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On the parabolic-elliptic limit of the doubly parabolic
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Abstract. We establish new results on convergence, in strong topologies, of solu-
tions of the parabolic-parabolic Keller–Segel system in the plane to the corresponding
solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main
tools are suitable space-time estimates, implying the global existence of slowly decaying
(in general, nonintegrable) solutions for these models, under a natural smallness assump-
tion.

1. Introduction. We consider two related nonlinear parabolic systems
which are frequently used as models for chemotactic phenomena, including
the aggregation of microorganisms caused by a chemoattractant, i.e. a chem-
ical whose concentration gradient governs the oriented movement of those
microorganisms. The parabolic character of the systems comes from the dif-
fusion described by the Laplacians. A version of the system (PE) below is also
used in astrophysics as a model of the evolution of a cloud of self-gravitating
particles in the mean field approximation.

The first system we consider is the classical parabolic-elliptic Keller–Segel
system

(PE)


ut = ∆u−∇ · (u∇ϕ),
∆ϕ+ u = 0,
u(0) = u0.

x ∈ R2, t > 0,

Here, u = u(x, t), ϕ = ϕ(x, t) are either functions or suitable (tempered)
distributions. When u ≥ 0, ϕ ≥ 0, they may be interpreted as concentrations
(densities) of microorganisms and chemicals, respectively.
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The second system is the parabolic-parabolic system

(PP)


ut = ∆u−∇ · (u∇ϕ),
τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = 0,
x ∈ R2, t > 0,

where τ > 0 is a fixed parameter. Each of the models can be considered as
a single nonlinear parabolic equation for u with a nonlocal (either in x or in
(x, t)) nonlinearity since the term ∇ϕ can be expressed as a linear integral
operator acting on u. In the latter model, the variations of the concentration
ϕ are governed by the linear nonhomogeneous heat equation, and therefore
are slower than in the former system, where the response of ϕ to the varia-
tions of u is instantaneous, and described by the integral operator (−∆)−1

whose kernel has a singularity. Thus, one may expect that the evolution
described by (PE) might be faster than that for (PP), especially for large
values of τ when the diffusion of ϕ is rather slow compared to that of u.
Moreover, the nonlinear effects for (PE) should manifest themselves faster
than for (PP).

The theory of the system (PE) is relatively well developed, in particular
when it is studied in a bounded domain in Rd, d = 1, 2, 3, with the homoge-
neous Neumann conditions for u and ϕ at the boundary of the domain. One
of the most intriguing properties of (PE) considered for positive and inte-
grable solutions u in the case d = 2 is the existence of a threshold value 8π
of mass M ≡

	
u(x, t) dx (see the pioneering work [17] and [1, 3]). Namely,

if u0 ≥ 0 is such that
	
u0(x) dx > 8π, then no regular, positive solution

u of (PE) can be global in time. For a fine description of the asymptotic
behaviour of integrable solutions of (PE) in the subcritical case M < 8π
we refer the reader to [11] and to [10] for the limit case M = 8π. See also
[8, 9] for the radially symmetric case. The higher-dimensional versions of
(PE) have also been extensively studied (cf. e.g. [2, 6, 5], and [1] for blow up
phenomena).

The doubly parabolic system (PP) has been a bit less studied. For in-
stance, it is known that if for the initial data u0 one has M < 8π, then
positive solutions are global in time (see [12] in the case of a bounded planar
domain, and also [3, Theorem 5]). However, it is not known whetherM ≤ 8π
is, in general, a necessary condition for the existence of global in time so-
lutions. That is, it is not known whether the blow up occurs for solutions,
except for a specific example in [16] of a particular blowing up solution for
a system close to (PP). It is even an open question what is the exact range
of M guaranteeing the existence of integrable self-similar solutions. For the
system (PE) it is proved that M ∈ [0, 8π), and the self-similar solutions
(unique for a given M ∈ [0, 8π)) describe the generic asymptotic behaviour
of global in time, positive and integrable solutions of (PE). Concerning (PP),
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it is known that M < M(τ) with M(τ) linear in τ is a necessary condition
for the existence of self-similar solutions (cf. [4]). For (PP) with small M
such special solutions are also important in the study of space-time decay of
general solutions (see [24]). The analysis of whether any M > 8π may cor-
respond to a self-similar solution is under way (see [7]). For a different point
of view on self-similar solutions for higher-dimensional models of (PP), see
also [18]. Usual proofs of blow up for (PE) involve calculations of moments
of a solution and then symmetrization (cf. [11, 1]). These methods do not
seem to work for (PP), hence another approach is needed to show blow up
for that system. For a numerical insight on blow up issues we refer, e.g.,
to [14].

A nice result in [25] shows that the solutions of the systems (PP) and
(PE) enjoy a kind of stability property as τ ↘ 0: solutions of (PP) con-
verge in a suitable sense to those of (PE). This had been an old question
raised by J. J. L. Velázquez and D. Wrzosek, recently solved in [25]. How-
ever, this result, obtained for suitably small solutions in quite a big space
of pseudomeasures, gives no indication on the behaviour of possible (“large”)
blowing up solutions.

The solvability of the systems (PE), (PP) has been studied in various
classes of functions and distributions, like Lebesgue, Morrey, Besov, etc.,
with an immediate motivation to include the a priori strongest possible crit-
ical singularities of either solutions or initial data which appear to be point
measures in the two-dimensional case and the multiples of the |x|−2 func-
tion in the higher-dimensional case. In particular, “vast” spaces suitable for
analysis of the two-dimensional systems include measure and pseudomeasure
spaces (cf. [2, 3, 6, 25]).

