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APPLICATION OF THE REALIZATION OF HOMOGENEOUS
SOBOLEV SPACES TO NAVIER–STOKES∗

LORENZO BRANDOLESE†

Abstract. Molecule spaces have been introduced by Furioli and Terraneo [Funkcial. Ekvac., 45
(2002), pp. 141–160] to study some local behavior of solutions to the Navier–Stokes equations. In this
paper we give a new characterization of these spaces and simplify Furioli and Terraneo’s result. Our
analysis also provides a persistence result for Navier–Stokes in a subspace of L2(R3, (1 + |x|2)αdx),
α < 5/2, which fills a gap between previously known results in the weighted-L2 setting and those on
the pointwise decay of the velocity field at infinity. Our main tool is the realization of homogeneous
Sobolev spaces introduced by Bourdaud.
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1. Introduction. Consider the Navier–Stokes equations for a viscous incom-
pressible fluid in the three-dimensional space and not submitted to external forces:⎧⎪⎨

⎪⎩
∂tu + (u · ∇)u = Δu−∇p,

∇ · u = 0,

u(x, 0) = a(x).

(NS)

Here u = (u1, u2, u3) is the velocity field and p is the pressure, both defined in R
3 ×

[0,∞[ . Moreover, ∇ · u =
∑3

j=1 ∂juj and (u · ∇)u =
∑3

j=1 uj∂ju.

If a ∈ L2(R3), then we have known for a very long time that a weak solution
to (NS) exists such that u ∈ L∞(]0,∞[ , L2(R3)) and ∇u ∈ L2(]0,∞[ , L2(R3)). If
we know, in addition, that the initial datum is well localized in R

3, then these con-
ditions, of course, do not give us so much information on the spatial localization
of u(t) during the evolution. Then the natural problem arises of finding the func-
tional spaces that would provide the good setting for obtaining such information.
Several papers have been written on this topic; see, e.g., [14], [9], [10], [13], [1], [16]
and the references therein. In particular, it was shown in [14] that the condition
a ∈ L2(R3, (1+ |x|2)δdx) (0 ≤ δ ≤ 3

2 ) is conserved during the evolution, for a suitable
class of weak solutions. Here and below, this weighted-L2 space is equipped with the

natural norm
(∫

|a(x)|2(1 + |x|2)δ dx
)1/2

. As far as we deal with data belonging to
general weighted-L2 spaces, it seems difficult to improve the upper bound on δ.

When dealing with strong solutions to (NS) one can obtain sharper conclusions
on the localization of u. For example, assuming that a ∈ L1 ∩L2(R3), He [13] proves,
among other things, that u(t) belongs to L2(R3, (1 + |x|2)2dx) at least in some time
interval [0, T ], T > 0 (and uniformly in [0,+∞[ , under a supplementary smallness
assumption). In a slightly different context, we would also like to mention the work of
Miyakawa [17], in which it is shown that u(x, t) ∼ |x|−αt−β/2 as |x| → ∞ or t → ∞,
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for all α, β ≥ 0 and 1 ≤ α + β ≤ 4, under suitable assumptions on a. The main tool
here is the application of the contraction mapping theorem to the integral equation

u(t) = etΔa−
∫ t

0

∇ · e(t−s)Δ
P(u⊗ u)(s) ds,(IE)

where etΔ is the heat semigroup and P is the Leray–Hopf projector onto the solenoidal
vector fields, defined by Pf = f−∇Δ−1(∇·f), where f = (f1, f2, f3). Note that (IE),
together with the divergence-free condition ∇·a = 0, is equivalent to (NS) under very
general assumptions (see [11]).

If we compare the results on the spatial localization contained in [13] and [17],
we see that Miyakawa’s results seem to give a slightly better conclusion. Indeed,
[17] tells us that the condition a(x) ∼ |x|−4 at infinity is conserved during the evolution
(furthermore, |x|−4 is known to be the optimal decay in the generic case), whereas,
according to [13], the condition u(t) ∈ L2(R3, (1 + |x|2)2dx) only tells us, formally,
that u(t) ∼ |x|−7/2 at infinity. Then there is a small gap between the results on the
pointwise decay and those in the weighted-L2 setting.

