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a b s t r a c t

We estimate the asymptotic behavior for the Stokes solutions, with external forces first.
We

∧
found that if there

∧
are external forces, then the energy decays

∧
slowly even if the

forces
∧
decay quickly. Then, we also obtain the asymptotic

∧
behavior in the temporal-spatial

direction for weak solutions of the Navier–Stokes equations. We also provide a simple
example of external forces which shows that the Stokes solution does not decay

∧
quickly.

© 2008 Published by Elsevier Ltd

1. Introduction 1

We study the asymptotic behavior in the weighted L2 of solutions for the Navier–Stokes equations with external forces 2

in the whole space Rn: 3

ut −∆u+ (u · ∇)u+∇p = f, in Rn × (0,∞),
∇ · u = 0, in Rn × (0,∞),
u(x, 0) = u0, for x ∈ Rn.

(1.1) 4

Here, u0 is given initial data. The velocity u = (u1, u2, . . . , un) and the pressure p are unknown. 5

The decay problem for weak solutions of the Navier–Stokes equations was first proposed by Leray [15] for the Cauchy 6

problem in R3. Kato [14] obtained temporal decay rates for
∧
strong solutions, for the first time. Schonbek [19–22] worked on 7

the temporal decay problem in Rn. She obtained the lower and the upper bounds. In [20], she showed that if u0 ∈ Lr ∩ L2, 8

1 ≤ r < 2, and the average of the initial data
∫
u0dx is nonzero, then 9

C1(1+ t)−
3
2 (1/r−1/2) ≤ ‖u(t)‖L2(R3) ≤ C2(1+ t)

−
3
2 (1/r−1/2). 10

In [21,22], it was shown that, if the average is zero,
∫

Rn |u0|
2
|x|dx <∞, and under some restrictions on u0, then 11

C1(1+ t)−n/4−1/2 ≤ ‖u(t)‖L2(Rn) ≤ C2(1+ t)
−n/4−1/2

12

for n = 2, 3. See also Miyakawa and Schonbek [17] for the lower bound. 13
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Borchers and Miyakawa [7] studied the decay problem in half spaces Rn
+
. They obtained that if u0 ∈ L2 ∩ Lr , then1

‖u(t)‖2 ≤ C2(1+ t)−
n
2 (1/r−1/2)2

provided 1 ≤ r < 2. For example, if r = 1 then the decay rate is t−n/4. For r = 2, they obtained that ‖u(t)‖2 → 0. We [3]3

showed that the decay rate of L2-norm of the solutions for the Navier–Stokes equations in the half space is4

t−
n
2

(
1
r −

1
2

)
−
1
25

if u0 ∈ L2 ∩ Lr and
∫

Rn
+

|ynu0(y)|rdy <∞.6

For the spatial decay, Farwig and Sohr [9,10] showed the spatial decays for the exterior problems. He and Xin [12] showed7

that if u0 ∈ L1(R3) and |x|u0 ∈ L2(R3), there exists a class of weak solutions satisfying8

‖(1+ |x|2)1/2u‖22 +
∫ t

0
‖(1+ |x|2)1/2∇u‖22dτ ≤ C9

and also that if |x|3/2u0 ∈ L2(R3), then there is a class of weak solutions satisfying10

‖(1+ |x|2)α/2u(t)‖22 +
∫ t

0
‖(1+ |x|2)α/2∇u(τ )‖22dτ ≤ C(1+ log(1+ t))11

for all t > 0, 0 ≤ α ≤ 3/2. If ‖e−tAu0‖1 ≤ C(1 + t)−γ for some γ > 0, then the right-hand side of the above12

inequality can be replaced by a constant independent of t . Schonbek and Schonbek [23] studied the decay properties of13

‖|x|αu‖2 for 0 ≤ α ≤ 3/4, when u is smooth. We [4] showed the following
∧
. Let 1 ≤ α < 5/2. Assume that u0 ∈ L2(R3),14

(1 + |x|)u0 ∈ L1(R3), (1 + |x|)αu0 ∈ L2(R3) and divu0 = 0. Then there is a weak solution of (1.1) satisfying the following15

inequality for all t > 0;16

‖(1+ |x|)αu(t)‖2L2 +
∫ t

0
‖(1+ |x|)α∇u(s)‖2L2ds < C .17

Interpolatingwith the temporal decays, wemay obtain the temporal-spatial decay rates. Miyakawa [16] obtained pointwise18

upper bounds of the Navier–Stokes flows in Rn. In [5], we obtained the lower bounds
∧
as in [21,22,17]. However, we include19

weights for the temporal-spatial decays20

C0(1+ t)−
5
4+

α
2 ≤ ‖(1+ |x|2)α/2u(·, t)‖L2 ≤ C1(1+ t)

−
5
4+

α
221

for 0 ≤ α ≤ 2. The upper bound parts are estimated in several papers, for example [4,12]. For exterior domains, refer to22

∧
[4,1]. Modifying methods in [12], we improved the rates for exterior domains in [4].23

All of the above are decay estimateswithout external forces.With external forces,Wiegner [24] andOgawa [18] estimated24

temporal decays. In this paper, we estimate the decay rates of Stokes solutions and of the Navier–Stokes solutions with25

external forces.26

In Section 2, we provide an example of external forces which indicates slow decays. Then, we obtain the temporal-spatial27

decays for the Stokes flow, and in Section 3 we obtain the decays with weight (1 + |x|2)1/2 for the weak solutions of the28