In this paper we prove the existence of (in general, nonintegrable) solu-
tions in a class X of functions with natural space-time decay properties (see
Theorems 2.1 and 3.1). Here, the space E of admissible initial conditions
also contains Dirac measures. The corresponding solutions may be positive
and “large” in the sense of being nonintegrable. Nevertheless, they are de-
fined globally in time. Unlike [25], we work in (x, t) space, while [25] has
dealt with the Fourier variables ξ (cf. (36) below). Our results are obtained
by extension and refinement of techniques used in [5] for (PE) in higher
dimensions, but neither for (PP), nor in the two-dimensional case of (PE)
which often requires a specific treatement. Moreover, the function spaces we
employ allow us to deal with data that can be more singular than those
considered in [5]. The spaces X and E defined in the next section are, in a
sense, critical for that analysis, and have already been considered, in slightly
different forms, e.g. in the studies of the Navier–Stokes system in [13, 22].

Our main results are contained in Section 4, where we address the prob-
lem of convergence as τ ↘ 0, in the space X , of solutions uτ of (PP) to the
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corresponding solution u of (PE) for small data in E. Mathematically, our
stability result is not included in, and does not imply, that of [25]. However,
it seems that the use of the natural (x, t) variables provides a more imme-
diate physical interpretation. Furthermore, our method looks more flexible,
and can be used to prove the stability of the system with respect to stronger
topologies. For example, we also establish the convergence in the L∞t (L1

x)-
norm for data belonging to E∩L1, and in the L∞t,x-norm for data in E∩L∞.
Motivated by [19], we also address this issue in the more general setting
of shift invariant spaces of local measures. The main difficulty in obtaining
the convergence uτ → u in strong norms is that ∇ϕτ enjoys some kind of
instability as τ → 0, in particular in weighted spaces.

Moreover, we give a nonexistence (blow up) result for solutions of (PP)
in Rd, d ≥ 1, with the positive Fourier transform û0, in the spirit of [23] (see
Theorem 5.1). These are complex-valued solutions with no straightforward
physical/biological interpretation. However, such a result tells us that there
is no hope to prove the global existence of solutions to (PP) and similar
models for arbitrarily large data relying only on size estimates.

2. The parabolic-elliptic system. In order to study the systems (PE)
and (PP) we introduce the Banach space X of functions u = u(x, t) and the
Banach space E of tempered distributions u0 ∈ S ′(R2) by defining the norms

‖u‖X = ess sup
t>0, x∈R2

(t+ |x|2)|u(x, t)|,(1)

‖u0‖E = ‖et∆u0‖X .(2)

Here, et∆ denotes the heat semigroup defined by the Gaussian kernel gt,
gt(x) = (4πt)−1e−|x|

2/4t. For example, the Dirac mass u0 = δ in R2 is an el-
ement of E. Notice that, by the definition, E is continuously embedded into
the weak Hardy space H1

w, which is the space consisting of all tempered dis-
tributions f such that supt>0 |et∆f | belongs to the Lorentz space L1,∞(R2).
See [21].

Let us define the bilinear form B0 by

(3) B0(u, v)(t) ≡
t�

0

e(t−s)∆∇ · (u∇(−∆)−1v)(s) ds.

Here, (−∆)−1 is the convolution operator on functions defined on R2 with the
kernel K(x) = −(2π)−1 log |x|. With this notation, the equivalent integral
(mild) formulation to (PE), also called the Duhamel formula, reads

(4) u(t) = et∆u0 −B0(u, u).

We begin by establishing the following simple result.
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Theorem 2.1. There exist two absolute constants ε, β > 0 with the fol-
lowing property. Let u0 ∈ E be such that ‖u0‖E < ε. Then there exists a
unique (mild) solution u ∈ X of (PE) such that ‖u‖X ≤ εβ.

Theorem 2.1 will follow from a series of lemmata.
First, we have the following estimate of the leading term in ∇ϕ.

Lemma 2.1. Let u ∈ X and ϕ be such that ∆ϕ+ u = 0. Then

(5) ∇ϕ(x, t) =
c0x

|x|2
�

|y|≤|x|/2

u(y, t) dy +R(x, t)

with c0 = −1/2π and the remainder R satisfying

|R(x, t)| ≤ C‖u‖X (t1/2 + |x|)−1.

Proof. Indeed, let us represent the partial derivatives of ϕ, for j = 1, 2,
as

∂jϕ =
c0xj
|x|2

∗ u ≡ I1 + I2 + I3,

where

I1 =
�

|y|≤|x|/2

c0(xj − yj)
|x− y|2

u(y, t) dy.

The terms I2 and I3 are obtained by taking the integration domains {|x− y|
≤ |x|/2} and {|x−y| ≥ |x|/2, |y| ≥ |x|/2}, respectively. It is straightforward
that I2 and I3 are bounded by C‖u‖X (t1/2 + |x|)−1. On the other hand, we
can rewrite I1 as

c0xj
|x|2

�

|y|≤|x|/2

u(y, t) dy +R1(x, t).

An application of the Taylor formula shows that the above bound also holds
for R1.

We immediately deduce from (5) the following useful estimate.

Lemma 2.2. Let u ∈ X and ∆ϕ+ u = 0. Then

‖∇ϕ(t)‖L∞ ≤ C‖u‖X t−1/2.

The last lemma we need is the following.

Lemma 2.3. Let u, v ∈ X . Then, for some constant C0 independent of
u, v,

‖B0(u, v)‖X ≤ C0‖u‖X ‖v‖X .

Proof. We can assume, without any restriction, that ‖u‖X = ‖v‖X = 1.
Lemma 2.2 implies

(6a) |u∇(−∆)−1v|(x, t) ≤ C|x|−3/2t−3/4,
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and also

(6b) |u∇(−∆)−1v|(x, t) ≤ C|x|−2t−1/2.

We denote the gradient of the heat semigroup kernel gt by

(7) G(·, t) ≡ ∇x
(

1
4πt

e−| · |
2/4t

)
.