The first purpose of this paper is to obtain a persistence result in suitable sub-
spaces of L2(R3, (1 + |x|2)αdx), for all 0 ≤ α < 5

2 , which, at least formally, will allow
us to recover the optimal decay of the velocity field. To do this, rather than establish-
ing a new theorem we shall give a new interpretation of a known result by Furioli and
Terraneo on the molecules of the Hardy space [12]. More precisely, let us introduce
the space Zδ of functions (or vector fields) f such that

f ∈ L2(R3, (1 + |x|2)δ−2dx),(1.1)

∇f ∈ L2(R3, (1 + |x|2)δ−1dx),(1.2)

Δf ∈ L2(R3, (1 + |x|2)δdx).(1.3)

We provide such space with its natural norm. We will prove the following theorem
(announced, in a weaker form, in [5]).

Theorem 1.1. Let 1
2 ≤ δ < 9

2 and let a ∈ Zδ be a solenoidal vector field. Then
there exists T > 0 such that (IE) possesses a unique strong solution u ∈ C([0, T ], Zδ).

The restriction δ < 9
2 is consistent with the spatial spreading effect of the velocity

field described, e.g., in [6]: we cannot have u ∈ C([0, T ], Z9/2) unless the initial data

have some symmetry properties. As we shall see, the elements of Zδ are o(|x|−δ+1/2)
at infinity. Hence the correspondence between this result and those on the pointwise
decay is not merely formal. The condition δ ≥ 1

2 is physically reasonable since it
prevents u → ∞ as |x| → ∞.

In section 3 we show that Theorem 1.1 is essentially equivalent to (but slightly
improves) the result by Furioli and Terraneo [12]. Their motivation was different
and this is probably the reason why the relation between their space of molecules Xδ

(defined below) and the more natural space Zδ is not found in [12]; motivated by the
problem of the unicity of mild solutions in critical spaces (i.e., homogeneous spaces
of degree −1), they studied the Navier–Stokes equations in Δ−1H1, which is the
space made of all distributions vanishing at infinity and such that their Laplacian
belongs to the Hardy space H1(R3). As discussed also in [15], such space gives a
useful insight of solutions to the Navier–Stokes equations. Indeed, if a solution u
satisfies Δu ∈ H1(R3), then u ∈ L3(R3), ∇ ⊗ u ∈ L3/2, and (u · ∇)u ∈ H1(R3)
(this is a consequence of the so-called div-curl lemma as stated in [7]). Furthermore,

∇p ∈ H1(R3) (this follows from the classical relation Δp =
∑3

h,k=1 ∂h∂k(uhuk) and
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the boundedness of the Riesz transforms in the Hardy space). Thus, the three terms
which contribute to ∂tu in (NS) have the same regularity.

Moreover, the Hardy space has a very simple structure, due to its well-known
atomic decomposition. Hence, solving the equations in Δ−1H1 yields a natural de-
composition of the flow into simple “building blocks.” Furioli and Terraneo consid-
ered the converse problem of studying the evolution of each building block. The
result of [12] essentially states that if Δu is a molecule of the Hardy space (in a sense
close to that of Coifman and Weiss [8]) at the beginning of the evolution, then this
property remains true for a certain time. To do this they introduced, for δ > 3

2 ,
the space Xδ defined as the set of all tempered distributions f vanishing at infinity
such that Δf ∈ L2(R3, (1 + |x|2)δdx) and

∫
xαΔf(x) dx = 0 for all α ∈ N

3 such that
α1 + α2 + α3 < δ − 3

2 . The norm of Xδ is defined by

||f ||2Xδ
≡

∫
|Δf(x)|2(1 + |x|2)δ dx.

Furioli and Terraneo’s theorem then is stated as Theorem 1.1, with Xδ instead
of Zδ, and with the additional restrictions 3

2 < δ < 9
2 and δ �= 5

2 ,
7
2 . The condition

δ > 3
2 is important for the embedding Xδ ⊂ Δ−1H1. However, P.-G. Lemarié-Rieusset

noticed that the condition δ �= 5
2 ,

7
2 can be removed. Their paper is technical and relies

on the theory of local Muckenhoupt weights.