Navier–Stokes equations.29

2. Decay rate of solutions for the Stokes equations30

In this section we obtain the decay rate for the Stokes equations in the whole space R3. If the initial data u0 and the31

external force f are divergence free in R3, then solution u for the Stokes equations is reduced to that of the heat equations32

with initial datau0 and inhomogeneous term f. Themain focus in this section is the estimation on f since the term concerning33

initial data is estimated in [5].34

If the external force f is not divergence free, it can be decomposed in the form f = fdiv + ∇Φ , where fdiv is divergence35

free and∆φ = ∇ · f by the Helmholtz decomposition. Then we consider the Stokes equations36

vt −∆v+∇p = f, ∇ · v = 0, v(x, 0) = a37

and the heat equations with the same initial data a38

Vt −∆V = ∇Φ, V (x, 0) = a.39

Then, definingw = v− V , we have40

wt −∆w+∇p = fdiv, ∇ ·w = 0, w(x, 0) = 0,41

of which the solution is also a solution of heat equations, since the external force is divergence free. The term ∇Φ can be42

absorbed in the pressure term. So if we estimate solutions of heat equations of the form vt−∆v = f, thenwe obtain our goal.43

Our motivation for this problem comes from Wiegner [24], in which it is stated that if the Stokes solution v and the44

inhomogeneous function f satisfy the decay property that ‖v‖L2 + (1+ t)‖f(t)‖L2 ≤ C(1+ t)−α0 with α0 ≥ 0 then a weak45
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solution u of the Navier–Stokes equations (1.1) satisfies that ‖u(t)‖2L2 ≤ C(1+ t)
−α1 with α1 = min{α0, n/2+ 1}. We first 1

take an example of f such that the solution of the heat equations with inhomogeneous term f has slower decay rates. Then, 2

for general f, we obtain upper and lower bounds of the asymptotic behavior of the heat solutions with weights. 3

By the usual notations, ‖f ‖s means
(∫

R3 |f (x)|
sdx
)1/s for each s, and

∧
denotes ‖f ‖ = ‖f ‖2. We denote by K(x, t) the heat 4

kernel in the whole space Rn, 5

Kt(x) = K(x, t) ≡ (4π t)−n/2e−
|x|2
4t . 6

Then the solution V(x, t) of heat equation Vt − ∆V = f with the initial condition V(x, 0) = a(x) in R3 has a potential 7

expression 8

V(x, t) =
∫

Rn K(x− y, t)a(y) dy+
∫ t
0

∫
Rn K(x− y, t − s)f(y, s) dy ds. (2.1) 9

Related to the results in [24], we first consider f of the form f(x, t) = (1+ t)−
1
4−

α
2 [Kt ∗ b](x), where b is independent of 10

t . Schonbek [20] showed that if the average of b is nonzero and b ∈ Lr ∩ L2 for 1 ≤ r < 2, then 11

C0(1+ t)
−
3
2

(
1
r −

1
2

)
≤ ‖K ∗ b(·, t)‖L2(R3) ≤ C1(1+ t)

−
3
2

(
1
r −

1
2

)
. 12

Therefore, for r = 1, we obtain that 13

C0(1+ t)−1−
α
2 ≤ ‖f(·, t)‖ ≤ C1(1+ t)−1−

α
2 . 14

The second term in (2.1) is estimated as follows; 15∥∥∥∥∫ t

0
[Kt−s ∗ f(·, s)](x)ds

∥∥∥∥ = ∥∥∥∥∫ t

0
(1+ s)−

1
4−

α
2 [Kt−s ∗ [Ks ∗ b]] (x)ds

∥∥∥∥ 16

=

∥∥∥∥[Kt ∗ b](x) ∫ t

0
(1+ s)−

1
4−

α
2 ds
∥∥∥∥ = C ‖[Kt ∗ b](x)‖ 17

= C(1+ t)−
3
2

(
1
r −

1
2

)
‖b‖r 18

for 1 ≤ r < 2, for some C > 0 if α > 3
2 . This implies that even if f has fast ∧decay rates, its heat solution V has slower decay 19

rates, for example (1+ t)−
3
4 when r = 1 and n = 3. Compare this with the rate (1+ t)−

5
4 in Wiegner [24]. In other words, 20

α0 ≤
3
4 . 21

We now consider the more general function f to obtain upper and lower bounds of the temporal-spatial decays. We 22

assume that f satisfies the following conditions for the upper bounds of the decays such that for some C > 0, 23∫
∞

0
‖(1+ |x|2)γ /2f(s)‖Lrds ≤ C, (2.2) 24

for each t > 0 ‖f(t)‖L2 ≤ C(1+ t)
−β1 , (2.3) 25

and the
∧
following for the lower bounds such that for each t > 0, 26

‖| · | f(t)‖L2 ds ≤ C(1+ t)
−β2 , (2.4) 27∫

Rn
fj(x, t) dx ≥ C(1+ t)−β3 j = 1, . . . , n, (2.5) 28∫

Rn

(
|x| + |x|γ+1

)
|f|(x, t) dx ≤ C(1+ t)−β4 , β4 >

1
2
, (2.6) 29

where β3 ≥ β1 ≥ 1+ n
2

( 1
r −

1
2

)
, and β2 ≥ 1+ n

2

( 1
r −

1
2

)
. 30

In [5] for n = 3 and in [2] for n = 2, we have obtained that, with assumptions on a stated in Theorem 2.2 31