Then we may represent B0 as

B0(u, v)(x, t) =
t�

0

�
G(x− y, t− s)(u∇(−∆)−1v)(y, s) dy ds ≡ J1 + J2,

where J1 =
	t
0

	
|y|≤|x|/2 . . . and J2 =

	t
0

	
|y|≥|x|/2 . . . . Using the estimate

|G(x− y, t− s)| ≤ C|x− y|−5/2(t− s)−1/4

and inequality (6a), we get the bound

(8) |J1(x, t)| ≤ C|x|−2.

Another estimate is

(9) |J1(x, t)| ≤ C|x|−3/2t−1/4,

which is obtained using the bound

|G(x− y, t− s)| ≤ C|x− y|−2(t− s)−1/2.

On the other hand, from the property

(10) ‖G(·, t− s)‖L1 = c(t− s)−1/2

and inequality (6b), we obtain

(11) |J2(x, t)| ≤ C|x|−2.

As before, we also have the bound

(12) |J2(x, t)| ≤ C|x|−3/2t−1/4.

This can be deduced from (6a).
Then, using (8), (11), we obtain the space decay estimate

(13) |B0(u, v)|(x, t) ≤ C|x|−2,

and from (9), (12) a (nonoptimal) time decay estimate

‖B0(u, v)(t)‖L4/3,∞ ≤ Ct−1/4.

But we may represent B0 as

B0(u, v)(t) = et∆/2B0(u, v)(t/2) +
t�

t/2

G(t− s) ∗ (u∇(−∆)−1v)(s) ds.
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Thus, applying the weak Young-type inequality for convolutions in Lorentz
spaces L4/3,∞ ∗ L4,1 ⊂ L∞ (see [19]), and the equality obtained from the
scaling laws in Lorentz spaces,

(14)
∥∥∥∥ 1
4πt

e−| · |
2/4t

∥∥∥∥
L4,1

= ct−3/4,

we finally get

‖B0(u, v)(t)‖L∞ ≤ Ct−1 + C

t�

t/2

(t− s)−1/2‖u∇(−∆)−1v(s)‖L∞ ds(15)

≤ Ct−1.

Combining inequalities (13) and (15) we get B0(u, v) ∈ X , together with its
continuity with respect to u and v.

Proof of Theorem 2.1. Note that (using the duality S-S ′) we have et∆u0

→ u0 in S ′ as t → 0. The conclusion of the theorem follows in a standard
way (cf., e.g., [19, 2, 6]) from the contraction fixed point theorem.

3. The parabolic-parabolic system. Let τ > 0 be a fixed parameter.
We consider the system (PP), whose equivalent integral formulation reads

(16) u(t) = et∆u0 −
t�

0

∇ · e(t−s)∆
[
u(s)

1
τ
∇
s�

0

e(1/τ)(s−σ)∆u(σ) dσ
]
ds.

We introduce for all τ ≥ 0 the bilinear form Bτ (recall that G is defined by
the expression (7)):

(17) Bτ (u, v)(x, t) ≡
t�

0

�
G(x− y, t− s)(uWτ (v))(y, s) dy ds,

where Wτ (v) is the linear operator acting on v:

(18a) Wτ (v)(x, t) =
t�

0

1
τ

[
G

(
t− σ
τ

)
∗ v(σ)

]
(x, σ) dσ for τ > 0,

with a natural convention

(18b) W0(v)(x, t) = (∇(−∆)−1v)(x, t).

In this way, the system (PP) is also rewritten in compact form (cf. (4)) as

(19) u = et∆u0 −Bτ (u, u).

We are going to solve (19) in the space X exactly as in the parabolic-elliptic
case. An additional estimate, however, is needed:
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Lemma 3.1. Let u ∈ X and τ > 0. Then there exists a constant C∗ > 0,
independent of u and τ , such that
(20) ‖Wτ (u)(t)‖L∞ ≤ C∗t−1/2‖u‖X .

Proof. As usual, we can and do assume ‖u‖X = 1. Then for all 1 < p ≤ ∞
we have

|u(x, σ)| ≤ |x|−2/pσ−1+1/p.

This implies, for 1 < p ≤ ∞,
‖u(σ)‖Lp,∞ ≤ σ−1+1/p.

Now, we represent
Wτ (u) = I1 + I2,

where I1 =
	t/2
0 . . . and I2 =

	t
t/2 . . . . Evidently, we obtain the bound

‖I1(t)‖L∞ ≤ C
t/2�

0

∥∥∥∥1
τ
G

(
t− σ
τ

)∥∥∥∥
L2,1

‖u(σ)‖L2,∞ dσ ≤ Ct−1/2.

For the integral I2, let us begin with a rough bound

(21) ‖I2(t)‖L∞ ≤ C
t�

t/2

∥∥∥∥1
τ
G

(
t− σ
τ

)∥∥∥∥
L1

‖u(σ)‖L∞ dσ ≤ Cτ−1/2t−1/2.

This gives the required estimate, except when τ belongs to a neighbourhood
of the origin. Thus, in what follows, it is enough to consider the case 0 <
τ < 1/2. Now, we further decompose

I2 ≡ I2,1 + I2,2,

where I2,1 =
	t−τt
t/2 . . . and I2,2 =

	t
t−τt . . . . Next, we are going to improve

(21) by writing

‖I2,1(t)‖L∞ ≤ C
t−τt�

t/2

∥∥∥∥1
τ
G

(
t− σ
τ

)∥∥∥∥
L3,1

‖u(σ)‖L3/2,∞ dσ(22)

≤ Cτ1/6
t−τt�

t/2

(t− σ)−7/6σ−1/3 dσ ≤ Ct−1/2.

The last estimate is

‖I2,2(t)‖L∞ ≤ C
t�

t−τt

∥∥∥∥1
τ
G

(
t− σ
τ

)∥∥∥∥
L1

‖u(σ)‖L∞ dσ(23)

≤ Cτ−1/2
t�

t−τt
(t− σ)−1/2σ−1 dσ ≤ Ct−1/2.

