0;T ].
2) There exists a differentiable function g−: [0;T ]→ R such that for any nonnegative integers n, p and q

lim
τ→−∞

τn
∂ p

∂ tp
∂ q

∂ τ q
(
g(t, τ)− g−(t)

)
= 0,

uniformly with respect to t ∈ [0;T ].

Let G̃0 be the subspace of G̃, consisting of all functions g: [0;T ]× R→ R, such that

lim
τ→−∞

g(t, τ) = 0,

uniformly with respect to t ∈ [0;T ].
The definition of an asymptotic soliton-like function is given below [48, 62].
Definition 1. A function u = u(x, t, ε), where (x, t) ∈ R × [0;T ], and ε > 0 is a small parameter, is called an

asymptotic one-phase soliton-like function if for any integer N ≥ 0 it can be represented in the form

u(x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj (x, t, τ)] +O(εN+1), τ =
x− ϕ(t)

ε
, (14)

where ϕ ∈ C∞([0;T ]) is a scalar function, uj ∈ C∞(R× [0;T ]), for j = 0, 1, . . . , N , nontrivial function V0 ∈ G0,
and Vj ∈ G, for j = 1, . . . , N .

An asymptotic one-phase soliton-like solution of equation (9) is searched in the form (14). The function ϕ is
called a phase function and will be defined as a solution of the first-order differential equation that is found while
constructing the asymptotic solution. For a given asymptotic soliton-like solution u as in (14), the curve determined
by the equation x− ϕ(t) = 0 is called its discontinuity curve [48, 54].

The regular part UN (x, t, ε) =
∑N
j=0 ε

juj(x, t) of asymptotic solution (14) can be considered as a background

function, while the singular part VN (x, t, ε) =
∑N
j=0 ε

jVj(x, t, τ) is required to reflect the soliton properties of the
asymptotic solution. This leads us to impose appropriate functional constraints on the singular terms Vj(x, t, τ),
j = 0, 1, . . . , .
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3. The soliton-like solutions

Move on to the problem of constructing asymptotic soliton-like solutions of equation (9). We consider the case of
zero background, i.e. we assume that the function UN (x, t, ε) ≡ 0. So, the solutions are searched as

u(x, t, ε) =

N∑
j=0

εjVj (x, t, τ) +O(εN+1), τ =
x− ϕ(t)

ε
. (15)

The first term in expansion (15), i.e., the function V0 = V0(x, t, τ) is constructed as a solution of the third-order
ordinary differential equation in the τ -variable, with parameters (x, t) ∈ R × [0;T ] (we drop below, for simplicity,
the dependence on (x, t)):

−a0ϕ
′ ∂V0

∂τ
+ ϕ′

∂3V0

∂τ3
+ b0 V

2
0

∂V0

∂τ
− ∂

∂τ

(
∂V0

∂τ

)2

− V0
∂3V0

∂τ3
= 0. (16)

The above ODE originates from the requirement that (x, t) 7→ V0

(
x, t,

x− ϕ(t)

ε

)
solves equation (9) in asymp-

totical sense. This means that we substitute expression (15) into equation (9), multiply the resulting equation by ε, and

then take the limit as ε→ 0. Analogously, proceeding step by step for k = 1, . . . , N , inserting
k∑
j=0

εjVj

(
x, t,

x− ϕ(t)

ε

)
in equation (9) and equalizing to zero the linear combination of all terms with the same power of ε, we get an ODE
for Vj = Vj(x, t, τ), with j = 1, . . . , N . Namely,

−a0ϕ
′ ∂Vj
∂τ

+ ϕ′
∂3Vj
∂τ3

+ b0
∂

∂τ

(
V 2

0 Vj
)
− V0

∂3Vj
∂τ3

− ∂3V0

∂τ3
Vj = Fj , (17)

where the functions Fj = Fj(x, t, τ) (with j = 1, . . . , N ) can be computed recursively, after functions V1, . . . , Vj−1

are determined in the previous step.
We recall that the solutions to equations (16), (17) have to belong to the spaces G0, G respectively. Besides,

while searching the functions Vj , for j = 0, 1, . . . , N , we have also to find a phase function ϕ = ϕ(t) defining a
discontinuity curve Γ = {(x, t) ∈ R× [0;T ] : x = ϕ(t)}.

Taking into account these remarks we may study system (16), (17) as follows. Firstly, we assume that the function
ϕ = ϕ(t) is known. Then, equations (16), (17) are considered in the context of their restriction to the discontinuity
curve Γ, treating the variable t as a parameter. In this way, the function v0 = v0(t, τ) = V0(x, t, τ)

∣∣
x=ϕ(t)

can be
found in explicit form. Secondly, we prove that v0 = v0(t, τ) is a rapidly decreasing function with respect to the
variable τ , i.e. v0 ∈ G̃0.

Then using property V1 ∈ G, we find the solution v1(t, τ) = V1(x, t, τ)
∣∣
x=ϕ(t)

in explicit form. Moreover,
we receive necessary and sufficient conditions for the existence of the solution as a rapidly decreasing function as
τ → +∞. Later, the conditions are used to deduce a nonlinear ODE for the phase function ϕ = ϕ(t).

It should be mentioned that if the function V0 ∈ G0 then the function v0(t, τ) = V0(x, t, τ)
∣∣
x=ϕ(t)

∈ G̃0, and if

the function V1 ∈ G then the function v1(t, τ) = V1(x, t, τ)
∣∣
x=ϕ(t)

∈ G̃.
Now, let us consider the algorithm in detail. Denote, for j = 0, 1, . . . , N ,

vj = vj(t, τ) = Vj(x, t, τ)
∣∣
x=ϕ(t)

.

From (9), (16), (17), it follows that the functions vj(t, τ), j = 0, 1, . . . , N , satisfy differential equations:

(ϕ′ − v0 )
∂3v0

∂τ3
− a0(ϕ, t)ϕ′

∂v0

∂τ
+ b0(ϕ, t) v2

0

∂v0

∂τ
− ∂

∂τ

(
∂v0

∂τ

)2

= 0, (18)

and

(ϕ′ − v0 )
∂3vj
∂τ3

− a0(ϕ, t)ϕ′
∂vj
∂τ

+ b0(ϕ, t)
∂

∂τ

(
v2

0 vj
)
− 2

∂

∂τ

(
∂v0

∂τ

∂vj
∂τ

)
− ∂3v0

∂τ3
vj = Fj , j = 1, . . . , N,

(19)
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where Fj = Fj(t, τ) are recurrently defined after calculation of the functions V0(x, t, τ)
∣∣
x=ϕ(t)

, V1(x, t, τ)
∣∣
x=ϕ(t)

,

. . . , Vj−1(x, t, τ)
∣∣
x=ϕ(t)

, for j = 1, . . . , N . Here and below, we simplify the notation by writing ϕ instead of ϕ(t).
In particular, for j = 1 we find

F1(t, τ) =
∂3v0

∂τ2∂t
− a0(ϕ, t)

∂v0

∂t
+ [τa0x(ϕ, t) + a1(ϕ, t)]ϕ′

∂v0

∂τ
− [τ b0x(ϕ, t) + b1(ϕ, t)] v2

0

∂v0

∂τ
. (20)

3.1. The main term
Let us proceed to equation (18). Despite the fact that the equation is nonlinear, a particular solution v0(t, τ) can

be found in explicit form, for an appropriate choice of the phase function ϕ. Firstly, by integrating equation (18) with
respect to τ we obtain

[ϕ′ − v0] v0ττ −
1

2
(v0τ )

2 − a0(ϕ, t)ϕ′ v0 +
1

3
b0(ϕ, t) v3

0 = C1(t), (21)

where the constant of integration C1(t) is chosen as C1(t) ≡ 0 since v0 ∈ G̃0.
A solution to equation (21) is taken in the form [38]:

v0(t, τ) = A0 +
A1

Ψ
+
A2

Ψ2
, (22)

where the function Ψ = Ψ(τ) is supposed to be represented as

Ψ = −µ
λ

+A cosh(λτ)−A sinh(λτ), (23)

with the values λ 6= 0, A0, A1, A2 that are determined below, and arbitrary real µ, A. This implies that the function
Ψ satisfies the first-order ODE

Ψ′ + λΨ + µ = 0.