C0(1+ t)−
n+2
4 +

β
2 ≤ ‖(1+ |x|2)

β
2 [K ∗ a](x, t)‖ ≤ C1(1+ t)−

n+2
4 +

β
2 (2.7) 32

for 0 ≤ β ≤ (n + 2)/2 if the average of a is zero. In a similar way in [5] and in [20] if the average of a is nonzero, we can 33

obtain
∧
similar estimates to (2.7): 34

C0(1+ t)−
n
4+

β
2 ≤ ‖(1+ |x|2)

β
2 [K ∗ a](x, t)‖ ≤ C1(1+ t)−

n
4+

β
2 . (2.8) 35

For our estimation, we need the following lemma, of which proof is provided in Lemma 3.3, [4] and in Lemma 2.3, [1]. 36
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Lemma 2.1. Let a < 1, b > 0, d < 1. If b+ d < 1, then1 ∫ t

0
(t − s)−a(s+ 1)−bs−dds ≤ ct1−a−d(1+ t)−b;2

if b+ d = 1, then3 ∫ t

0
(t − s)−a(s+ 1)−bs−dds ≤ ct−a ln(t + 1);4

if b+ d > 1, then5 ∫ t

0
(t − s)−a(s+ 1)−bs−dds ≤ ct−a.6

With nonzero inhomogeneous function f satisfying (2.2)–(2.6) we obtain the following theorem:7

Theorem 2.2. Let 0 ≤ γ ≤ n/2 be a number. Let V be the heat solution with initial data a, where ∇ · a = 0 and8 ∫
(1+ |x|2)(1+γ )/2|a(x)|dx <∞ is integrable, and f satisfies (2.2)–(2.6).9

Then, there are positive constants C0, C1 such that if β3 > 1 and β4 > 1/2, then10

C0t
γ
2 −

n
4 ≤

(∫
(1+ |x|2)γ |V(x, t)|2dx

)1/2
≤ C1t

γ
2 −

n
2

(
1
r −

1
2

)
11

for sufficiently large t > 0 if (bjk) 6= 0, where12

bjk ≡
∫
ykaj(y)dy.13

If 0 ≤ β3 = 1− n+ n
r < 1 with 1 < r < 2, and if β4 >

1
2 +

n
2r −

n
2 , then we have14

C0t
γ
2 −

n
2

(
1
r −

1
2

)
≤

(∫
(1+ |x|2)γ |V(x, t)|2dx

)1/2
≤ C1t

γ
2 −

n
2

(
1
r −

1
2

)
.15

If β3 = 1 with 1 < r < 2, and if β4 > 1/2, then we have16

C0t
γ
2 −

n
4 ln(1+ t) ≤

(∫
(1+ |x|2)γ |V(x, t)|2dx

)1/2
≤ C1t

γ
2 −

n
2

(
1
r −

1
2

)
.17

Proof. SinceC0(1+|x|γ ) ≤ (1+|x|2)γ /2 ≤ C1(1+|x|γ ) for somepositive numbersC0, C1, it is enough to estimate‖V(t)‖L2(R2)18

and ‖V(t)|x|γ ‖L2(R3).19

Owing to (2.7) and (2.8) it is enough to consider the term containing f. We first estimate upper bounds of the decay, then20

lower bounds. Observe that21 ∫
Rn
|x|2γ

(∫ t

0
[Kt−s ∗ f(·, s)](x)ds

)2
dx22

=

∫
Rn

(∫ t

0

∫
Rn
|x|γ K(x− y, t − s)f(y, s) dy ds

)2
dx23

≤ C
∫

Rn

(∫ t

0

∫
Rn
(|x− y|γ K(x− y, t − s)+ |y|γ K(x− y, t − s)) |f(y, s)| dy ds

)2
dx24

= I1 + I2,25

which can be estimated as follows; by the generalized Minkowski’s and Young’s convolution inequalities,26

I1 =
∫

Rn

(∫ t

0
[| · |γ Kt−s ∗ |f|] (x, s) ds

)2
dx27

≤

(∫ t

0

(∫
Rn
|[| · |

γ Kt−s ∗ |f|](x, s)|2 dx
)1/2

ds

)2
28

≤ 2
(∫ t/2

0
‖[| · |

γ Kt−s ∗ |f|](s)‖ ds
)2
+ 2

(∫ t

t/2
‖[| · |

γ Kt−s ∗ |f|](s)‖ ds
)2

29
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≤ C
(∫ t/2

0
‖[| · |

γ Kt−s‖r ′ ‖f(s)‖r ds
)2
+ C

(∫ t

t/2
‖[| · |

γ Kt−s‖1‖f(s)‖ ds
)2

1

≤ C
(∫ t/2

0
(t − s)

γ
2 −

n
2

(
1
r −

1
2

)
‖f(s)‖r ds

)2
+ C

(∫ t

t/2
(t − s)