The conclusion of Lemma 3.1 follows from (21)–(23).
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Lemma 3.1 allows us to see that if u, v ∈ X with ‖u‖X = ‖v‖X = 1, then

|uWτ (v)|(x, t) ≤ C|x|−3/2t−3/4,(24a)

|uWτ (v)|(x, t) ≤ C|x|−2t−1/2,(24b)

for some constant C > 0 independent of τ > 0. These estimates are analogous
to those in the parabolic-elliptic case (see (6a) and (6b)). Then, using exactly
the same arguments as in the previous section, we arrive at the following
existence result.

Theorem 3.1. There exist two absolute constants ε∗, β∗ > 0 with the
following property. Let u0 ∈ E be such that ‖u0‖E < ε∗. Then there exists
a unique (mild) solution u ∈ X of (PP) such that ‖u‖X ≤ ε∗β∗.

Remark. The case of nonzero initial data ϕ(0) can be studied in a quite
similar way.

Remark. A closer look at the proofs of estimates for ∇ϕ in (PE) and
(PP) reveals that the behaviour of ∇ϕ is a bit different in these two cases.
Namely, if 0 6≡ u and u(x, t) ∼ (t+ |x|2)−1 (in the sense that c1(t+ |x|2)−1 ≤
u(x, t) ≤ c2(t + |x|2)−1 for some c1, c2 > 0), then it follows from (5) that
∇ϕ(x, t) ∼ |x|−1 log(t+|x|2) for (PE), while∇ϕ is more regular: |∇ϕ(x, t)| ≤
c(t1/2 + |x|)−1 in the (PP) case. In other words, letting Y be the space of
functions f = f(x, t) such that f2 ∈ X , we have ϕτ ∈ Y for τ > 0, but
(ϕτ ) does not converge in Y as τ → 0. However, such an instability does not
prevent the convergence of the densities uτ → u for vanishing τ .

4. Study of the τ ↘ 0 limit. We now study the convergence as τ ↘ 0
of solutions uτ of the system (PP) to the corresponding solution u of (PE).
A result in this direction has recently been obtained by A. Raczyński [25],
who established the convergence uτ → u in the Yα norm, for α ∈ (1, 2),
defined as

(25) ‖u‖Yα = ess sup
t>0, ξ∈R2

(1 + t1/2|ξ|)α|û(ξ, t)|.

In Subsection 4.2 we will obtain a similar result using the X -norm.

4.1. Regularity properties of solutions of (PE). In this subsection we pre-
pare some preliminary material. The first proposition concerns regularity of
solutions of (PE) with respect to the space variable. The second proposition
describes their regularity with respect to the time variable.

Proposition 4.1. For all r ∈ (1, 2) there exists a constant εr with 0 <
εr ≤ ε (the absolute constant of Theorem 2.1) such that if ‖u0‖E < εr, then
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the solution of (PE) constructed in Theorem 2.1 satisfies

‖∇u(t)‖Lr,∞ ≤ Ct−3/2+1/r(26)
for some constant C = C(u0, r) independent of t.

Proof. We use a standard argument involving the subspace
Xr = {u ∈ X : ∃C, ‖∇u(t)‖Lr,∞ ≤ Ct−3/2+1/r},

equipped with its natural norm. Recalling that the kernel c0x/|x|2 of the op-
erator ∇(−∆)−1 belongs to L2,∞, first we deduce from the Young inequality

‖∇2(−∆)−1v(t)‖Lα,∞ ≤ Ct−3/2+1/r‖v‖Xr ,
1
α

=
1
r
− 1

2
.(27)

Next, from the Hölder inequality (noticing that ‖u(t)‖L2,∞ ≤ Ct−1/2‖u‖X ),
‖u∇2(−∆)−1v(t)‖Lr,∞ ≤ Ct−2+1/r‖u‖X ‖v‖Xr .(28)

The generalization of the classical inequalities to Lorentz spaces can be
found, e.g., in [19].

We claim that the bilinear operator B0 introduced in (3) is boundedly
defined: B0 : Xr ×Xr → Xr. Indeed, for ‖u‖Xr = ‖v‖Xr = 1, we combine the
estimate

‖∇G(t− s)‖1 ≤ C(t− s)−1

and (10) with the inequality (a consequence of u ∈ X )
(29) ‖u(s)‖Lr,∞ ≤ Cs−1+1/r,

the estimate ‖∇(−∆)−1v(s)‖∞ ≤ Cs−1/2 obtained from Lemma 2.2, and
(28). Then we arrive at

‖∇B0(u, v)(t)‖Lr,∞

≤ C
t/2�

0

(t− s)−1‖u(s)‖Lr,∞‖∇(−∆)−1v(s)‖∞ ds

+ C

t�

t/2

(t− s)−1/2(‖∇u(s)‖Lr,∞‖∇(−∆)−1v(s)‖∞ + s−2+1/r) ds

≤ Ct−3/2+1/r.

Moreover, for u0 ∈ E, we have |e(t/2)∆u0(x)| ≤ C(t + |x|2)−1. Hence,
‖e(t/2)∆u0‖Lγ,∞ ≤ Ct−1+1/γ for 1 < γ < ∞. We now choose β, γ ∈ (1,∞)
such that 1 + 1/r = 1/β + 1/γ. Then the semigroup property of the heat
kernel gt, and the fact that ∇gt/2 ∈ Lβ,1, imply

‖∇et∆u0‖Lr,∞ ≤ Ct−3/2+1/r.

Now the usual application of the contraction mapping theorem, in a closed
ball of small radius in the space Xr, allows us to conclude the proof.
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The following proposition is the first crucial tool for our stability result. It
provides the Hölder regularity, with respect to the time variable, of solutions
of (PE) in Lorentz spaces.