The second purpose of this paper is to provide a simpler proof of their result.
Indeed, in section 4 we remark that the Fourier transform of Xδ is closely related
to the realization “à la Bourdaud” [3] of the homogeneous Sobolev space Ḣδ. The
operators involved in (IE) turn out to be Fourier pointwise multipliers of the realized
spaces. Therefore the estimates that are needed to establish the boundedness of the
bilinear operator B(u, v)(t) =

∫ t

0
∇ · e(t−s)Δ

P(u ⊗ v)(s) ds in C([0, T ], Xδ) become
very natural. The conclusion of the proof is a simple application of the contraction
mapping theorem.

The idea of using Bourdaud’s results on realized spaces in this way (or analogous
results by Youssfi [20] for the realized homogeneous Besov spaces) seems to be new.
Since this argument does not directly rely on the divergence-free condition or the
matricial structure of P, it can be easily applied to more general equations. Moreover,
we feel that providing evidence of the relation between the localization problem of the
velocity field and Furioli and Terraneo’s molecules provides a better understanding
of [12].

The spatial localization of the velocity field in different weighted-Lebesgue spaces
is studied in [19]. After the first version of this paper was completed, the author was
notified by H.-O. Bae and B. J. Jin that their preprint [2] also improves the spatial
decay results of [13] and [14] and provides solutions to (NS) in L2(R3, (1 + |x|2)αdx),
0 ≤ α < 5

2 . Their method is a refinement of the weighted estimates of He and Xin
[14] and is quite different than ours. The assumptions on the data are also different:
Bae and Jin deal with less regular data, but they put more stringent assumptions on
their spatial localization.

2. Some properties of the space Zδ. For δ ≥ 0 we introduce the space L2
δ

of all functions f ∈ L2(R3, (1 + |x|2)δdx) such that
∫
xαf(x) dx = 0 for all α ∈ N

3,
with 0 ≤ |α| < δ − 3

2 (where |α| = α1 + α2 + α3). There are of course no moment
conditions for 0 ≤ δ ≤ 3

2 . Note that L2
δ is well defined because of the embedding of

L2(R3, (1 + |x|2)δdx) into L1(R3, wδ(x)dx), for δ > 3
2 . Here and below, for δ > 3

2 ,
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we set wδ(x) = (1 + |x|)[δ−3/2] if δ − 3
2 �∈ N (where [·] denotes the integer part), and

wδ(x) = (1 + |x|)δ−5/2 otherwise.
Lemma 2.1. Let δ ≥ 0. We have f ∈ L2

δ if and only if f can be decomposed as

f = g +
∞∑
j=0

fj ,

where g and fj belong to L2(R3), supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−1 ≤ |x| ≤ 2j+1},
and

||fj ||2 ≤ εj2
−jδ, with εj ∈ �2(N),∫

xαg(x) dx =

∫
xαfj(x) dx = 0, if α ∈ N

3, 0 ≤ |α| < δ − 3

2
,

(2.1)

and where the series converges a.e. in R
3 and in L2

δ.
Proof. The result is obvious for 0 ≤ δ ≤ 3

2 , so we may assume δ > 3
2 . We start

with a bad choice, namely

g̃(x) = f(x)I|x|≤1 and f̃j(x) = f(x)I2j≤|x|≤2j+1 (j = 0, 1, . . .),

where I denotes the indicator function. Letting f̃−1 = g̃, we set

J(j, α) =

∫
xαf̃j(x) dx.

Since |α| < δ − 3
2 , the series

∑
j J(j, α) converges and

∑∞
j=−1 J(j, α) = 0. We now

introduce a family of functions ψβ ∈ C∞
0 (R3), supported in 1

2 ≤ |x| ≤ 1 and such that∫
xαψβ(x) dx = δα,β (α, β ∈ N

3, |α|, |β| < δ − 3
2 ),

with δα,β = 0 or 1 if α �= β or α = β, respectively (we may define ψβ , e.g., through
the tensorial product of suitable C∞

0 (R) functions).
Now let

c(j, α) ≡ J(j, α) + J(j + 1, α) + · · · ,

and set, for j = −1, 0, . . . ,

fj(x) = f̃j(x) −
∑
β

(
c(j, β)2−(3+|β|)jψβ(2−jx) − c(j + 1, β)2−(3+|β|)(j+1)ψβ(2−j−1x)

)
,

the summation being taken over all β ∈ N
3 such that 0 ≤ |β| < δ − 3

2 .