Substituting expressions (22), (23) into equation (21) provides us with a system of algebraic relations for the values
λ, A0, A1 and A2 of the form:

−ϕ′a0(ϕ, t)A0 +
1

3
b0(ϕ, t)A3

0 = 0,

next
−
[
a0(ϕ, t)A1 − λ2A1

]
ϕ′ + b0(ϕ, t)A2

0A1 − λ2A0A1 = 0,

and

−
[
a0(ϕ, t)A2 − 3λµA1 − 4λ2A2

]
ϕ′ + b0(ϕ, t)A0A

2
1 + b0(ϕ, t)A2

0A2 −
3

2
λ2A2

1 −A0

(
3λµA1 + 4λ2A2

)
= 0.

The other relations that one obtains are:[
10λµA2 + 2µ2A1

]
ϕ′ +

1

3
b0(ϕ, t)A3

1 + 2b0(ϕ, t)A0A1A2 − 4λµA2
1 − 7λ2A1A2 −A0

(
10λµA2 + 2µ2A1

)
= 0,

and
6µ2ϕ′A2 + b0(ϕ, t)A0A

2
2 + b0(ϕ, t)A2

1A2 −
5

2
µ2A2

1 − 17λµA1A2 − 6λ2A2
2 − 6µ2A0A2 = 0.

The last useful relations are:

b0(ϕ, t)A1A
2
2 − 10µ2A1A2 − 14λµA2

2 = 0, b0(ϕ, t)A3
2 − 24µ2A2

2 = 0.

The above equalities lead us to set, in (22)

A0 = 0, A1 =
24λµ

b0(ϕ, t)
, A2 =

24µ2

b0(ϕ, t)
,
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and
λ2 = a0(ϕ, t), (24)

where function ϕ is a solution to the first-order ODE:

dϕ

dt
= 6

a0(ϕ, t)

b0(ϕ, t)
. (25)

Relation (24) implies a0(ϕ(t), t) ≥ 0 for all t ∈ [0;T ]. Because equation (25) is nonlinear and in general its solution
exists on a finite interval, we suppose that the function ϕ = ϕ(t) is defined at least on the interval [0;T ] for some
T > 0. This could be seen as a limitation of the method, because, on one hand, solitons are by definition global
solutions and, on the other hand, by the above restriction, asymptotic soliton-like solutions that we are constructing,
are, a priori, not global in time. But in fact, under suitable conditions on the coefficients a0 and b0, one can easily
ensure, by the general ODE theory, that the solution to (25) is globally defined in time. This happens, for example,
when both a0 and b0 are in C1(R× R+), bounded together with their derivatives in R× R+, and if b0 ≥ γ for some
γ > 0. Indeed, under these conditions the map (t, ϕ) 7→ 6 a0(ϕ, t)/b0(ϕ, t) is globally Lipschitz with respect to the
ϕ-variable.

So, according to (22), (23) the function v0 = v0(t, τ) for asymptotic solution (15) is written as follows:

v0(t, τ) =
24λ2µ

b0(ϕ, t)

(
µ

(−µ+Aλ cosh(λτ)−Aλ sinh(λτ))
2 +

1

−µ+Aλ cosh(λτ)−Aλ sinh(λτ)

)
, (26)

with arbitrary reals µ, A and λ2 = a0(ϕ, t), ϕ = ϕ(t), t ∈ [0;T ].
Under assumptions λ > 0, µ < 0, A > 0, formula (26) can be transformed into the following form through

straightforward calculations:

v0(t, τ) = −6
a0(ϕ, t)

b0(ϕ, t)
cosh−2

(√
a0(ϕ, t)

τ

2
+ C0

)
, (27)

where C0 does not depend on τ .
It is clear that function (27) belongs to the space of rapidly decreasing functions with respect to τ . In this case,

we can extend the function v0 = v0(t, τ) to a function V0 ∈ G0, such that V0(x, t, τ)
∣∣
x=ϕ(t)

= v0(t, τ). The obvious
way is to define V0(x, t, τ) := V0(ϕ(t), t, τ) = v0(t, τ), i.e. to choose V0 constant with respect to x. In this way, we
do have V0 ∈ G0.

Thus, the main term of the asymptotic one-phase soliton-like solution to the vcmCH equation with singular per-
turbation (9) is found in the form

V0(x, t, τ) = −6
a0(ϕ(t), t)

b0(ϕ(t), t)
cosh−2

(√
a0(ϕ(t), t)

τ

2
+ C0

)
. (28)

Remark 1. Formula (28) gives a soliton-like function. In the case a(x, t, ε) = a0(x, t) = 1, b(x, t, ε) = b0(x, t) =
3 we have ϕ(t) = 2t, τ = (x− 2t)/ε. Thus, the main term (28) of asymptotic soliton-like solution (15) completely
coincides with the exact soliton solution of the mCH equation (6) given by formula (12).

3.2. The higher terms
Let us move on to equations for the higher terms vj(t, τ), j = 1, . . . , N . We suppose that the function ϕ = ϕ(t),

t ∈ [0;T ], is known and we treat the variable t as a parameter. After integrating equation (19) with respect to the
variable τ we come to the second-order inhomogeneous ODE:

(ϕ′ − v0)vjττ − v0τ vjτ +
(
−a0(ϕ, t)ϕ′ + b0(ϕ, t)v2

0 − v0ττ

)
vj = Φj , (29)

where

Φj = Φj(t, τ) =

τ∫
−∞

Fj(t, ξ) dξ + Ej(t), j = 1, . . . , N,
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and Ej(t), j = 1, . . . , N , is a constant of integration.
In particular,

Φ1(t, τ) =

[
−a0(ϕ, t)

d

dt

(
A

α

)
− A

α
ϕ′ a0x(ϕ, t) +

8

45

A3

α
b0x(ϕ, t)

]
(tanhκ− 1) (30)

+A [ϕ′τa0x(ϕ, t) + ϕ′a1(ϕ, t)] cosh−2 κ+

[
−2

d

dt
(αA) +

4

45

A3

α
b0x(ϕ, t)

]
cosh−2 κ tanhκ

+
1

15

A3

α
b0x(ϕ, t) cosh−4 κ tanhκ− 6αAκt cosh−4 κ− 1

3
A3 [b1(ϕ, t) + τ b0x(ϕ, t)] cosh−6 κ,

where

α = α(t) =

√
a0(ϕ, t)

2
, A = A(t) = −6

a0(ϕ, t)

b0(ϕ, t)
, κ = κ(t, τ) = α(t)τ + C0, (31)

the function ϕ = ϕ(t), for t ∈ [0;T ], is a solution to ODE (25) and C0 = C0(t) is an arbitrary value.
Now, let us introduce the differential operator

L = L

(
t, τ,

d

dτ

)
:= ρ(t, τ)

d2

dτ2
− v0τ

d

dτ
+
[
−a0(ϕ, t)ϕ′ + b0(ϕ, t)v2

0 − v0ττ

]
, (32)

where ρ(t, τ) = ϕ′(t)− v0(t, τ), t ∈ [0;T ], and rewrite linear differential equation (29) in the operator form

Lv = Φ. (33)

Recall that v = v(t, τ), Φ = Φ(t, τ), and t ∈ [0;T ] is a parameter.
The coefficients of the differential operator L in (33) depend only on the values a0(ϕ(t), t), b0(ϕ(t), t), t ∈ [0;T ].

Thus, it is completely determined by the conditions of problem (9) under consideration.
We use operator equation (33) to find conditions under which differential equation (29) has a solution from the

space G̃. To do it, we apply the results of the theory pseudodifferential operators [63], in particular from [64, 65].