Proposition 4.2. Let 1 < r < 2 and u0 ∈ E be such that ‖u0‖E < εr.
Then the solution u of (PE) constructed in Proposition 4.1 satisfies, for all
0 < t′ < t,

(30) ‖u(t)− u(t′)‖Lr,∞ ≤ C(t− t′)1/2(t′)−3/2+1/r

for some C = C(u0, r) independent of t and t′.

Proof. It is enough to show that both et∆u0 − et
′∆u0 and B0(u, u)(t)−

B0(u, u)(t′) satisfy the required bound in the Lr,∞-norm.
From the identity

et∆u0(x)− et
′∆u0(x) =

�
(et
′∆u0(x− y)− et

′∆u0(x))gt−t′(y) dy

= −
� 1�

0

∇et′∆u0(x− θy) · ygt−t′(y) dy dθ,

we get

‖et∆u0− et
′∆u0‖Lr,∞ ≤ C‖∇et

′∆u0‖Lr,∞‖ygt−t′‖1 ≤ C(t− t′)1/2(t′)−3/2+1/r.

Now, we can write

B0(u, u)(t)−B0(u, u)(t′) = A1 +A2

with

A1 ≡
t′�

0

(G(t− s)−G(t′ − s)) ∗ (u∇(−∆)−1u)(s) ds,

A2 ≡
t�

t′

G(t− s) ∗ (u∇(−∆)−1u)(s) ds.

Recall that from u ∈ X we deduce (29). Combining this with the estimate
of Lemma 2.2 we get

(31) ‖u∇(−∆)−1u(s)‖Lr,∞ ≤ Cs−3/2+1/r.

This immediately yields

‖A2‖Lr,∞ ≤
t�

t′

(t− s)−1/2s−3/2+1/r ds ≤ C(t− t′)1/2(t′)−3/2+1/r.

The estimate of A1 is slightly more involved. We start with the identity

G(t− s)−G(t′ − s) = (e(t−t
′)∆ − Id)G(t′ − s).

The action of the convolution operator with the function on the right hand
side is studied via the following variant of a result established in [20].
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Lemma 4.1. Denote the Calderón operator by Λ = (−∆)1/2. Then, for
some constant C depending only on r ∈ (1,∞),

‖(et∆ − Id)f‖Lr,∞ ≤ Ct1/2‖Λf‖Lr,∞ .

Proof. Writing f = Λ−1Λf , we see that

(et∆ − Id)f = Φt ∗ (Λf),

where
Φ̂t(ξ) = t1/2Φ̂(t1/2ξ) and Φ̂(ξ) = (e−|ξ|

2 − 1)|ξ|−1.

It only remains to show that Φ ∈ L1(R2). Indeed, it is well known, and easy
to check, that Ψ̂(ξ) = |ξ|e−|ξ|2 defines a function Ψ ∈ L1(R2) (for example,
with the method described in [15], one obtains |Ψ(x)| ≤ C(1 + |x|)−3 and
|∇Ψ(x)| ≤ C(1 + |x|)−4). We conclude by applying the Bochner inequality
to the identity

Φ(x) = −2
∞�

1

Ψ(ηx) dη.

Using this lemma we deduce

‖A1‖Lr,∞ ≤ C(t− t′)1/2
t′�

0

‖Λ∇gt′−s ∗ (u∇(−∆)−1u)(s)‖Lr,∞ ds

= C(t− t′)1/2(A1,1 +A1,2),

where A1,1 and A1,2 are obtained by splitting the integral at s = t′/2.
But, as the function Ψ introduced in the proof of Lemma 4.1 satisfies

∇Ψ ∈ L1(R2), we see by a simple rescaling that

‖Λ∇gt′−s‖1 ≤ C(t′ − s)−1.

Combining this estimate with inequality (31), we get

A1,1 ≤ C(t′)−3/2+1/r, 1 < r < 2.

For A1,2, we combine the estimate

‖Λgt′−s‖1 ≤ C(t′ − s)−1/2

with the inequality (for 1 < r < 2)

‖(∇u)(∇(−∆)−1u)(s)‖Lr,∞ + ‖u(∇2(−∆)−1u)(s)‖Lr,∞ ≤ Cs−2+1/r,

obtained by applying (26), Lemma 2.2, and (28) with u = v. We get as
before

A1,2 ≤ C(t′)−3/2+1/r, 1 < r < 2,

and this concludes the proof of Proposition 4.2.
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4.2. The vanishing τ limit. After Proposition 4.2, the second crucial step
for the study of the limit as τ ↘ 0 consists in the asymptotic analysis of the
linear operators Wτ , τ ≥ 0, introduced in (18a)–(18b). This is the purpose
of the following lemma.

Lemma 4.2. Let ε = ε(τ) be an arbitrary function, strictly increasing
and continuous on [0, 1], such that ε(0) = 0. Let also 1 < r < 2 and u be
a function satisfying , for 0 < t′ < t,
(32) ‖u(t)‖Lr,∞ ≤ Ct−1+1/r, ‖u(t)−u(t′)‖Lr,∞ ≤ C(t−t′)1/2(t′)−3/2+1/r,

with a constant C independent of t, t′. Then, for all t > 0, τ ∈ [0, 1], and for
another constant C, independent of t and τ ,
(33) ε(τ) sup

t>0
t1/2‖(Wτ (u)−W0(u))(t)‖∞ ≤ Cτ1/r−1/2.

In particular , if u0 ∈ E is small enough (for example, ‖u0‖E ≤ ε3/2), then
the corresponding solution u of (PE) constructed in Proposition 4.1 satisfies

(34) lim
τ→0

sup
t>0

t1/2‖(Wτ (u)−W0(u))(t)‖∞ = 0.