Since |J(j, α)| ≤ 2j|α|23j/2−jδ ε̃j for some ε̃j ∈ �2(N), we have |c(j, α)| ≤
2j|α|23j/2−jδ ε̄j , with ε̄j ∈ �2(N). One now easily checks that

∑∞
j=−1 fj =

∑∞
j=−1 f̃j =

f a.e. in R
3 and that g and fj satisfy (2.1).

The converse is immediate. Note that if g and fj satisfy the above conditions, then∑
fj must converge also in the L1(R3, wδ(x)dx) norm (δ > 3

2 ) by Hölder’s inequality,
and this ensures the condition on the moments of f . Lemma 2.1 follows.

A similar decomposition applies to Zδ.
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Lemma 2.2. Let δ ≥ 0. We have f ∈ Zδ if and only if

f = g +

∞∑
j=0

fj ,

with

supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−2 ≤ |x| ≤ 2j+2},
g,∇g,Δg ∈ L2(R3), ||fj ||2 ≤ εj2

2j2−jδ, εj ∈ �2(N),

||∇fj ||2 ≤ ε̄j2
j2−jδ, ||Δfj ||2 ≤ ε̃j2

−jδ, ε̄j , ε̃j ∈ �2(N),

(2.2)

and where the series converges a.e. in R
3 and in Zδ.

If δ > 7
2 , then Zδ is continuously embedded in L1(R3). In this case we have∫

f = 0 if and only if we may choose g and fj satisfying, in addition,
∫
g =

∫
fj = 0

(j = 0, 1, . . .).
Proof. It is obvious that if (2.2) holds, then f = g +

∑∞
j=0 fj belongs to Zδ.

Conversely, let ϕ and ψ be two compactly supported smooth functions, such that
0 does not belong to the support of ψ and 1 ≡ ϕ(x) +

∑∞
j=0 ψ(2−jx). If we set

g(x) = f(x)ϕ(x) and fj(x) = f(x)ψ(2−jx), then we have ∇fj(x) = ψ(2−jx)∇f(x) +
2−j(∇ψ)(2−jx)f(x) and

Δfj(x) = ψ(2−jx)Δf(x) + 2−j+1(∇ψ)(2−jx) · ∇f(x) + 2−2j(Δψ)(2−jx)f(x).

Decomposition (2.2) then directly follows from the definition of Zδ.
If δ > 7

2 , then Zδ ⊂ L1(R3) as checked with Hölder’s inequality. In this case,
when

∫
f = 0, we can modify the definition of g and fj reproducing the proof of

Lemma 2.1 (with |α| = |β| = 0) and get the vanishing integral conditions. Lemma 2.2
follows.

We finish our study of Zδ with the following lemma.
Lemma 2.3. Let δ ≥ 1

2 . Then Zδ is an algebra with respect to the pointwise
product. More precisely, if f and h belong to Zδ, then fh ∈ Z2δ−1/2 ⊂ Zδ.

Proof. The condition δ ≥ 1
2 ensures that if f ∈ Zδ, then f vanishes at infinity.

Indeed, we have the following bound:

|f(x)| ≤ C(1 + |x|)−δ+1/2ε(x),(2.3)

where ε(x) is a bounded function vanishing at infinity. This is seen by applying
Lemma 2.2 and writing, for x ∈ supp fj , fj(x) =

∫
|x−y|−1Δfj(y) dy. Then applying

Hölder’s inequality and the last of (2.2) we get for x ∈ supp fj , |fj(x)| ≤ εj2
−jδ2j/2

with εj ∈ �2(N) and our claim follows.
Another useful estimate (which follows interpolating ∇fj between ||Δfj ||2 and

||fj ||∞) is (∫
2j≤|x|≤2j+1

|∇f(x)|4dx
)1/4

≤ εj2
j/4−jδ, with εj ∈ �2(N).