γ
2 ‖f(s)‖ ds

)2
, 2

by (2.2) and (2.3), 3

≤ C(t/2)γ−n
(
1
r −

1
2

) (∫ t/2

0
‖f(s)‖r ds

)2
+ C

(∫ t

t/2
(t − s)γ /2(1+ s)−β1 ds

)2
4

≤ Ctγ−n
(
1
r −

1
2

)
+ C(t/2)γ+2−2β1 = Ctγ−n

(
1
r −

1
2

)
, 5

where 1+ 1
2 =

1
r ′ +

1
r . In ∧

a similar way, we obtain 6

I2 =
∫

Rn

(∫ t

0
[Kt−s ∗ (| · |γ |f|)] (x, s) ds

)2
dx 7

≤ C

(∫ t

0

(∫
Rn
[Kt−s ∗ (| · |γ |f|)]2 (x, s) dx

)1/2
ds

)2
8

≤ C
(∫ t/2

0
‖Kt−s‖r ′ ‖| · |γ |f|(s)‖r ds+

∫ t

t/2
‖Kt−s‖1 ‖| · |γ |f|(s)‖ ds

)2
9

≤ C
(∫ t/2

0
(t − s)−

n
2

(
1
r −

1
2

)
‖| · |

γ
|f|(s) ‖r ds+

∫ t

t/2
‖| · |

γ
|f|(s)‖L2ds

)2
, 10

by (2.2) and (2.4),
Q1

11

≤ Ct−n
(
1
r −

1
2

)
. 12

Therefore, we have 13∫
Rn
|x|2γ

(∫ t

0
[Kt−s ∗ f(·, s)](x)ds

)2
dx ≤ C

(
tγ−n

(
1
r −

1
2

)
+ t−n

(
1
r −

1
2

))
14

for large t . Since ‖(1+ |x|2)γ /2Kt ∗ a‖L2 = Ct−
n+2
4 +

γ
2 , we conclude that 15(∫

|x|2γ |V(x, t)|2dx
)1/2
≤ ‖| · |

γ (Kt ∗ a)‖ +
∥∥∥∥| · |γ ∫ t

0
Kt−s ∗ f(·, s) ds

∥∥∥∥ 16

≤ Ct
γ
2 −

n
2

(
1
r −

1
2

)
17

for large t . 18

We now estimate the lower bounds. Observe that, for each j = 1, 2, . . . , n, 19∫ t

0
[Kt−s ∗ fj](x, s) f ds =

∫ t

0

∫
Rn
K(x− y, t − s)fj(y, s) dy ds 20

=

∫ t

0

∫
Rn
(Kt−s(x− y)− Kt−s(x)) fj(y, s) dy ds+

∫ t

0

∫
Rn
Kt−s(x)fj(y, s) dy ds 21

= J1,j + J2,j. 22

Consider J2,j =
∫ t
0

∫
Rn K(x, t − s)fj(y, s) dy ds; for each j = 1, . . . , n, by (2.5), 23∫

Rn
|x|2γ

(
J2,j
)2 dx ≥ C ∫

Rn
|x|2γ

(∫ t

0
(t − s)−

n
2 e−

|x|2
4(t−s) (1+ s)−β3 ds

)2
dx 24

≥ C
∫
|x|≤
√
t
|x|2γ

(∫ t
2

0
(t − s)−δe−

|x|2
4(t−s) (t − s)−

n
2+δ(1+ s)−β3 ds

)2
dx 25

≥ C
(∫
|x|≤
√
t
|x|2γ t−2δe−

|x|2
2t dx

)(∫ t/2

0
(t − s)−

n
2+δ(1+ s)−β3 ds

)2
26
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≥ Ct−n
(∫
|x|≤
√
t
|x|2γ e−

|x|2
2t dx

)(∫ t/2

0
(1+ s)−β3 ds

)2
1

for small δ > 0. If β3 > 1, then2 ∫
Rn
|x|2γ

(
J2,j
)2 dx ≥ t−n ∫

|x|≤
√
t |x|

2γ e−|x|
2/(2t)dx = Ct−n(2t)

n
2+γ = Ct−

n
2+γ ,3

If 0 ≤ β3 < 1 then4 ∫
Rn
|x|2γ

(
J2,j
)2 dx ≥ Ctγ− n2+1−β3 ,5

in particular, if 0 ≤ β3 = 1− n+ n
r < 1 with 1 < r < 2, then6 ∫

Rn
|x|2γ

(
J2,j
)2 dx ≥ Ctγ−n( 1r − 12 ).7

If β3 = 1, then8 ∫
Rn
|x|2γ (J2)2 dx ≥ Ct−

n
2+γ (ln(1+ t))2 .9

We now estimate J1. We use the same method
∧
used in [3];10

J1,j =
∫ t

0

∫
(Kt−s(x− y)− Kt−s(x)) fj(y, s) dy ds11

=

∫ t

0
(4π(t − s))−n/2

∫ (∫ 1

0

d
dτ
e−
|x−τy|2
4(t−s) dτ

)
fj(y, s)dy ds12

= −

∫ t

0
(4π(t − s))−n/2

∫ ∫ 1

0
∂xke

−
|x−τy|2
4(t−s) ykfj(y, s) dτdy ds.13

Taking z = (x− τy)/
√
4(t − s), and by the Minkowski’s inequality, and the fundamental theorem of calculus, we have14 (∫ ∣∣∣∣∫ t