Proof. Without any restriction we can assume that 0 < ε(τ) < 1/2 for
positive τ . Define ε̃(τ) such that ε = ε̃

1
r
− 1

2 . Borrowing from [25] the idea of
splitting the time integral using intervals depending on τ , we write

Wτ (u)−W0(u) ≡ J1 + J2 + J3,

where

J1(t) =
t(1−ε̃(τ))�

0

[
1
τ
G

(
t− s
τ

)
∗ u(s)

]
ds,

J2(t) =
t�

t(1−ε̃(τ))

1
τ
G

(
t− s
τ

)
∗ u(t) ds−W0(u)(t),

J3(t) =
t�

t(1−ε̃(τ))

1
τ
G

(
t− s
τ

)
∗ [u(s)− u(t)] ds.

From the first relation of (32) and the Young inequality in Lorentz space
(using the fact that, by (7), G(·, t) ∈ Lr

′,1(R2), where r′ is the conjugate
exponent), we get

‖J1(t)‖∞ ≤ Cτ1/r−1/2

t(1−ε̃(τ))�

0

(t− s)−1/2−1/rs−1+1/r ds

≤ C
(

τ

ε̃(τ)

)1/r−1/2

t−1/2.

Notice that this estimate of J1 is exactly what we need for (33).
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For J2, we see from a simple computation via the Fourier transform that

J2(t) = −gtε̃(τ)/τ ∗W0(u)(t).

If 1/α = 1/r − 1/2, then we deduce from the usual weak-convolution esti-
mates that W0(u) = ∇(−∆)−1u is bounded in the Lα,∞-norm, by Ct−1+1/r.
Applying once more the Young inequality (using now gtε̃(τ)/τ ∈ Lα

′,1), we
get, as before,

‖J2(t)‖∞ ≤ C
(

τ

ε̃(τ)

)1/r−1/2

t−1/2.

Applying the second inequality of (32), we obtain immediately

‖J3(t)‖∞ ≤ Cτ1/r−1/2t−1/2,

which is even better than what we need. This proves (33). Choosing, for ex-
ample, r = 3/2 and ε(τ) = τ1/12/2 proves the last claim (34) of Lemma 4.2.

We are now in a position to establish our first main result.

Theorem 4.1. There exists an absolute constant ε′ > 0 (a priori smaller
than the constants ε, ε∗ > 0 in Theorems 2.1 and 3.1) such that if u0 ∈ E,
‖u0‖E < ε′, then denoting by u ∈ X the solution of (PE) and uτ ∈ X the
solution of (PP) constructed in the previous theorems, we have, as τ ↘ 0,

uτ → u in X .
Proof. This follows easily from Lemma 4.2. Indeed, from the integral

equations (4) and (19), the bilinearity of Bτ and B0, and the smallness of
the solutions uτ and u, we have (similarly to the reasoning at the beginning
of [25, Sec. 5], where two terms in the bilinear expansion can be absorbed
by the left hand side)

‖uτ − u‖X ≤ C‖Bτ (u, u)−B0(u, u)‖X .
But, by the definition of Wτ and W0 (see (18a)–(18b)),

Bτ (u, u)(t)−B0(u, u)(t) =
t�

0

G(t− s) ∗ (u(Wτ (u)−W0(u)))(s) ds.

Arguing as in the proof of Lemma 2.3, we obtain

‖Bτ (u, u)−B0(u, u)‖X ≤ C‖u‖X (sup
t>0

t1/2‖Wτ (u)−W0(u)(t)‖∞).

If ε′ > 0 is small enough, then Lemma 4.2 can be applied to the solution u
of (PE), implying that the right hand side of the above inequality has a
vanishing limit for small τ . This finally gives

‖uτ − u‖X → 0 as τ ↘ 0.

Remark 4.1. Notice that the smaller the norm ‖u0‖E , the faster the
convergence uτ → u as τ → 0. This is due to the fact that for very small
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data it is possible to apply Lemma 4.2 with r close to 1 (even though the
constants in our estimates blow up as r ↘ 1). More precisely, our arguments
show that for any 0 < δ < 1/2, one can find a constant C > 0 and ε(δ) > 0
such that, for ‖u0‖E ≤ ε(δ), one has ‖uτ −u‖X ≤ Cτ1/2−δ for all 0 ≤ τ ≤ 1.

4.3. The parabolic-elliptic limit in stronger topologies. If u0 ≥ 0 is small
in the E-norm, and belongs to a smaller space, for example, u0 ∈ E ∩ L1,
then the solutions uτ and u of (PP) and (PE) will remain in L1, uniformly
in time, during their evolution. Hence, it is natural to ask whether the con-
vergence uτ → u also holds in the natural norm of L∞((0,∞);L1). Our next
theorem provides a positive answer. As the proof does not really depend on a
particular topology, it seems appropriate to consider a more abstract setting.

We denote by L any shift invariant Banach space of local measures (see
[19, Ch. 4] for definition and main properties). These are Banach spaces of
distributions, continuously embedded in D′(R2). Moreover, they are known
to have the following properties (for some constant C > 0 depending only
on L):

1. For all f ∈ L, g ∈ L1(R2), the convolution product f ∗g is well defined
in L and ‖f ∗ g‖L ≤ C‖f‖L‖g‖1.

2. For all f ∈ L, h ∈ L∞(R2), the pointwise product fh is well defined
in L and ‖fh‖L ≤ C‖f‖L‖h‖∞.

3. Each bounded sequence {fk} ⊂ L has a subsequence convergent in L,
in the distributional sense.

Obvious examples (which are indeed shift invariant spaces of local measures)
are the Lp-spaces, 1 < p ≤ ∞, the Lorentz spaces Lp,q, 1 < p < ∞, 1 <
q ≤ ∞, and the space of bounded Borel measures M(R2) = C0(R2)∗. In
the last case, duality relations ensure property 3. Other interesting examples
include the Morrey–Campanato spaces Mp,q, 1 < p ≤ q < ∞, and suitable
multiplier spaces (see [19, Ch. 17]).