Using this, we immediately see that if f and h belong to Zδ, then fh ∈
L2(R3, (1 + |x|2)2δ−5/2dx), ∇(fh) ∈ L2(R3, (1 + |x|2)2δ−3/2dx), and Δ(fh) ∈
L2(R3, (1 + |x|2)2δ− 1

2 dx). Therefore fh ∈ Z2δ−1/2 ⊂ Zδ and, moreover,

||fh||Z2δ−1/2
≤ C||f ||Zδ

||h||Zδ
.
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3. Characterization of molecule spaces. We defined the molecule space Xδ

in the introduction for δ > 3
2 . These spaces can be defined also for 1

2 < δ ≤ 3
2

by simply dropping the moment conditions on Δf (it should be observed that the
embedding Xδ ⊂ Δ−1H1(R3) breaks down for δ ≤ 3

2 , but for the sake of brevity we
refer to Xδ as a “molecule space” also in this case). In this section we study the
relation between the spaces Zδ and Xδ.

Proposition 3.1. We have

Xδ = Zδ, if
1

2
< δ <

7

2
and δ �= 3

2
,
5

2
,(3.1)

Xδ = Zδ ∩
{
f ∈ L1(R3) :

∫
f = 0

}
, if

7

2
< δ <

9

2
(3.2)

(with norm equivalence).
Note that δ = 3

2 ,
5
2 ,

7
2 are excluded. The proof of Proposition 3.1 will only give

Zδ ⊂ Xδ in this case. Let us shed some light on this point with an example. Let
j, k = 1, 2, 3 and f ∈ L2(R3) such that Δf = ∂j∂kg, where g(x) = (4π)−3/2e−|x|2/4.
Then f ∈ X7/2 but f �∈ Xδ for δ > 7

2 , since
∫
xjxkΔf(x) dx �= 0. Moreover, computing

the inverse Fourier transform as in [17] from the identity f̂(ξ) = ξjξk|ξ|−2e−|ξ|2 , one
checks after some computations that the integral

∫
|f(x)|2(1 + |x|2)3/2 dx diverges so

that f �∈ Z7/2.
Proof of Proposition 3.1. Throughout the proof α ∈ N

3. Note that because of
our restrictions δ − 3

2 is not an integer.
First step: The embedding Xδ ⊂ Zδ. Let f ∈ Xδ. Applying Lemma 2.1 to Δf

and using the fact that f vanishes at infinity, we see that we may write

f =
c

|x| ∗ p +
∞∑
j=0

c

|x| ∗ qj ,(3.3)

c being an absolute constant. Here p and qj are compactly supported L2-functions,
satisfying

supp p ⊂ {|x| ≤ 1},
supp qj ⊂ {2j−1 ≤ |x| ≤ 2j+1},
||qj ||2 ≤ εj2

−jδ, εj ∈ �2(N),∫
xαp(x) dx =

∫
xαqj(x) dx = 0, if |α| < δ − 3

2
.

(3.4)

Let us show that, for all f ∈ Xδ and 2j ≤ |x| ≤ 2j+1, we have

|f(x)| ≤ ε̄j2
j/22−jδ, with ε̄j ∈ �2(N).(3.5)

To prove (3.5) we set P = 1
|·| ∗ p, Qj = 1

|·| ∗ qj (j = 0, 1, . . .), and d = [δ − 3
2 ] (we

set d = −1 if 1
2 < δ < 3

2 ). Then we have

|Qj(x)| ≤ Cεj2
−j(δ−1/2), if |x| ≤ 4 · 2j ,(3.6)

|Qj(x)| ≤ C|x|−(d+2)εj2
(d+5/2−δ)j , if |x| ≥ 4 · 2j .(3.7)

The first bound follows from the localization of qj and Hölder’s inequality. Let us
prove (3.7); we start by introducing the Taylor polynomial y �→ Tx(y) of degree d
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centered at x of the function 1/|y| (we set Tx(y) ≡ 0 for 1
2 < δ < 3

2 ). Then for
|x| ≥ 4 · 2j and y ∈ supp qj we may write, using the last of (3.4),

|Qj(x)| =

∣∣∣∣
∫ (

1

|x− y| − Tx(−y)

)
qj(y) dy

∣∣∣∣ ≤ C|x|−d−2

∫
|y|d+1|qj(y)| dy.

Here the inequality follows from the Taylor formula and the fact that the (d+1)-order
derivatives of y �→ 1/|y| are bounded in a ball centered at x and radium |x|/2, up to
a constant, by |x|−d−2. The bound (3.7) now follows from Hölder’s inequality.

Similar arguments allow us to see that |P (x)| ≤ C(1 + |x|)−(d+2). Summing up
on these inequalities immediately yields (3.5).