3.3. Solvability of operator equation (33) in the space S(R)

The following theorem is true.
Theorem 1. Let the following conditions be fulfilled:

1. For all t ∈ [0;T ], a0(ϕ(t), t) > 0;
2. The function τ 7→ Φ(t, τ) belongs to S(R) for all t ∈ [0;T ].

Then, for any t ∈ [0;T ] equation (33) has a solution v(t, ·) in the space S(R) if and only if the function Φ satisfies
the orthogonality condition of the form

+∞∫
−∞

Φτ (t, τ)v0(t, τ) dτ = 0, t ∈ [0;T ], (34)

where the function v0 is defined by formula (27).
While proving Theorem 1 we use some notations which we now remind. For any function h ∈ S(R) its Fourier

transform is given as

F [h](ξ) =

+∞∫
−∞

e−iξxh(x) dx.

Due to the properties of the Fourier transform for any differential operator

p

(
x,

d

dx

)
=

n∑
k=0

ak(x)
d k

dxk
, x ∈ R,
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it is possible to define its action on a function h ∈ S(R) as

p

(
x,

d

dx

)
h(x) =

1

2π

+∞∫
−∞

eixξ p(x, ξ)F [h](ξ) dξ, (35)

where

p (x, ξ) =

n∑
k=0

ak(x)(−iξ)k.

In the sequel, we will use the following notation [63]. Let Sm,m ∈ N, be a set of symbols p = p(x, ξ) ∈C∞(R2)
such that for any k, l ∈ N ∪ {0} the inequality∣∣∣∣ ∂k+l

∂ξk∂xl
p(x, ξ)

∣∣∣∣ ≤ Ckl (1 + |ξ|)m−k , (x, ξ) ∈ R2,

holds, with k, l ∈ N ∪ {0} and Ckl are some constants independent on (x, ξ).
Let Sm0 ⊂ Sm be the set of symbols p that satisfy the condition

|p(x, ξ)| ≤M(x) (1 + |ξ|)m ,

where the value M(x)→ 0 as |x| → +∞.
It is worth recalling the following theorem.
Theorem 2. [64] Let p ∈ Sm be a symbol such that

∂ lp(x, ξ)

∂xl
∈ Sm0 , l = 1, 2, . . . ,

and the inequality

lim
(x,ξ)→∞

|p(x, ξ)|
(1 + |ξ|)m

> 0 (36)

holds. Then the differential operator

p

(
x,

d

dx

)
: Hs+m(R)→ Hs(R)

defined by formula (35) is Noetherian for any s ∈ R.

Proof of Theorem 1. A scheme of proving the theorem is based on ideas of papers [66, 67]. Firstly, let us show that
the differential operator L: Hs+2(R)→ Hs(R) is the Noether operator for any s ∈ R. Next, we prove the solvability
operator equation (33) in the Schwartz space S(R).

So, let us consider a symbol of the differential operator L having a form

p(t, τ, ξ) = −ρ(t, τ) ξ2 + iξv0τ +
[
−ϕ′a0 + b0v

2
0 − v0ττ

]
, (37)

where a0 = a0(ϕ, t), b0 = b0(ϕ, t), ϕ = ϕ(t), and t ∈ [0;T ] is treated as a parameter, v0 = v0(t, τ) is given via
formula (27).

The symbol (37) obeys to the inequality∣∣∣∣ ∂k+l

∂ξk∂τ l
p(t, τ, ξ)

∣∣∣∣ ≤ Ckl(1 + |ξ|)2

with some bounded values Ckl = Ckl(t), k, l ∈ N ∪ {0}.
Moreover,

∂ l

∂τ l
p(t, τ, ξ) ∈ S 2

0 , l = 1, 2, . . . .
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Because of formulae (25), (27) for all τ ∈ R we have

ρ(t, τ) = 6
a0(ϕ, t)

b0(ϕ, t)

[
1 + cosh−2

(√
a0(ϕ, t)

τ

2
+ C0

)]
6= 0, (38)

where ϕ = ϕ(t), t ∈ [0;T ], and condition (36) of Theorem 2 holds for symbol (37) for all t ∈ [0;T ].
Thus, for any s ∈ R the operator L: Hs+2(R) → Hs(R) satisfies all conditions of Theorem 2, and is Noetherian,

i.e., normally solvable operator.
Denote by L∗ an operator being adjoint to the operator L, given by formula (32). First, we study the case of a

nontrivial kernel of L∗. Next we consider the case with the trivial kernel of L∗.
In the first case, due to the normal solvability of the operator L, differential equation (33) is solvable in Hs+2(R)

if and only if the orthogonality condition [66]

〈Φ, kerL∗〉 = 0 (39)

holds.
Applying Sobolev embedding theorems for the spaces Hs(R), s ∈ R, we deduce the inclusion v∗0 ∈ C

∞
0 (R)

for any element v∗0 ∈ kerL∗. As a consequence of the orthogonality condition (39), one easily obtains that solution
v(x) of equation (33) belongs to the space

⋂
s∈RH

s(R) [64]. Applying again Sobolev embedding theorems, we get
v ∈ C

∞
0 (R).

Now let us demonstrate that v ∈ S(R). Indeed, the function v ∈ C
∞
0 (R) and it satisfies an ordinary differential

equation
d 2 v

dτ2
− a0(ϕ, t)v = f, (40)

where ϕ = ϕ(t), and t ∈ [0;T ] is treated as a parameter,

f = f(t, τ) =
1

ρ(t, τ)

[
v0τ vτ −

(
−a0(ϕ, t)v0 + b0(ϕ, t)v2

0 − v0ττ

)
v + Φ

]
, (41)

the function v0 = v0(t, τ) is given via formula (27).
On the other hand, differential equation (40) is equivalent to relation (29) because of inequality (38). Remind that

equation (29) is written in an operator form as (33).
It is obvious that f ∈ S(R) with respect to the variable τ ∈ R since its every term in (41) belongs to the space

of rapidly decreasing functions in variable τ accordingly properties of the function v0 = v0(t, τ) and condition 2 of
Theorem 1. Remind also the inclusion C

∞
0 (R) ⊂ S∗(R).

So, due to properties of elliptic pseudodifferential operators with polynomial coefficients [65] we come to the
conclusion that any solution to equation (33) from the space S∗(R) belongs to the space S(R). As a result, we obtain
that v ∈ S(R). The last property allows us to consider the action of the operator L∗ as an automorphism of the space
S(R).

Let us proceed to clarifying the orthogonality condition (39). The operator L∗ : S(R)→ S(R) is written as

L∗ =
d2

dτ2
ρ(t, τ) +

d

dτ
v0τ − a0(ϕ, t)ϕ′ + b0(ϕ, t)v2

0 − v0ττ .

According to equation (18), the function v0τ (t, τ) belongs to the kernel of the operator L∗:S(R) → S(R).
Another solution to the equation

L∗v = 0

can be written making use Abel’s formula

w0(t, τ) = v0τ (t, τ)

τ∫
τ0

dξ

ρ(t, ξ) v2
0ξ(t, ξ)

, τ0 ∈ [−∞; +∞).
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Considering the Wronskian for the functions v0(t, τ) and w0(t, τ) as variable τ tends to infinity we deduce that
w0 6∈ S(R). Thus, the dimension of the kernel of the operator L∗:S(R)→ S(R) equals to 1. It allows us to represent
the orthogonality condition (39) in the form:

+∞∫
−∞

Φ(t, τ)v0τ (t, τ) dτ = 0, t ∈ [0;T ]. (42)

Summarizing the arguments above, we conclude that equation (33) has a solution in the space S(R) if and only if
the orthogonality condition (42) is satisfied. Due to the property Φ ∈ S(R), we finally get condition (34).

Now let us study the case of the trivial kernel of L∗. Then equation (33) has a solution in the space Hs+2(R) for
any Φ ∈ S(R) because L: Hs+2(R) → Hs(R) is the Noether operator. In addition, from the above arguing it also
follows that if the kernel of the operator L∗:S(R) → S(R) is trivial, then equation (33) has a solution in the space
S(R) for any Φ ∈ S(R). Theorem 1 is proved.