On the other hand, the space of pseudomeasures, i.e., of tempered dis-
tributions f such that f̂ ∈ L∞, does not fulfill the second requirement.
Therefore, the stability result in the pseudomeasure topology will not be
covered by our next theorem, but requires a specific (and more involved)
treatment (see [25]).

Notice that, because of the conservation of the total mass for positive
solutions of (PE) and (PP), the L1-norm remains constant during the evo-
lution. This will allow us to handle the case of data u0 ∈ E ∩L1, despite the
fact that property 3 breaks down for L1.

Theorem 4.2. Let u0 ∈ E∩L, where L is either a shift invariant Banach
space of local measures, or L = L1. In the latter case we require either u0 ≥ 0
or , for signed u0, that ‖u0‖1 is sufficiently small. Then there exists a positive
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constant ε̃, depending only on L, such that if

‖u0‖E < ε̃,

then the systems (PE) and (PP) have unique solutions u and uτ , respectively ,
such that for an absolute constant β̃ > 0, ‖u‖X ≤ β̃ε̃ and ‖uτ‖X ≤ β̃ε̃.
In addition,

sup
t>0
‖u(t)‖L <∞ and sup

t>0
‖uτ (t)‖L <∞.

Moreover , the conclusion ‖uτ (t)−u(t)‖X → 0 of Theorem 4.1 is strengthened
to

sup
t>0
‖uτ (t)− u(t)‖L → 0 as τ ↘ 0.

Proof. Obviously, ‖et∆u0‖L ≤ C0 for some constant C0 > 0 independent
of t. Moreover, for each τ ≥ 0 (we thus include the analysis of (PE)), we
have the estimate

(35) ‖Bτ (u, v)(t)‖L ≤ C̃(sup
t>0
‖u(t)‖L)‖v‖X ,

where C̃ > 0 depends only on L. This follows from (17) written as

Bτ (u, v)(t) =
t�

0

G(t− s) ∗ (uWτ (v))(s) ds

for each τ ≥ 0, with the convention (18b). Therefore, using the usual estimate
(10), we have

‖Bτ (u, v)(t)‖L ≤ C(sup
t>0
‖u(t)‖L)(sup

t>0
t1/2‖Wτ (v)(t)‖∞).

The last factor is bounded by ‖v‖X owing to Lemma 2.2 in the case τ = 0,
and to Lemma 2.3 for τ > 0. This yields (35).

Now, we can consider, for τ ≥ 0, the sequence of approximating solutions

uτk = et∆u0 −Bτ (uτk−1, u
τ
k−1), k = 1, 2, . . . .

When ε̃ < min{ε, ε∗}, we know by the proofs of Theorems 2.1 and 3.1 that
the sequence uτk converges in X to the solution uτ of (PE) or (PP). Here, of
course, u = u0 for the solutions of (PE).

On the other hand, applying recursively (35), we get uτk(t) ∈ L for all k
and

sup
t>0
‖uτk(y)‖L ≤ C0 + β̃C̃ε̃(sup

t>0
‖uτk−1(y)‖L),

with β̃ = max{β, β∗} (the constants obtained in Theorems 2.1 and 3.1).
Iterating this inequality we arrive at

sup
t>0
‖uτk(t)‖L ≤ C ′ <∞,
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provided β̃C̃ε̃ < 1. If L is a shift invariant Banach space of local measures,
from property 3 we get, for all τ ≥ 0,

sup
t>0
‖uτ (t)‖L ≤ C ′ <∞,

where C ′ > 0 is independent of τ . Of course, the last claim remains valid
in the case L = L1 and u0 ≥ 0 (notice that the smallness of ‖u0‖E pre-
vents blow up that could occur when the second moment of u0 is finite and	
u0 > 8π; see the introduction and the references therein). If we remove the

assumption u0 ≥ 0, we can obtain the same conclusion provided ‖u0‖1 is
sufficiently small. Indeed, we see from inequality (35) that the fixed point
argument applies in the space L∞t (L1) ∩ X .

We now discuss the stability, including also the case L = L1. From the
bilinearity of Bτ , the mixed estimate (35) and the smallness of the solutions
u and uτ (allowing two terms of the bilinear expansions to be absorbed by
the left hand side), we obtain

‖uτ (t)− u(t)‖L ≤ C sup
t>0
‖Bτ (u, u)−B0(u, u)(t)‖L.

Arguing as at the end of the proof of Theorem 4.1, we arrive at

‖Bτ (u, u)−B0(u, u)(t)‖L ≤ C(sup
t>0
‖u(t)‖L)(sup

t>0
t1/2‖(Wτ (u)−W0(u))(t)‖∞),

and the conclusion follows from Lemma 4.2.

Remark. As an application, observe that taking L = L∞, we obtain for
u0 ∈ E ∩ L∞, with u0 small in the E-norm, uτ → u as τ ↘ 0, uniformly in
(x, t) ∈ R2 × [0,∞).

5. Blow up of complex-valued solutions of the parabolic-para-
bolic system. Consider the system (PP) in the space Rd with any d ≥ 1.
Passing to the Fourier transforms, we may write the Duhamel formula (16)
in the form

(36) û(ξ, t) = e−t|ξ|
2
û0(ξ)

+
t�

0

s�

0

�

Rd

ξ · η
τ

e−(t−s)|ξ|2e−(s−σ)|η|2/τ û(ξ − η, s)û(η, σ) dη dσ ds.

Our goal is to construct a class of complex-valued initial data such that
the corresponding solutions blow up in finite time, in any classical norm.
For a ∈ R, we denote by Ḃa,∞

∞ the homogeneous Besov space, which can
also be identified with the Hölder–Zygmund space Ċa. As is well known
(see [19, 23]), most of the classical function spaces (including all homogeneous
Triebel–Lizorkin, and thus Lebesgue or Sobolev spaces) are continuously
embedded in Ḃa,∞

∞ for some real a.
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Theorem 5.1. There exists w0∈S(Rd) such that ŵ0(ξ)≥0, ‖ŵ0‖L1 =1.
If A is sufficiently large, then any (tempered) distributional solution of (36)
with u0 = Aw0 (and thus any solution of (PP)) blows up in finite time. More
precisely , for some t∗ <∞ and each a ∈ R, we have ‖u(t∗)‖Ḃa,∞∞ =∞.