0
(t − s)−n/2

∫ ∫ 1

0
|x|γ ∂xke

−
|x−τy|2
4(t−s) ykfj(y, s) dτdy ds

∣∣∣∣2 dx
)1/2

15

≤

∫ t

0
(t − s)−n/2

∫ ∫ 1

0

(∫
|x|2γ

∣∣∣∣∂xke− |x−τy|24(t−s)

∣∣∣∣2 dx
)1/2

dτ |y||f|(y, s) dy ds16

= C
∫ t

0
(t − s)−

n+2
4 +

γ
2

∫ ∫ 1

0

(∫ (
|z|2γ + τ 2γ |y|2γ

) ∣∣∣∂zke−|z|2 ∣∣∣2 dz)1/2 |y||f|(y, s) dτdy ds17

≤ C
∫ t

0
(t − s)−

n+2
4 +

γ
2

∫ (
|y| + |y|γ+1

)
|f|(y, s) dy ds18

≤ C
∫ t

0
(t − s)−

n+2
4 +

γ
2 (1+ s)−β4 ds19

≤ C(1+ t)−
n−2
4 +

γ
2 −β420

by (2.6) and by Lemma 2.1.21

We finally obtain that22 ∥∥∥∥| · |γ ∫ t

0
[Kt−s ∗ f(·, s)]ds

∥∥∥∥ ≥ ∥∥∥∥| · |γ ∫ t

0

∫
Rn
K(x, t − s)f(y, s) dy ds

∥∥∥∥
L2

23

−

∥∥∥∥| · |γ ∫ t

0

∫
Rn
(K(x− y, t − s)− K(x, t − s)) f(y, s) dy ds

∥∥∥∥
L2

24

≥ Ct
γ
2 −

n
4 − Ct

γ
2 −

n−2
4 −β4 ≥ Ct

γ
2 −

n
425

whenβ3 > 1 andβ4 > 1/2,where in the last inequalitywe use the upper bounds of the second term. If 0 ≤ β3 = 1−n+ nr <26

1 with 1 < r < 2, and if β4 > 1
2 +

n
2r −

n
2 , then we have27 ∥∥∥∥| · |γ ∫ t

0
[Kt−s ∗ f(·, s)]ds

∥∥∥∥ ≥ Ct γ2 − n2 ( 1r − 12 ) − Ct γ2 − n−24 −β4 ≥ Ct γ2 − n2 ( 1r − 12 ).28
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If β3 = 1 and β4 > 1/2, then we have 1∥∥∥∥| · |γ ∫ t

0
[Kt−s ∗ f(·, s)](x)ds

∥∥∥∥ ≥ Ct γ2 − n4 ln(1+ t)− Ct γ2 − n−24 −β4 2

≥ Ct
γ
2 −

n
4 ln(1+ t). 3

Hence, combining the results in Theorem 2.1, [5] for n = 3, and [2] for n = 2, we complete the proof. � 4

We remark
∧
, here, that if the average of f(x, t) is zero, then we may obtain the lower bounds as t

γ
2 −

n+2
4 . If the average of 5

f is zero, then we use the upper bounds of the terms concerning f, and the lower bounds of the terms concerning a as in [5]. 6

Let u be a weak solution of (1.1). Define 7

c0kl =
∫
∞

0

∫
R3
(ukul)(x, s)dx ds, 8

and Fl,k = (Fl,1k, Fl,2k, Fl,3k) by 9

Fl,jk(x, t) ≡ (δjk∂lKt)(x)+
∫
∞

t
(∂l∂j∂kKs)(x)ds. 10

Notice that |c0kl| <∞. Define v = (v1, v2, v3) by 11

vj(x, t) = [Kt ∗ u0,j](x)+ Fl,jk(x, t)c0kl +
∫ t

0
[Kt−s ∗ fj](x, s) ds, t > 0, (2.9) 12

where u0 = (u0,1, u0,2, u0,3) is the given initial data. Observe that v is a solution of a heat solution with inhomogeneous 13

term f. 14

The following theorem is shown in [5] for n = 3 and in [2] for n = 2 when f = 0. But if we look at the proofs carefully, it 15

is not important whether or not f = 0, so the following theorem also works, even for f 6= 0. 16

Theorem 2.3. Let (1 + |x|2)(1+γ )/2u0 ∈ L1(Rn) and ∇ · u0 = 0. Let u(·, t) be a solution to the Navier–Stokes equations (1.1) 17

with initial data u0. Suppose that (bkl) ≡
(∫
ylu0,kdy

)
6= 0 or (c0kl) 6= (cδkl) for any c ∈ R. Then, there are positive constants 18

C0, C1 > 0 such that 19

C0(1+ t)
2γ−n−2
4 ≤ ‖(1+ |x|2)

γ
2 (Kt ∗ u0,j + cklFl,jk)‖ ≤ C1(1+ t)

2γ−n−2
4 20

for j = 1, 2, 3, where 0 ≤ γ < (n+ 2)/2. 21

With the help of Theorem 2.2 for the inhomogenous term f, we also obtain the following theorem: 22