Condition (3.6) also ensures that
∫
|x|≤1

|f |2 is finite. Then using (3.5) we get

∫
|f(x)|2(1 + |x|2)δ−2 dx < ∞.(3.8)

We now need some bounds for ∇f . We start from −∇f(x) = cx
|x|3 ∗p+

∑∞
j=0

cx
|x|3 ∗

qj , and we set Rj = (x/|x|3)∗qj (j = 0, 1, . . .) and R−1 = (x/|x|3)∗p. Then for j ≥ −1,

|Rj(x)| ≤ C|x|−(d+3)εj2
(d+5/2−δ)j , if |x| ≥ 4 · 2j ,(3.9) (∫

|x|≤4·2j

|Rj(x)|4 dx
)1/4

≤ Cεj2
j/42−jδ.(3.10)

Indeed, (3.9) again easily follows using the vanishing of the moments of qj and the
Taylor formula. The proof of (3.10) deserves a more detailed explanation: for |x| ≤
4 · 2j we write

x

|x|3 ∗ qj(x) = θj ∗ qj(x), where θj(x) =
x

|x|3 I{|x|≤6·2j}.

Then (3.10) comes from ||θj ∗ qj ||4 ≤ ||θj ||4/3||qj ||2 ≤ C2j/4||qj ||2.
Now, for j ≥ 1 we write − 1

c∇f =
∑j−2

k=−1 Rk +
∑∞

k=j−1 Rk ≡ Aj + Bj . Using
(3.9) we get

(∫
2j≤|x|≤2j+1

|Aj(x)|2 dx
)1/2

≤ Cε̃j2
j2−jδ, with ε̃j ∈ �2(N).

On the other hand, applying Hölder and Minkowski inequalities and (3.10) yields

(∫
2j≤|x|≤2j+1

|Bj(x)|2 dx
)1/2

≤ C ′ε̃j2
j2−jδ, with ε̃j ∈ �2(N).

Since we obviously have
∫
|x|≤2

|∇f |2 < ∞, we thus see that

∫
|∇f(x)|2(1 + |x|2)δ−1 dx < ∞.(3.11)

This last inequality, condition (3.8), and the definition of the Xδ norm yield the
injection Xδ ⊂ Zδ.

Second step: The elements of Xδ,
7
2 < δ < 9

2 have vanishing integral. Assume
now 7

2 < δ < 9
2 . Then the moments of p and qj vanish up to the order two. Moreover,
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our previous estimates imply that P and Qj belong to L1(R3). We thus see, e.g., via
the Fourier transform (using the fact that p̂(ξ) and q̂j(ξ) vanish at the origin together
with their derivatives up to the order two and letting ξ → 0) that

∫
P (x) dx =∫

Qj(x) dx = 0 for all positive integers j. Moreover, the series
∑

Qj converges in the
L1-norm by (3.6)–(3.7) yielding

∫
f = 0.

Third step: The converse inclusion. Let f ∈ Zδ. In the case 7
2 < δ < 9

2 we assume∫
f = 0. The bound ||f ||Xδ

< ∞ is obvious. By Lemma 2.2 we have f = g+
∑∞

j=0 fj ,

such that (2.2) holds (with
∫
g =

∫
fj = 0 for all j ≥ 0 if 7

2 < δ < 9
2 ).

We claim that∫
xαΔg(x) dx =

∫
xαΔfj(x) dx = 0, 0 ≤ |α| < δ − 3

2 ,

for all j ≥ 0 (there are no moment conditions for 1
2 < δ < 3

2 ). Indeed, since g and fj
are compactly supported, when applying the Green formula all the boundary terms
vanish and we obtain (e.g., for fj , when 7

2 < δ < 9
2 )∫

xαΔfj(x) dx = 2

∫
fj(x) dx, if xα = x2

1, x
2
2, or x2

3,

and
∫
xαΔfj(x) dx = 0; otherwise (|α| ≤ [δ − 3

2 ]). Our claim then follows.
Moreover, by Hölder’s inequality,

∞∑
j=0

||xαΔfj ||1 < ∞, 0 ≤ |α| < δ − 3
2 .

Summing on j we get
∫
xαΔf(x) dx = 0.