3.4. Solvability of differential equation (19) in the space G̃

Now consider equation (19) for the function vj = vj(t, τ), j = 1, . . . , N . We have the following lemmas.
Lemma 1. Let a0(ϕ(t), t) > 0 for all t ∈ [0;T ], and the function Fj ∈ G̃ 0, j = 1, . . . , N . Then equation

(19) has a solution vj ∈ G̃, j = 1, . . . , N , if and only if the function Fj , j = 1, . . . , N , satisfies the orthogonality
condition of the form:

+∞∫
−∞

Fj(t, τ)v0(t, τ) dτ = 0, t ∈ [0;T ], j = 1, . . . , N, (43)

where the function v0(t, τ) is defined via formula (27).

Proof. First, we show that the solutions vj of equation (19) can be represented as

vj(t, τ) = νj(t)ηj(t, τ) + ψj(t, τ), (44)

where
νj(t) = − 1

a0(ϕ(t), t)ϕ′(t)
lim

τ→−∞
Φj(t, τ), (45)

Φj(t, τ) =

τ∫
−∞

Fj(t, ξ)dξ + Ej(t), (46)

ηj ∈ G̃ and additionally limτ→−∞ ηj(t, τ) = 1, and ψj ∈ G̃0, j = 1, . . . , N. Here the value Ej(t) does not depend
on the variable τ and it can be found from formula (46) using condition

lim
τ→+∞

Φj(t, τ) = 0.

To prove relation (44) we integrate equation (19) in τ in limits from −∞ to τ and we obtain the operator equation

Lvj = Φj , j = 1, . . . , N, (47)

where the operator L is given by formula (32).
By virtue of formulae (44), (47), for all t ∈ [0;T ] the function τ 7→ ψj(t, τ), j = 1, . . . , N , has to satisfy the

inhomogeneous equation
Lψj = Φj − νjLηj , (48)

where Φj − νjLηj ∈ S(R), j = 1, . . . , N .
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So, according to Theorem 1 equation (48) has a solution in the space G̃0 if and only if the following orthogonality
condition

+∞∫
−∞

(Φj − νjLηj) v0τdτ = 0, j = 1, . . . , N, (49)

holds. Finally, from (49), (46), (18) and (47) by integration, we obtain condition (34).

Remark 2. In the case j = 1 the orthogonality condition (43) implies the relation:

a0(ϕ, t)
d

dt

(
A2

α

)
+ 6

a0(ϕ, t)

b0(ϕ, t)

A2

α
a0x(ϕ, t) +

4

5
A3 d

dt

(
αA2

)
− 12

35

A4

α
b0x(ϕ, t) = 0, (50)

where the functions α = α(t), A = A(t) are defined by formula (31), and the function ϕ is a solution of differential
equation (25).

Condition (50) implies certain restrictions on the coefficients a0(x, t), b0(x, t) of equation (9) under which its
asymptotic soliton-like solutions can be constructed. The orthogonality condition (43) as j > 1, provides us with
similar relations for higher terms of asymptotic expansions for the coefficients of equation (9). In particular cases,
these relations can be essentially simplified, as in the case of the KdV equation [51]. For example, if in (9) we put
a0(x, t) = a0(x), b0(x, t) = b0(x), conditions (25), (43) are satisfied when the equality

52 b′0(ϕ(t))a0(ϕ(t)) = 35 a′0(ϕ(t))b0(ϕ(t))

holds.
Lemma 2. Let the conditions of Lemma 1 be true. Then vj ∈ G̃0, j = 1, . . . , N, if and only if the condition

lim
τ→−∞

Φj(t, τ) = 0, j = 1, . . . , N, (51)

is true.

Proof. This statement follows from the representation (44). Really, the relation (51) means that Ej(t) = 0, j =

1, . . . , N , in (46). This equality with formulas (44)–(46) yields the conclusion vj ∈ G̃0.

Remark 3. In particular case j = 1, relation (51) becomes as

a0(ϕ, t)
d

dt

(
A

α

)
− A2

α
a0x(ϕ, t)− 8

45

A3

α
b0x(ϕ, t) = 0, (52)

where the functions α = α(t),A = A(t), t ∈ [0;T ], are defined by formula (31) and the function ϕ = ϕ(t), t ∈ [0;T ],
is a solution of differential equation (25).

The last formula provides us with an additional condition for the main coefficients of expansions (10). It should
be compatible with condition (50). This takes place, for example, for equation (62), which is a specific case of the
vcmCH equation (9).

3.5. Constructing the higher terms

Finally, the function Vj(x, t, τ), j = 0, 1, . . . , N , is determined outside of the discontinuity curve Γ. At the
beginning let us remark that since v0 ∈ G̃0 we can put

V0(x, t, τ) = v0(t, τ). (53)

Taking into consideration formulae (44), which provide us with the values on Γ, we define Vj(x, t, τ), j =
1, . . . , N , by extending vj(t, τ), j = 1, . . . , N , from the curve Γ, in a manner that depends on the properties of the
function vj(t, τ), j = 1, . . . , N . When prolonging vj(t, τ), j = 1, . . . , N , it should be considered two cases. Firstly,
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suppose that condition (51) holds, i.e. vj(t, τ) ∈ G̃0. This case is similar to that of the function v0(t, τ). It means that
the prolongation of the function vj(t, τ), j = 1, . . . , N , from Γ to its neighborhood can be expressed as

Vj(x, t, τ) = vj(t, τ). (54)

In opposite case, when it is not true that condition (51) is satisfied, we make use of representation (44) and the
prolongation is realized as

Vj(x, t, τ) = u−j (x, t)ηj(t, τ) + ψj(t, τ), (55)

where the functions ηj(t, τ), ψj(t, τ), j = 1, . . . , N , are defined via formulae (44), (45) while the function u−j (x, t),
j = 1, . . . , N , is a solution to the Cauchy problem

Λu−j (x, t) = f−j (x, t), (56)

u−j (x, t)
∣∣
Γ

= νj(t), (57)

with differential operator

Λ = a0(x, t)
∂

∂t
. (58)

In particular, the first right-hand side functions in (56) are written as

f−1 (x, t) = 0, f−2 (x, t) = −a1(x, t)
∂u−1
∂t

, f−3 (x, t) = −a1(x, t)
∂u−2
∂t
− b0(x, t)u−1

2 ∂u−1
∂x

.

The differential equation (56) is deduced after substituting the representation (55) into equation (9) and limiting
as variable τ tends to −∞. The initial condition (57) follows from the representation (44).

A general solution of equation (56) can be written as

u−j (x, t) =

t∫
0

f−j (x, ξ)

a0(x, ξ)
dξ + χj(x), (59)

where the function χj(x), j = 1, . . . , N , has to satisfy condition (57), i.e., the equality

χj(ϕ(t)) = νj(t)−
t∫

0

f−j (ϕ(t), ξ)

a0(ϕ(t), ξ)
dξ

is true.
Due to the assumption a0(x, t) b0(x, t) 6= 0 and equation (25), the function t 7→ ϕ(t), t ∈ [0;T ], is monotonic

and has an inverse. Thus, we obtain the solution of problem (56), (57) in exact form as

u−j (x, t) = νj ◦ ϕ−1(x) +

t∫
ϕ−1(x)

f−j (x, ξ)

a0(x, ξ)
dξ,

which yields the higher terms given by (55).
So, the problem of finding the asymptotic soliton-like solution (15) is solved completely.
Note that the singular terms of the asymptotic solutions for equation (9) are represented by formula (15) in two

ways depending on condition (51). However, both forms of asymptotic solutions satisfy the equation with the same
precision. This is confirmed by the following theorems, formulated on the basis of the procedure for constructing
singular terms in (15).