Theorem 2.4. Let (1 + |x|2)(1+γ )/2u0 ∈ L1(R3) and ∇ · u0 = 0. Assume that f satisfies (2.2)–(2.6). Let u(·, t) be a solution 23

to the Navier–Stokes equations (1.1) with initial data u0, and let v be a solution of heat equation defined by (2.9). Suppose that 24

(bkl) ≡
(∫
ylu0,kdy

)
6= 0 or (c0kl) 6= (cδkl) for any c ∈ R. Then, we have the same conclusion in Theorem 2.2, except that V is 25

replaced with v and that 0 ≤ γ < n/2. 26

The following propositions are also shown in [5] for n = 3, in [2] for n = 2 without f: 27

Proposition 2.5. Let n = 3. Let v be the solution of the heat equation defined by (2.9) with f = 0, where ∇ · u0 = 0 and 28∫
(1+ |x|)|u0(x)|dx <∞ is integrable. Then, there are positive constants C such that 29

‖∇v‖ ≤ C(1+ t)−7/4. 30

Furthermore, if
∫
|x|2|u0(x)|dx <∞, then 31

‖(1+ | · |2)1/2∇v‖∞ ≤ C(1+ t)−2 32

for sufficiently large t > 0. If
∫
(1+ |x|2)3/2|u0(x)|dx <∞, then 33

‖(1+ | · |2)∇v‖ ≤ C(1+ t)−3/4, ‖(1+ | · |2)∇v‖∞ ≤ C(1+ t)−3/2. 34

Proposition 2.6. Let n = 2. Let v be the solution of the heat equation defined by (2.9) with f = 0, where ∇ · u0 = 0 and 35∫
(1+ |x|)|u0(x)|dx <∞ is integrable. Then, there are positive constants C such that 36

‖∇v‖ ≤ C(1+ t)−3/2. 37

Furthermore, if
∫
|x|2|u0(x)|dx <∞, then 38

‖(1+ | · |2)1/2∇v‖∞ ≤ C(1+ t)−3/2 39

for sufficiently large t > 0. 40
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With nonzero f, we may obtain the similar results to the above for n ≥ 2:1

Theorem 2.7. Let v be the solution of the heat equation defined by (2.9) with f satisfying (2.2)–(2.6), where ∇ · u0 = 0 and2 ∫
(1+ |x|)|u0(x)|dx <∞ is integrable. Then, there are positive constants C such that3

‖∇v‖ ≤ C(1+ t)−
1
2−

n
2

(
1
r −

1
2

)
. (2.10)4

Furthermore, if
∫
|x|γ |u0(x)|dx <∞, then5

‖(1+ | · |2)γ /2∇v‖∞ ≤ C(1+ t)−
1
2−

n
2r +

γ
2 (2.11)6

for sufficiently large t > 0. If
∫
(1+ |x|2)γ /2|u0(x)|dx <∞, then7

‖(1+ | · |2)γ /2∇v‖ ≤ C(1+ t)−
n
2

(
1
r −

1
2

)
−
1
2+

γ
2 . (2.12)8

Proof. It is enough to consider the term concerning f. Observe that9 ∥∥∥∥∂xk ∫ t

0
[Kt−s ∗ fj](x, s) ds

∥∥∥∥ ≤ ∫ t/2

0
‖∂kKt−s‖r ′ ‖fj(·, s)‖r ds+

∫ t

t/2
‖∂kKt−s‖1 ‖fj(·, s)‖ ds10

≤

∫ t/2

0
(t − s)−

1
2−

n
2

(
1
r −

1
2

)
‖fj(·, s)‖r ds+

∫ t

t/2
(t − s)−

1
2 (1+ s)−β1 ds11

≤ Ct−
1
2−

n
2

(
1
r −

1
2

)
,12

where 1/r ′ + 1/r = 3/2.13

Observe that for 1/r ′ + 1/r = 1,14 ∥∥∥∥∂xk ∫ t

0
[Kt−s ∗ fj](x, s) ds

∥∥∥∥
∞

≤

∫ t/2

0
‖∂kKt−s‖r ′ ‖fj(·, s)‖r ds+

∫ t

t/2
‖∂kKt−s‖ ‖fj(·, s)‖ ds15

≤

∫ t/2

0
(t − s)−

1
2−

n
2r ‖fj(·, s)‖r ds+

∫ t

t/2
(t − s)−

n+2
4 (t + s)−β1 ds16

≤ Ct−
1
2−

n
2r .17

Since |x| ≤ |x− y| + |y|, we have that 1/r ′ + 1/r = 1,18 ∥∥∥∥|x|γ ∂xk ∫ t

0
[Kt−s ∗ fj](x, s) ds

∥∥∥∥
∞

19

≤ C
∥∥∥∥∫ t

0

[
(| · |γ ∂kKt−s) ∗ fj

]
(x, s) ds

∥∥∥∥
∞

+

∥∥∥∥∫ t

0

[
∂kKt−s ∗ (| · |γ fj)