To conclude that f ∈ Xδ it remains to check that f vanishes at infinity. This was
done in (2.3).

4. Proof of Theorem 1.1. The boundedness of the operator ∇etΔP in Xδ

( 3
2 < δ < 9

2 ), δ �= 5
2 ,

7
2 is a fundamental step of [12]. Lemma 4.1 provides a short proof

of this fact. Our main tool will be the realization of homogeneous Sobolev spaces
introduced by Bourdaud. Note that ∇etΔP is a matrix operator acting on vector
fields. But its matricial structure has no special role in what follows, since we shall
establish all the relevant estimates componentwise.

Lemma 4.1. Let 1
2 < δ < 9

2 , δ �= 3
2 ,

5
2 ,

7
2 . The operator ∇etΔP is bounded from

Zδ to Xδ for all t > 0, with operator norm O(t−1/2) as t → 0.
Proof. Let f ∈ Zδ. If 7

2 < δ < 9
2 , then we introduce a function h such that

f(x) = cg(x) + h(x), where g(x) = (4π)−3/2e−|x|2/4

and the constant c is chosen in a such way that
∫
h(x) dx = 0. If, instead, 1

2 < δ < 7
2 ,

δ �= 3
2 ,

5
2 , then we simply set f(x) = h(x). In any case, we deduce from Proposition 3.1

that h ∈ Xδ and ||h||Xδ
≤ C||f ||Zδ

for some constant C depending only on δ.
We start showing that ∇etΔPg belongs to Xδ for all 0 ≤ δ < 9

2 . Note that the

components of (∇etΔPg)̂(ξ) are given by

iξh

(
δj,k − ξjξk

|ξ|2

)
exp(−(t + 1)|ξ|2) (j, h, k = 1, 2, 3, δj,k = 0 or 1),
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and the inverse Fourier transform can be easily computed (see, e.g., [17]). We imme-
diately find that ∇etΔPg is a smooth function in R

3, such that

|∂α∇etΔPg(x)| ≤ Cα(1 + |x|)−(4+|α|) for all α ∈ N
3.

This bound implies that etΔP∇g ∈ Zδ, for 0 ≤ δ < 9
2 . But

∫
∇etΔPg = 0 (the Fourier

transform of the integrand vanishes at the origin) and thus ∇etΔPg belongs, more
precisely, to Xδ.

Let us now prove that ∇etΔPh does also belong to Xδ. The only difficulty is
for 3

2 < δ < 9
2 , δ �= 5

2 ,
7
2 . Indeed, if 1

2 < δ < 3
2 , then one observes that the weight

(1 + |x|2)δ belongs to the Muckenhoupt class A2; see [18]. This implies that P, and
more generally the Riesz transforms, are bounded in L2(R3, (1 + |x|2)δdx). Since
∇etΔP and the Laplacian commute, the result easily follows applying this remark
to Δh.

To deal with the case δ > 3
2 , we start by recalling that the Sobolev space Hδ is

defined by

||q||2Hδ ≡
∫

|q̂(ξ)|2(1 + |ξ|2)δ dξ

and that Hδ ⊂ Cδ−3/2 (the Hölder–Zygmund space). Thus, stating that h belongs to
Xδ is equivalent to stating that

q(ξ) ≡ |ξ|2ĥ(ξ) ∈ Hδ and ∂αq(0) = 0 for all 0 ≤ |α| ≤
[
δ − 3

2

]
.

These two conditions on q can be expressed by saying that q belongs to L2(R3)∩Ḣδ
rel,

where Ḣδ
rel is the realization of the homogeneous Sobolev space Ḣδ (see Bourdaud

[3]). Recall that Ḣδ
rel can be injected into S ′(R3) (this would not be true for Ḣδ,

which is instead a space of tempered distributions modulo polynomials) and hence
the notion of pointwise multipliers makes sense in the realized space. It follows from
the result of [3] that m(ξ) ≡ ξj/|ξ| is a multiplier for Ḣδ

rel (any homogeneous function
of degree 0 which is smooth outside the origin is indeed a multiplier for this space).