Theorem 3. Assume the following conditions:

1. The functions aj(x, t), bj(x, t) ∈ C∞(R× [0;T ]), j = 0, 1, . . . , N , and

a0(x, t) b0(x, t) 6= 0 for all (x, t) ∈ R× [0;T ];
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2. The inequality a0(ϕ(t), t) > 0 is fulfilled for all t ∈ [0;T ], where the function ϕ satisfies equation (25);
3. The orthogonality conditions (43) are true;
4. Conditions (51) hold.

Then the function

uN (x, t, ε) =

N∑
j=0

εjVj(x, t, τ), τ =
x− ϕ(t)

ε
, (60)

satisfies equation (9) on the set R×[0;T ] with an asymptotic accuracyO(εN ) and represents theN–th approximation
for the asymptotic soliton-like solution to equation (9).

Theorem 4. Let the following assumptions be supposed:

1. The conditions 1 – 3 of the Theorem 3 are true;
2. Problem (56), (57) has a solution in the set

{(x, t) ∈ R× [0;T ] : x− ϕ(t) ≤ 0}.

Then the function

uN (x, t, ε) =
N∑
j=0

εjVj(x, t, τ), τ =
x− ϕ(t)

ε
, (61)

satisfies equation (9) with an asymptotic accuracy O(εN ) on the set R× [0;T ], and it is the N–th approximation for
the asymptotic soliton-like solution to equation (9).

Proof. The proofs of Theorems 3 and 4 are similar to the proof of Theorem 1 [53]. These proofs are technical and
somewhat cumbersome; therefore, we will not repeat them here, but will provide an outline of the main idea of the
proof.

To prove Theorem 3, we examine a residual function and estimate it. In this context, we utilize the fact that the
singular terms satisfy equations (18) and (19), and that they decrease rapidly with respect to the variable τ . We also
apply the Taylor representation of the coefficients of the functions a(x, t, ε), b(x, t, ε) in the neighborhood of the
curve Γ.

While proving Theorem 4 we additionally make use the property of the function ηj(t, τ) and ψj(t, τ), for j =

1, 2, . . . , N, as elements of the spaces G̃ and G̃0.

Remark 4. The residual value for both functions (60) and (61), and the vcmCH equation (9) tends to zero as
τ → ±∞ for any nonnegative integer N .

3.6. Example 1

Consider the vcmCH equation with singular perturbation of the form:

[1 + ε(x2 + 1)]ut − ε2uxxt + u2ux − 2ε2uxuxx − ε2uuxxx = 0. (62)

So, we have
a0(x, t) = b0(x, t) = 1, a1(x, t) = x2 + 1, b1(x, t) = 0,

a2(x, t) = b2(x, t) = a3(x, t) = b3(x, t) = . . . = 0.

The phase function ϕ = ϕ(t) is a solution of equation (25) of the form:

dϕ

dt
= 6,

and under trivial initial condition it is given as ϕ(t) = 6t, t ∈ R.
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The main term of the asymptotic soliton-like solution is presented as

V0(x, t, τ) = v0(t, τ) = −6 cosh−2
(τ

2
+ C0

)
, τ =

x− 6t

ε
, (63)

where C0 is an arbitrary real.
Let us put C0 = 0 and move on to the definition of the first singular term of the asymptotic soliton-like solution.

In this case we find
Φ1(t, τ) = −36(36t2 + 1) cosh−2 τ

2
.

By direct calculations, we find that Φ1(t, τ) satisfies the assumptions of Lemma 1 as well as condition (51) in
Lemma 2. Thus, we can set V1(x, t, τ) = v1(t, τ), where v1(t, τ) is determined from (29) with j = 1 using the
corresponding data:

V1(x, t, τ) = v1(t, τ) = (1 + 36t2) cosh−6 τ

2
tanh

τ

2
(64)

×
[(

11270 + 216t2
)
τ +

(
4103, 5 + 270t2

)
sinh τ +

(
513, 125 + 40, 5t2

)
sinh 2τ

+2τ cosh 2τ −
√

2
(
507, 5− 162t2

)
arctanh

(
1√
2

tanh
τ

2

)
− 3
√

2

2
sinh2 τ

2
cosh τ arctanh

(
1√
2

tanh
τ

2

)
− 8192 coth

τ

2

]
.

Figure 1: The main term V0(x, t, τ) as ε = 1 (at the left) and ε = 0.5 (at the right).

It is clear that condition (51) is true, and the function v1 ∈ G̃0. The first asymptotic approximation for soliton-like
solution of equation (62) is global and it is given as

u1(x, t, ε) = V0(x, t, τ) + εV1(x, t, τ), τ =
x− 6t

ε
, (65)

where the functions v0(t, τ), v1(t, τ) are defined by (63), (64).
According to Theorem 3 function (65) satisfies equation (62) with an asymptotic accuracy O(ε).
Graphs of the main and first terms of the asymptotic soliton-like solution as well as of the first approximation are

presented on Fig. 1–3 for a parameter ε = 1 and ε = 0.5.
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Figure 2: The term εV1(x, t, τ) as ε = 1 (at the left) and ε = 0.5 (at the right).

Figure 3: The first approximation of the soliton-like solution u1(x, t, ε) as ε = 1 (at the left) and ε = 0.5 (at the right).

4. The peakon-like solutions

Recall that the mCH equation (6) is well known for its soliton and peakon solutions, examples of which are
given by formulae (11) and (12). Both soliton and peakon solutions representing solitary wave solutions are rapidly
decreasing to a background function at infinity. It should be also remarked that soliton and peakon solutions differ
in differentiability properties. In particular, whereas soliton solutions are described through functions that necessarily
have inflection points, the peakon solutions are represented by functions that, like their derivatives, are monotone on
any interval of their smoothness. It can be easily noticed for the peakon solution (8) of the CH equation.

Thus, the problem of constructing asymptotic peakon-like solutions of the vcmCH equation with singular pertur-
bation (9) is natural, since these solutions have other properties than asymptotic soliton-like solutions. As a result,
peakon-like solutions provide us with a new type of asymptotic solutions.

Due to the fact that the singular part of an asymptotic soliton-like solution reflects specific features of a soliton-like
solution, here as above we suppose the regular part of the asymptotics to be zero. For the case of asymptotic soliton-
like solutions, we propose definitions of suitable functional spaces that are modifications of the space G0 introduced
above in Section 2. For the problem under consideration, we take into account form of peakon solutions that have a
peak at a point and as a result they possess a discontinuous first derivative at this point.

Now we move on to the definitions that are used in the sequel.
Let G+ = G+(R× [0;T ]×R+) be the space of infinitely differentiable functions f :R× [0;T ]×R+ → R, such
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that for any nonnegative integers n, p, q and r

lim
τ→+∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K,

uniformly with respect to (x, t) ∈ K, in any compact set K ⊂ R× [0;T ]. Here R+ = [0; +∞).
Let G̃+ = G̃+([0;T ]× R+) be the space of infinitely differentiable functions f : [0;T ]× R+ → R, such that for

any nonnegative integers n, p and q

lim
τ→+∞

τn
∂ p

∂tp
∂ q

∂ τ q
f(t, τ) = 0, t ∈ [0;T ].

We denote byG− = G−(R× [0;T ]×R−) the space of infinitely differentiable functions f :R× [0;T ]×R− → R,
such that for any nonnegative integers n, p, q and r

lim
τ→−∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K,

uniformly with respect to (x, t) ∈ K, in any compact set K ⊂ R× [0;T ]. Here R− = (−∞; 0].
Let G̃− = G̃−([0;T ]× R−) be the space of infinitely differentiable functions f : [0;T ]× R− → R, such that for

any nonnegative integers n, p and q

lim
τ→−∞

τn
∂ p

∂ tp
∂ q

∂τ q
f(t, τ) = 0, t ∈ [0;T ].