]
(x, s) ds

∥∥∥∥
∞

20

≤

∫ t/2

0
‖| · |

γ ∂kKt−s‖r ′ ‖fj(·, s)‖r ds+
∫ t

t/2
‖∂kKt−s‖

∥∥| · |γ fj(·, s)∥∥ ds21

≤

∫ t/2

0
(t − s)−

1
2−

n
2r +

γ
2 ‖fj(·, s)‖r ds+

∫ t

t/2
(t − s)−

n+2
4 (t + s)−β2 ds22

≤ Ct−
1
2−

n
2r +

γ
2 .23

We also notice that 1/r ′ + 1/r = 3/2,24 ∥∥∥∥|x|γ ∂xk ∫ t

0
[Kt−s ∗ fj](x, s) ds

∥∥∥∥25

≤ C
∥∥∥∥∫ t

0

[
(| · |γ ∂kKt−s) ∗ fj

]
(x, s) ds

∥∥∥∥+ ∥∥∥∥∫ t

0

[
∂kKt−s ∗ (| · |γ fj)

]
(x, s) ds

∥∥∥∥26

≤

∫ t/2

0
‖| · |

γ ∂kKt−s‖r ′ ‖fj(·, s)‖r ds+
∫ t

t/2
‖∂kKt−s‖1

∥∥| · |γ fj(·, s)∥∥ ds27

≤

∫ t/2

0
(t − s)−

n
2

(
1
r −

1
2

)
−
1
2+

γ
2 ‖fj(·, s)‖r ds+

∫ t

t/2
(t − s)−

1
2 (t + s)−β2 ds28

≤ Ct−
n
2

(
1
r −

1
2

)
−
1
2+

γ
2 . �29
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3. Decay rates with weight (1+ |x|2)1/2 for the Navier–Stokes equations 1

In this section we consider the decay rates for weak solutions with weight (1+ |x|2)1/2 for the Navier–Stokes equations. 2

For n = 3, since the strong solution is still unknown, we should consider the approximate solutions uN , N = 1, 2, . . . , of 3

(1.1) with initial data
∧
u0 ∈ L1 ∩ L2, divu0 = 0, of the following equations: 4

∂

∂t
uN −∆uN + (UN · ∇)uN +∇pN = 0, t > 0,

∇ · uN = 0, uN(0) = u0,
(3.1) 5

where UN is a retarded mollification of uN . 6

We recall that the retarded mollification UN of uN is defined by 7

UN(x, t) = δ−4
∫ ∫

ψ(y/δ, s/δ)̃uN(x− y, t − s)dy ds, δ = N−1, 8

where ψ is a smooth function with ψ ≥ 0, 9∫ ∫
ψdx dt = 1, and suppψ ⊂ {(x, t) : |x|2 ≤ t, 1 < t < 2}, 10

and ũN is the zero-extension of the function uN which is originally defined for t ≥ 0. (Refer to [8,13,6].) One easily verifies 11

that 12∫ t

0

(∫
|UN(x, s)|2dx

)1/2
ds ≤ C

∫ t

0

(∫
|uN(x, s)|2dx

)1/2
ds. 13

In the following, we write U = UN , u = uN and p = pN for simplicity. For R2, we have that U = u is the unique weak 14

solution to (1.1). In case n ≥ 3 for Rn, the estimates derived below are uniform in N , hence the desired results are obtained 15

through passage to the limit N →∞. 16

Let v be defined in (2.9). Setw = u− v, thenw satisfies 17

divw = 0
∂

∂t
w−∆w = −(U · ∇)u−∇p, t > 0.

(3.2) 18

∧
These equations are the same

∧
for (3.4) in [5], so that we may obtain the following theorem. 19

Theorem 3.1. Let u0 ∈ L2(R3), (1 + |x|2)u0 ∈ L1(R3) and ∇ · u0 = 0. Let v be a solution of heat equation defined by (2.9) 20

under the assumption that (bkl) 6= 0 or (c0kl) 6= (cδkl) for any c. Let u(·, t) be a solution to (3.1). Then, for any small δ > 0, there 21

T1 > 0 such that 22

‖ωw(t)‖2 ≤ δ(1+ t)
3
2−

3
r 23

for all t > T1. 24

For the proof, we provide the lemmas, but we will skip those proofs, since the proofs are the same to those in [5] and 25

those in [2]. For
∧
brevity, we denote by ω = (1+ |x|2)1/2. 26

Lemma 3.2. There exist C such that for t > 0 27

1
2
d
dt

∫
R3
ω2|w(x, t)|2dx+

∫
R3
ω2|∇w(x, t)|2dx 28

≤ C
(
‖w(t)‖2 + ‖ω∇v‖2

∞
+ ‖∇v‖2

)
+ C

(
‖U‖2 + ‖∇U‖2

)
‖ωw‖2. 29

Denote X and Y by 30

X = (1+ t)4‖ωw(t)‖2, and Y = (1+ t)4‖ω∇w(t)‖2. 31

From Lemma 3.2, there is C > 0 such that 32

d
dt
X + Y ≤ C

(
‖U‖2 + ‖∇U‖2

)
X + 4(1+ t)3‖ωw‖2 + C(1+ t)4

[
‖w(t)‖2 + ‖ω∇v‖2

∞
+ ‖∇v‖2

]
. (3.3) 33
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Lemma 3.3. For each R > 0, there is a constant C such that1 ∫
R3
ω2|w(t)|2dx ≤

C
R2

∫
R3
ω2|∇w(x)|2dx+ C‖w‖2L2 + C

∫
|ξ |≤R
|∇ξ ŵ(ξ)|2dξ .2

Take R = 1
√
ε(1+t)