Our approach is close to that in [5, Theorem 3.1], which followed the
argument in [23] for the “cheap” Navier–Stokes equations. We produce some
estimates from below of the Fourier transform of any solution with u(0) = u0

that can be obtained via the iteration procedure for (36) with

uk+1 = et∆u0 −
t�

0

∇ · e(t−s)∆ 1
τ

[
uk(s)∇

s�

0

e(1/τ)(s−σ)∆uk(σ) dσ
]
ds

for k = 1, 2, . . . . This recurrence relation, in general, does not preserve the
positivity of the Fourier transform of u0. This leads us to restrict our atten-
tion to data of the form û0 = Aŵ0 with w0 ∈ S(Rd) such that supp ŵ0 ⊂
{ξ ∈ Rd : 2−1 ≤ ξ1 ≤ |ξ| ≤ 1}. For k = 0, 1, . . . define

Ek = {ξ ∈ Rd : 2k−1 ≤ ξ1 ≤ |ξ| ≤ 2k}.

Then for wk = w2k
0 , we have ŵk = (2π)−dŵk−1 ∗ ŵk−1, and therefore

supp ŵk ⊂ Ek. This implies that if, in addition, ŵ0(ξ) ≥ 0, then the posi-
tivity of the Fourier transform will be preserved by the sequence uk, and so
by u. The next lemma tells us more:

Lemma 5.1. For all k = 0, 1, 2, . . . , we have

(37) û(ξ, t) ≥ βke−2kt1tk≤t<t∗(t)ŵk(ξ),

where {tk} and {βk} are defined below in (38) and (39).

Proof. For k = 0, the conclusion immediately follows from

û(ξ, t) ≥ Ae−t|ξ|2ŵ0(ξ),

provided we choose β0 = A and t0 = 0. Let k ≥ 1. Assume that (37) holds
for k − 1. Then, for all tk ≤ t < t∗,

û(ξ, t) ≥
t�

tk−1

s�

tk−1

�

Rd

ξ1η1

τ
e−(t−s)|ξ|2e−(s−σ)|η|2/τβ2

k−1e
−2k−1se−2k−1σ

× ŵk−1(ξ − η)ŵk−1(η)
(2π)d

dη dσ ds

≥
t�

tk−1

�

Rd
(s− tk−1)

ξ12k−2

τ
e−(t−s)|ξ|2e−(t∗−tk−1)22k−2/τ · β2

k−1e
−2ks

× ŵk−1(ξ − η)ŵk−1(η)
(2π)d

dη ds.
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Thus, we can bound û(ξ, t) from below as follows:

û(ξ, t)

≥
t�

tk−1

(s− tk−1)
22k−3

τ
e−(t−s)22k

e−(t∗−tk−1)22k−2/τβ2
k−1e

−2ksŵk(ξ) ds

≥
( t�

tk−1

(s− tk−1)e−(t−s)22k
ds
) 22k−3

τ
e−(t∗−tk−1)22k−2/τβ2

k−1e
−2ktŵk(ξ)

=
(
t− tk−1

22k
− 1− e−(t−tk−1)22k

24k

)
22k−3

τ
e−(t∗−tk−1)22k−2/τβ2

k−1e
−2ktŵk(ξ)

≥
(

(tk − tk−1)−
1− e−(t∗−tk−1)22k

22k

)
2−3

τ
e−(t∗−tk−1)22k−2/τβ2

k−1e
−2ktŵk(ξ).

This suggests setting, for some δ > 0, t∗−tk−1 = δτ2−2k+2. With this choice,
putting t0 = 0, we have

(38) t∗ = δτ, tk = δτ(1− 2−2k).

Then tk − tk−1 = 3δτ2−2k. We get, for tk ≤ t < t∗,

û(ξ, t) ≥ (3δτ − 1 + e−4δτ )2−2k−3τ−1e−δβ2
k−1e

−2ktŵk(ξ).

This inequality is interesting only if the right hand side is positive. Therefore
we will assume that 3δτ ≥ 1. We choose {βk} in such a way that

β0 = A, βk = (3δτ − 1 + e−4δτ )2−2k−3τ−1e−δβ2
k−1, k = 1, 2, . . . .

This choice leads to inequality (37).
In order to compute βk, we introduce Mδ,τ such that

2Mδ,τ = (3δτ − 1 + e−4δτ )e−δ2−3τ−1.

Notice that βk = 2Mδ,τ−2kβ2
k−1. We claim that, for some a, b, c ∈ R,

βk = A2k2a+bk+c2
k
.

Indeed, from an easy calculation we find b = 2, a = 4 −Mδ,τ and finally
c = Mδ,τ − 4, which is needed to ensure β0 = A. Hence,

(39) βk = (A2Mδ,τ−4)2
k
24−Mδ,τ+2k, k = 0, 1, . . . .

We conclude that if
A ≥ 24−Mδ,τ ,

then by (39) we have βk →∞ and, in particular, ‖u(tk)‖L1 = ‖û(tk)‖∞ →∞
for k →∞. The above size condition on A can be rewritten equivalently as

(3δτ − 1 + e−4δτ )A ≥ 27eδτ.
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A further analysis of the lower bounds obtained for the Fourier transform of
a candidate solution permits us to conclude, as in [5], that ‖u(t∗)‖Ḃa,∞∞ =∞
for each a ∈ R, so that all Besov (and also Lp or Triebel–Lizorkin) norms of
u blow up not later than at t∗. Notice that, for a blow up at t∗ = 1, we need
A ≥ Ce1/ττ (cf. (38)).
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