LetG± = G±(R× [0;T ]×R) be the space of continuous functions f :R× [0;T ]×R→ R, such that the function
f can be written as

f = f(x, t, τ) =

{
f+(x, t, τ), (x, t, τ) ∈ R× [0;T ]× R+,
f−(x, t, τ), (x, t, τ) ∈ R× [0;T ]× R−,

where f+ ∈ G+ and f− ∈ G−.
We denote by G̃± = G̃±([0;T ]×R) the space of continuous functions f : [0;T ]×R→ R, such that the function

f can be written as

f = f(t, τ) =

{
f+(t, τ), (t, τ) ∈ [0;T ]× R+,
f−(t, τ), (t, τ) ∈ [0;T ]× R−,

where f+ ∈ G̃+ and f− ∈ G̃−.
We use the following definition of an asymptotic peakon-like function.
Definition 2. A nontrivial function u = u(x, t, ε), where (x, t) ∈ R× [0;T ] and ε is a small parameter, is called

an asymptotic peakon-like function if for any integer N ≥ 0 it can be represented as

u(x, t, ε) =

N∑
j=0

εjVj(x, t, τ) +O(εN+1), τ =
x− ϕ(t)

ε
, (66)

where ϕ(t) ∈ C∞([0;T ]) is a scalar function, and Vj ∈ G±, for j = 0 , 1, . . . , N .
As in the case of asymptotic soliton-like solutions, the function x−ϕ(t) is called a phase function of the asymptotic

peakon-like function u(x, t, ε).
A curve determined by equation x− ϕ(t) = 0 is called a discontinuity curve for the function u(x, t, ε) [48, 54].
Let us move on to the description of an algorithm for constructing asymptotic peakon-like solutions of equation

(9). The main idea resembles that of finding asymptotic soliton-like solutions for equation (9) presented above. It is
lightly modified in comparison with the searched asymptotic solutions (66).

The principal problem is to find terms in the expansion (66). To solve it, we substitute the ansatz for asymptotic
solutions into equation (9), we get differential equations for the singular terms of the series (66) and study these
equations in a neighborhood of the discontinuity curve.
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The next step is related to solving differential equations for the functions vj(t, τ) = Vj(x, t, τ)
∣∣
x=ϕ(t)

, j =

0, 1, . . . , N , in the functional spaces according to Definition 2.
Finally, to obtain the coefficients of expansion (66), we prolong the functions vj(t, τ), j = 0, 1, . . . , N , analo-

gously to the procedure of prolonging the terms of asymptotic soliton-like solutions in the case vj ∈ G̃0, j = 1, . . . , N ,
see Section 3.5.

4.1. The main term

Let us consider the main term V0(x, t, τ) of the asymptotic peakon-like solution of equation (9). It can be explicitly
found despite tedious calculations. In fact, the function v0(t, τ) = V0(x, t, τ)

∣∣
x=ϕ(t)

is a solution of the second-order
differential equation of the form (21). Let denote

C1(t) = −g = −g(t), t ∈ [0;T ],

and rewrite differential equation (21) as a system:

y =
dv0

dτ
, (67)

ρ1(t, τ)
dy

dτ
− a0(ϕ, t)ϕ′ v0 +

1

3
b0(ϕ, t)v3

0 −
1

2
y2 = −g, (68)

where ρ1(t, τ) = ϕ′(t)− v0(t, τ).
Now we find the first integral of system (67), (68). This can be done as follows. Equation (68) implies the equation

dy

dτ
=

6a0(ϕ, t)ϕ′ v0 − 2b0(ϕ, t)v3
0 + 3y2 − 6g

6ρ1(t, τ)
,

which, when combined with (67), leads to the total differential equation[
6 a0(ϕ, t)ϕ′ v0 − 2b0(ϕ, t)v3

0 + 3y2 − 6g
]
dv0 − 6ρ1(t, τ)ydy = 0. (69)

In a standard way [68], we calculate the first integral of equation (69) that is given as

H(v0, y) = 6 a0(ϕ, t)ϕ′ v2
0 − b0(ϕ, t)v4

0 + 6y2v0 − 12gv0 − 6ϕ′ y2, (70)

where ϕ = ϕ(t), and t ∈ [0;T ] plays the role of a parameter here.
Equating the function H(v0, y) to a constant provides us with an ODE for the function v0(t, τ). Recall that we

are interested in a particular solution of equation (21) and therefore we can choose a constant for the first integral in
a suitable form. We apply an idea that was previously used to search for the asymptotic soliton-like solution of the
singularly perturbed vcKdV equation [48].

Let us represent the relation H(v0, y) = C as

y2 = Q(v0), (71)

where

Q(v0) =
b0(ϕ, t)v4

0 − 6a0(ϕ, t)ϕ′ v2
0 + 12gv0 + C

6 (v0 − ϕ′)
.

If we take
C = −b0(ϕ, t) (ϕ′)

4
+ 6a0(ϕ, t) (ϕ′)

3 − 12gϕ′,

then the function Q(v0) becomes a cubic polynomial. We can write it as

Q(v0) =
1

6
b0(ϕ, t)(v0 − α1)2(v0 − α2)
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under the assumptions that the values α1 and α2 satisfy the system

2α1 + α2 = −ϕ′, (72)

α2
1 + 2α1α2 =

1

b0(ϕ, t)

[
b0(ϕ, t) (ϕ′)

2 − 6a0(ϕ, t)ϕ′
]
, (73)

α2
1α2 =

1

b0(ϕ, t)

[
−b0(ϕ, t) (ϕ′)

3
+ 6a0(ϕ, t) (ϕ′)

2 − 12g
]
. (74)

System (72)–(74) has the particular solution

α1 = 0, α2 = −ϕ′.

It implies the differential equation
dϕ

dt
= 6

a0(ϕ, t)

b0(ϕ, t)
(75)

for the function ϕ, and the relation
6a0(ϕ, t)− b0(ϕ, t)ϕ′

12
(ϕ′)

2
= 0.

So, the function v0(t, τ) satisfies the first-order ODE(
d v0

d τ

)2

=
1

6
b0(ϕ, t) (v0 + ϕ′) v2

0 , (76)

which, under condition b0(ϕ(t), t) > 0, t ∈ [0;T ], gives

d v0

d τ
= ± v0√

6

√
b0(ϕ, t)(v0 + ϕ′). (77)

Formula (77) implies the equality

v0∫
ϕ′

d v0

v0

√
v0 + ϕ′

= ±
τ∫

0

√
1

6
b0(ϕ, t) dτ,

which is equivalent to

arccoth
√
v0 + ϕ′√
ϕ′

− arccoth
√

2 = ±
√

1

6
b0(ϕ, t)ϕ′

τ

2
,

under assumption a0(ϕ(t), t) > 0, t ∈ [0;T ].
Thus, taking into account equation (75) for the function ϕ = ϕ(t), we can represent the function v0(t, τ) as

v0(t, τ) = 6
a0(ϕ, t)

b0(ϕ, t)
sinh−2

(√
a0(ϕ, t)

|τ |
2

+ arccoth
√

2

)
. (78)

Since v0(t, τ) is a rapidly decreasing function as |τ | → ∞, the main term V0(x, t, τ) of the asymptotic peakon-
like solution is written as V0(x, t, τ) = v0(t, τ). So, it completes the search the main term of asymptotic peakon-like
solution (66).

Remark 5. Equation (75) is an ODE for the phase function ϕ = ϕ(t), the initial condition for which can be
taken as ϕ(0) = 0. It coincides with the ODE for the discontinuity curve (25) deduced for the asymptotic soliton-like
solutions in Section 3.1.

Remark 6. The right-hand side of (78) is a peakon-like function. If a(x, t, ε) = a0(x, t) = 1 and b(x, t, ε) =
b0(x, t) = 3, then we have ϕ(t) = 2t, τ = (x− 2t)/ε, and the obtained main term (78) of solution (66) completely
coincides with the exact solution of the mCH equation (6) given by (11).
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4.2. The higher terms
The higher terms of the asymptotic peakon-like solution (66) are determined by PDE of the form (19). The

procedure of solving is based on the idea of constructing the functions in the neighborhood of the discontinuity curve.
In contrast to asymptotic soliton-like solutions, here we consider the two cases τ ≥ 0 and τ < 0. The obtained
functions are prolonged in such a way that they are continuous and belong to the space G±. Thus, consider equations
(19) for the functions vj ∈ G̃±, j = 1, . . . , N . Below we use notation

vj(t, τ) =

{
v+
j (t, τ), τ ≥ 0,

v−j (t, τ), τ < 0,
(79)

provided that
v+
j (t, 0) = lim

τ→0−
v−j (t, τ).