, for small enough ε > 0. Apply Lemma 3.3 to (3.3), then there is C2 > 0 such that3

d
dt
X + C2Y ≤ C

(
‖U‖2 + ‖∇U‖2

)
X + C(1+ t)4

[
‖w(t)‖2 + ‖ω∇v‖2

∞
+ ‖∇v‖2

]
4

+C(1+ t)3
∫
|ξ |≤(ε(1+t))−1/2

|∇ξ ŵ(ξ)|2dξ . (3.4)5

Lemma 3.4. For each ε > 0, there is C such that6 ∫
|ξ |≤(ε(1+t))−1/2

|∇ξ ŵ(ξ)|2dξ ≤ C(1+ t)−5/2.7

Proof (Proof of Theorem 3.1). Apply Lemma 3.4 to the inequality (3.4) to getQ28

d
dt
X + C2Y ≤ C(1+ t)4

[
‖w‖2 + ‖ω∇v‖2

∞
+ ‖∇v‖2

]
+ C(1+ t)1/2 + C

(
‖U‖2 + ‖∇U‖2

)
X9

= I1 + C(1+ t)1/2 + I2X .10

Solving the above inequality for t > T , we have the inequality11

X(t) ≤ CI3(T )X(T )+
∫ t

T
I3(s)(I1 + (1+ s)1/2)ds,12

where I3(s) = e
∫ t
s I2(τ )dτ . There is C3 independent of t such that I3(t) ≤ C3 since13 ∫ t

s
I2(τ )dτ ≤ C

∫
∞

0

(
‖∇u‖2 + ‖u‖2

)
(τ )dτ <∞.14

From the result in [17], for any β > 0 given, there is a large time T1 such that15

‖w(t)‖2 ≤ β(1+ t)−5/2 for t > T1.16

From the estimates of heat equation, we may obtain that17

‖∇v(t)‖ ≤ C(1+ t)
1
4−

3
2r , ‖ω∇v(t)‖∞ ≤ C(1+ t)−

3
2r .18

So, for β > 0 given,19

I1(t) ≤ βC(1+ t)
9
2−

3
r + C(1+ t)4−

3
r for t > T1,20

hence,21 ∫ t

T1
I3(s)

(
I1 + (1+ s)1/2

)
ds ≤ βC(1+ t)

11
2 −

3
r + C(1+ t)5−

3
r for t > T1.22

Therefore, we have the inequality for t > T123

X(t) ≤ C3X(T1)+ C4β(1+ t)
11
2 −

3
r + C5(1+ t)5−

3
r24

≤ C6 + C4β(1+ t)
11
2 −

3
r + C5(1+ t)5−

3
r .25

Notice that C4, C5 and C6 depend on T1. Therefore,26

‖ωw(t)‖2 ≤ C6(1+ t)−4 + C4β(1+ t)
3
2−

3
r + C5(1+ t)1−

3
r .27

Fix β0 to be small enough. Now, take β small that C4β ≤
β0C0
4 , T2 (>T1) large enough that C6(1 + T2)

−
11
2 +

3
r ≤

C0β0
4 , and28

C5(1+ T2)−
1
2 ≤

C0β0
4 , then we have29

‖ωw(t)‖2 ≤ C0β0(1+ t)
3
2−

3
r for t > T2,30

which completes the proof. �31
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Considering that for t > T2, and for β0 < 1 1

‖ωu(t)‖2 ≥ ‖ωv(t)‖2 − ‖ωw(t)‖2, 2

we obtain the following theorem. The upper bound is obtained easily by ‖ωu(t)‖2 ≤ ‖ωv(t)‖2 + ‖ωw(t)‖2. 3

Theorem 3.5. Let ∇ · u0 = 0 and
∫

R3(1 + |x|
2)|u0(x)|dx < ∞ is integrable, and f satisfies (2.2)–(2.6) for γ = 1. Then, there 4

∧
exists a weak solution u of the Navier–Stokes equations (1.1) with initial data u0 such that there are positive constants M0,M1 5

satisfying the
∧
following: if β3 > 1 and β4 > 1/2, then 6

M0t−
1
4 ≤

(∫
R3
(1+ |x|2)|u(x, t)|2dx

)1/2
≤ M1t−

1
4 7

for sufficiently large t > 0 if (bjk) 6= 0, where bjk ≡
∫
ykaj(y)dy. 8

If 0 ≤ β3 = −2+ 3
r < 1 with 1 < r ≤

6
5 , and if β4 >

3
2r − 1, then we have 9

M0t
5
4−

3
2r ≤

(∫
(1+ |x|2)|u(x, t)|2dx

)1/2
≤ M1t

5
4−

3
2r . 10

If β3 = 1 with 1 < r < 6
5 , and if β4 > 1/2, then we have that for large t > 0, 11

M0t−
1
4 ln(1+ t) ≤

(∫
(1+ |x|2)|u(x, t)|2dx

)1/2
≤ M1t

5
4−

3
2r . 12

We
∧
note that for γ < n

( 1
r −

1
2

)
, combining the estimates in the previous section and those in [6] and in [2], we also 13

obtain the upper bounds easily 14

‖ωγu‖ ≤ Ct
γ
2 −

n
2

(
1
r −

1
2

)
. 15
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