Taking into account the exact formula (78) for the main term analogously (29) we represent equations for the
higher terms as

(ϕ′ − v0)v+
jττ − v0τv

+
jτ +

(
b0(ϕ, t)v2

0 − a0(ϕ, t)ϕ′ − v0ττ

)
v+
j = Φ+

j (t, τ), τ ≥ 0, (80)

(ϕ′ − v0)v−jττ − v0τv
−
jτ +

(
b0(ϕ, t)v2

0 − a0(ϕ, t)ϕ′ − v0ττ

)
v−j = Φ−j (t, τ), τ < 0, (81)

where

Φ+
j (t, τ) =

τ∫
0

Fj(t, τ) dτ + E+
j (t), τ ≥ 0, (82)

Φ−j (t, τ) =

τ∫
0

Fj(t, τ) dτ + E−j (t), τ < 0, (83)

and Fj(t, τ), j = 1, . . . , N , is the right-hand side function in equation (19).
Here, the values E+

j (t), E−j (t) are constants of the integrations chosen in such a way that

lim
τ→+∞

Φ+
j (t, τ) = 0,

lim
τ→−∞

Φ−j (t, τ) = 0.

In the particular case j = 1, we have

Φ+
1 (t, τ) = B1[cothκ+ − 1] + [B2τ +B3] sinh−2 κ+ +

[
B4 coshκ+ +B5τ sinh−1 κ+

]
sinh−3 κ+ (84)

+
[
(B6τ +B7) sinh−1 κ+ +B8 coshκ+

]
sinh−5 κ+,

and

Φ−1 (t, τ) = −B1[cothκ− − 1] + [B2τ +B3] sinh−2 κ− +
[
−B4 coshκ− +B5τ sinh−1 κ−

]
sinh−3 κ− (85)

+
[
(B6τ +B7) sinh−1 κ− −B8 coshκ−

]
sinh−5 κ−,

where

κ+ = ατ + arccoth
√

2, κ− = −ατ + arccoth
√

2,

B1 = a0(ϕ, t)
d

dt

(
B

α

)
+
B

α
ϕ′ a0x(ϕ, t)− 8

45

B3

α
b0x(ϕ, t),

B2 = −a0(ϕ, t)
B

α
αt + 4Bααt +

1

6

B

b0(ϕ, t)
a0x(ϕ, t),

B3 = 6
a0(ϕ, t)

b0(ϕ, t)
a1(ϕ, t)B, B4 = −2

d

dt
(αB) +

4

45

B3

α
b0x(ϕ, t),

B5 = 6Bααt, B6 = −1

3
B3b0x(ϕ, t), B7 = −1

3
b1(ϕ, t)B3, B8 = −B

3

α
b0x(ϕ, t),
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and

α = α(t) =

√
a0(ϕ, t)

2
, B = B(t) = 6

a0(ϕ, t)

b0(ϕ, t)
, ϕ = ϕ(t), t ∈ [0;T ].

The assumption vj ∈ G̃± implies inclusions Φ+
j ∈ G̃+, Φ−j ∈ G̃−. In particular case j = 1 it provides us with

necessary condition of belonging the function v+
1 to the space G̃+ and v−1 to the space G̃− as

a0(ϕ, t)
d

dt

(
B

α

)
+
B2

α
a0x(ϕ, t)− 8

45

B3

α
b0x(ϕ, t) = 0 (86)

that are similar to condition (52).
Let us move on to analysis of equations (80), (81). General solutions of these equations can be found by means

of the method of variation of constants using a solution of the correspondent homogeneous equations. Because the
function w = w(t, τ) = v0τ (t, τ) is a solution of the homogeneous equation for both relations (80), (81), another
solution of these homogeneous linear equations can be found by using Abel’s formula

w0(t, τ) = v0τ (t, τ)

τ∫
τ0

d ξ

ρ1(t, ξ)v2
0ξ(t, ξ)

, τ0 ∈ [−∞;∞). (87)

So, the solution can be taken as

w0(t, τ) =
1

9

b20(ϕ, t)

a3
0(ϕ, t)

[
−35

32

√
a0(ϕ, t)|τ | sinh−2 κ cothκ

+
5

8
coth2 κ− 1

4
cosh2 κ+

5

3
sinh−2 κ− 1

6
sinh−4 κ

]
,

where
κ = α|τ |+ arccoth

√
2, τ ∈ R.

Thus, general solutions of (80), (81) can be represented by formula

v±j (t, τ) = −v0τ (t, τ)

τ∫
0

Φ±j (t, τ)w0(t, τ)dτ + w0(t, τ)

τ∫
0

Φ±j (t, τ)v0τ (t, τ)dτ (88)

+c±j1v0τ (t, τ) + c±j2w0(t, τ),

where c+j1, c−j1, c+j2, c−j2 are constants taken in order to satisfy conjugation conditions at τ = 0, yielding:

c+j1v0τ (t, 0) + c+j2w0(t, 0) = c−j1v0τ (t, 0) + c−j2w0(t, 0).

According to the choice of values c+j1, c−j1, c+j2, c−j2 formula (88) gives the function vj(t, τ), j = 1, . . . , N , which
is continuous and belongs to the space G̃±.

Analogously to the prolongation procedure of the terms of asymptotic soliton-like solutions in the case vj(t, τ) ∈
G̃0, j = 1, . . . , N (see Subsection 3.5), we prolong the function vj(t, τ) ∈ G̃±, j = 1, . . . , N , as Vj(x, t, τ) =
vj(t, τ), j = 1, . . . , N . It is clear that this function has a peak at τ = 0 and belongs to the space G±.

Theorem 5. Let the following conditions be assumed:

1. Functions aj(x, t), bj(x, t) ∈ C∞(R× [0;T ]), j = 0, 1, . . . , N ;
2. Inequalities a0(ϕ(t), t) > 0, b0(ϕ(t), t) > 0, t ∈ [0;T ], hold, where the phase function ϕ(t), t ∈ [0;T ], is a

solution of equation (75);
3. The functions vj(t, τ), j = 1, . . . , N , defined by formulas (79), belong to the space G̃±.
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Then the function

uN (x, t, ε) =

N∑
j=0

εjVj(x, t, τ), τ =
x− ϕ(t)

ε
, (89)

is the N–th asymptotic approximation of the peakon-like solution of equation (9) and satisfies the equation on the set

{(x, t) ∈ R× [0;T ]:x− ϕ(t) > 0} ∪ {(x, t) ∈ R× [0;T ]:x− ϕ(t) < 0}

with an asymptotic accuracy O(εN ).
Proof of Theorem 5 is done analogously to the case of the asymptotic one-phase soliton-like solution of the vcmCH

equation with a singular perturbation of form (9) for the case when the all functions of the constructed asymptotics
belong to the space G0. It should be also noted that, despite the discontinuity in the variable τ of the derivatives of the
singular terms of the asymptotic peakon-like solution, this solution satisfies this equation with the accuracy declared
in Theorem 5.

Remark 7. The residual value for function (89) and the vcmCH equation (9) tends to zero as τ → ±∞ for any
nonnegative integer N .

4.3. Example 2

Let us consider the vcmCH equation with a singular perturbation of the form:[
1 + ε

(
1

36
x2 + 1

)]
ut − ε2uxxt +

[
1 + ε(t2 + 1)

]
u2ux − 2ε2uxuxx − ε2uuxxx = 0. (90)

The coefficients of the equation are given as

a0(x, t) = b0(x, t) = 1, a1(x, t) =
1

36
x2 + 1, b1(x, t) = t2 + 1,

a2(x, t) = b2(x, t) = a3(x, t) = b3(x, t) = . . . = 0.

The phase function ϕ = ϕ(t) for the discontinuity curve of the peakon-like solution can be found from the first-
order ODE

dϕ

dt
= 6,

that has global solution ϕ(t) = 6t satisfied initial condition ϕ(0) = 0.
Formula (78) with a0(x, t) = b0(x, t) = 1, yields the main term of the asymptotic peakon-like solution as

V0(x, t, τ) = v0(t, τ) = 6 sinh−2 κ, (91)

where

κ =
|τ |
2

+ arccoth
√

2, τ =
x− 6t

ε
.

Let us move on to definition of the first term v1(t, τ) of the asymptotic solution. In this case the functions Φ+
1 (t, τ),

Φ−1 (t, τ) are given as
Φ±1 (t, τ) = 36(t2 + 1) sinh−2 κ± − 72(t2 + 1) sinh−6 κ±,

where the values k+, k− are as
κ± = ±τ

2
+ arccoth

√
2.

According to formula (87) the function w0(t, τ) is written as

w0(t, τ) =
1

9

[
5

8
coth2 κ− 1

4
cosh2 κ− 35

32
|τ | cothκ sinh−2 κ+

5

3
sinh−2 κ− 1

6
sinh−4 κ

]
,
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and the functions v+
1 (t, τ), v−1 (t, τ) for the first term v1(t, τ) in (79) are correspondingly represented as

v±1 (t, τ) = v±,11 (t, τ) + v±,21 (t, τ) + c±11v0τ (t, τ) + c±12w0(t, τ), (92)

where

v±,11 (t, τ) = −v0τ (t, τ)

τ∫
0

Φ±1 (t, τ)w0(t, τ)dτ, (93)

v±,21 (t, τ) = w0(t, τ)

τ∫
0

Φ±1 (t, τ)v0τ (t, τ)dτ. (94)

The values c+11 = c+11(t), c−11 = c−11(t) have to obey relation c+11(t) = c−11(t), t ∈ R, following from the continuity
condition of the function v1(t, τ) at point τ = 0. It allows us to put c+11(t) = c−11(t) = 0, t ∈ R.

Figure 4: The main term V0(x, t, τ) as ε = 1 (at the left) and ε = 0.5 (at the right).

Figure 5: The term εV1(x, t, τ) as ε = 1 (at the left) and ε = 0.5 (at the right).

Taking into account the form of the functions w0(t, τ) and Φ±1 (t, τ), we have that the functions Φ±1 (t, τ)w0(t, τ)
are bounded in τ for any t ∈ [0;T ]. Thus, v±,11 (t, τ) are rapidly decreasing functions as |τ | → ±∞.

For the functions v±,21 (t, τ) we can calculate their exact values as

v±,21 (t, τ) = 108 (t2 + 1) w0(t, τ)
[
sinh−4 κ± − sinh−8 κ± − C1

]
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Figure 6: The first approximation of the peakon-like solution u1(x, t, ε) as ε = 1 (at the left) and ε = 0.5 (at the right).

with constant
C1 = sinh−4

(
arccoth

√
2
)
− sinh−8

(
arccoth

√
2
)
.

It is clear, that the function v1(t, τ) constructed via formulae (79), (92)–(94) belongs to the space G± if the
condition c+12 = c−12 = 108 (t2 + 1)C1 holds.

Thus, the first term V1(x, t, τ) is written as

V1(x, t, τ) = v1(t, τ) = (t2 + 1) sinh−2 κ

[
−6071

315
− 6 |τ | cothκ− 4519

1260
sinh−2 κ (95)

+
105

8
|τ | sinh−3 κ+

1787

126
sinh−8 κ− 7381

6300
sinh−4 κ+

105

16
|τ | sinh−5 κ

+
4231

1260
sinh−6 κ− 105

16
|τ | coshκ sinh−9 κ− 7

9
sinh−10 κ

]
, κ =

|τ |
2

+ arccoth
√

2.

Finally, the first asymptotic approximation for peakon-like solution of equation (90) is global and it is given as

u1(x, t, ε) = V0(x, t, τ) + εV1(x, t, τ), τ =
x− 6t

ε
, (96)

where the functions V0(x, t, τ), V1(x, t, τ) are defined by (91), (95).
According to Theorem 5 function (96) satisfies equation (90) with an asymptotic accuracy O(ε).
Graphs of the main and first terms of the asymptotic peakon-like solution as well as of the first approximation are

presented on Fig. 4–6 for a small parameter ε = 1 and ε = 0.5.

5. Conclusions and discussions

Research into various types of integrable models in modern mathematical and theoretical physics is currently
attracting significant attention [69, 70, 71, 72]. This paper focuses on the variable-coefficient modified Camassa–
Holm (vcmCH) equation, a direct generalization of the well-known modified Camassa–Holm equation (6). This
integrable system supports both soliton solutions and peakon solutions.

Our primary objective is to construct soliton- and peakon-like solutions for the vcmCH equation in the regime
of small dispersion. The approach employed is similar to those used for the variable-coefficient Korteweg–de Vries
(vcKdV) equation and the variable-coefficient Benjamin–Bona–Mahony (vcBBM) equation, both of which describe
wave propagation in media with heterogeneous characteristics. Consequently, it is natural to explore solutions to the
vcmCH equation that resemble solitary wave solutions, with a particular focus on solitons and peakons.
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In this extended context, exact solutions are unavailable, as traditional analytical methods prove ineffective due to
the variable coefficients. Therefore, it is appropriate to seek approximate solutions that resemble the exact solutions
of the corresponding equations with constant coefficients. For cases of small dispersion in the medium, the powerful
tools of asymptotic analysis, particularly the WKB method, can be effectively applied to solve these problems.

This study constructs asymptotic peakon-like solutions for a partial differential equation (PDE) with variable
coefficients for the first time. We emphasize that the soliton-like and peakon-like solutions do not coincide, but share
the same discontinuity curve. This curve is determined by a first-order ordinary differential equation, unlike the
second-order equations that govern the KdV and BBM equations [48, 54].

The novelty of this paper lies in developing a general methodology for constructing these solutions, supported by
a thorough and rigorous justification. This methodology builds upon the results of [48, 54, 59], which address the
construction of asymptotic soliton-like solutions for the vcKdV and vcBBM equations, as well as asymptotic step-
like solutions for the variable-coefficient Burgers equation. The asymptotic soliton- and peakon-like solutions of the
vcmCH equation reduce to the solitons and peakons of the original modified Camassa–Holm (mCH) equation when
the variable coefficients are taken as constants. Thus, these solutions can be viewed as deformations of traveling-wave
solutions induced by the variable coefficients.

It is important to note that these variable coefficients introduce significant challenges in analyzing the equations,
even when seeking specific solutions. Although the proposed method offers an approximate description of soliton
modulation, the solutions it produces are generally not global. This limitation arises from the phase function governing
the solutions, which is determined by a nonlinear equation. As is well known, such equations often do not admit
global solutions. The governing equation incorporates only the leading terms in the asymptotic expansion of the
variable coefficients in the vcmCH equation. However, with an appropriate choice of these coefficients, the general
theory of ordinary differential equations ensures that the phase function is globally well-defined in time. This holds
for a sufficiently broad range of variable coefficients. Consequently, the existence of a global asymptotic solution for
such systems requires careful analysis, with special attention given to the selection of coefficients.

Despite these limitations, the results presented here are significant. They greatly expand the potential applications
of hydrodynamic-type equations with variable parameters and open new avenues for exploring wave propagation
phenomena in inhomogeneous media. The findings are further enriched by nontrivial examples of asymptotic soliton-
and peakon-like solutions with a global phase function. Specifically, both the main and first terms of these solutions
are derived. Additionally, for various values of a small parameter, graphs are provided to illustrate these solutions.
These examples confirm that for an adequate description of wave processes, it suffices to determine the main and first
terms of the corresponding asymptotic solutions.
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