Since h ∈ Xδ, the components of |ξ|2P̂h(ξ), which are given by (δj,k−ξjξk|ξ|−2)q(ξ),

belong to L2(R3)∩ Ḣδ
rel. Hence, Ph ∈ Xδ. Moreover, iξhe

−t|ξ|2 ∈ S(R3) is also a mul-

tiplier of Ḣδ
rel (with norm c/

√
t). Then we get ||∇etΔPf ||Xδ

≤ Ct−1/2||f ||Zδ
and

Lemma 4.1 is thus proven.
Our last lemma deals with the case δ = 1

2 .
Lemma 4.2. The operator ∇etΔP is bounded in Z1/2 for all t > 0, with operator

norm O(t−1/2) as t → 0.
Proof. Following Miyakawa’s notations, we denote by F (x, t) the kernel of the

operator ∇etΔP. Then we know that F (x, t) = t−2Φ(x/
√
t), where Φ is smooth in

R
3 and |Φ(x)| ≤ C(1 + |x|)−4 (see again [17] for more details). Let us show that

||Φ ∗ f ||Z1/2
≤ C||f ||Z1/2

. Then the conclusion will follow from a simple rescaling
argument.

Let f ∈ Z1/2 and write f = g +
∑∞

j=0 fj , where g and fj satisfy (2.2). We also
know that |fj(x)| ≤ εj for all x ∈ supp fj (we saw this right after (2.3)), with εj ∈
�2(N). We obviously have Φ ∗ g ∈ Z1/2 and Φ ∗ f ∈ L∞(R3). Now let 2k ≤ |x| ≤ 2k+1

(k ∈ N, k ≥ 3). Using the decay of Φ we see that Φ ∗ fj is bounded by Cεj2
−4k23j

(j ≤ k − 3) and Cεj2
−j (j ≥ k + 3). Thus |Φ ∗ f(x)| ≤ ε̃k, with ε̃k ∈ �2(N), and we

conclude that
∫
|Φ ∗ f(x)|2(1 + |x|2)−3/2 dx is finite.
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Moreover, by Young’s inequality,∫
|∇Φ ∗ f(x)|2(1 + |x|2)−1/2dx

≤ C

(∫
|Φ(x)|(1 + |x|)1/2dx

)2∫
|∇f(x)|2(1 + |x|2)−1/2dx,∫

|ΔΦ ∗ f(x)|2(1 + |x|2)1/2dx

≤ C

(∫
|Φ(x)|(1 + |x|)1/2dx

)2∫
|Δf(x)|2(1 + |x|2)1/2dx

(we also used (1 + |x|)−1/2 ≤ c(1 + |y|)−1/2(1 + |x− y|)1/2 in the first inequality and
(1 + |x|)1/2 ≤ c(1 + |y|)1/2(1 + |x− y|)1/2 in the second inequality). Lemma 4.2 now
follows.

Proof of Theorem 1.1. The proof is based on the application of Kato’s standard
iteration argument in the space C([0, T ], Zδ). Let us write (IE) in the compact form

u(t) = etΔa−B(u, u), where B(u, v) =
∫ t

0
∇ · e(t−s)Δ

P(u⊗ v)(s) ds.
By Lemmas 4.1 and 4.2, and using the fact that Zδ is a pointwise algebra for

δ ≥ 1
2 , we see that the bilinear operator B is bounded in C([0, T ], Zδ) for 1

2 ≤ δ < 9
2 ,

δ �= 3
2 ,

5
2 ,

7
2 , (the continuity with respect to the time variable is straightforward).

Moreover, |||B(u, v)|||δ ≤ CT |||u|||δ |||v|||δ, where |||w|||δ ≡ supt∈[0,T ] ||w(t)||Zδ
and CT =

O(T 1/2) as t → 0. We get the same conclusion for δ = 3
2 ,

5
2 ,

7
2 if we use the continuous

embedding Zδ ⊂ Zδ′ (δ ≥ δ′) and the stronger version of Lemma 2.3. For example,

|||B(u, v)|||3/2 ≤ C|||B(u, v)|||2 ≤ CT 1/2|||u|||5/4|||v|||5/4 ≤ CT 1/2|||u|||3/2|||v|||3/2,

and a similar argument can be used for δ = 5
2 ,

7
2 .

Since etΔa belongs to C([0, T ], Zδ) if a ∈ Zδ for all δ ≥ 0, as is easily checked, we
see that the fixed point argument applies in C([0, T ], Zδ), at least if T > 0 is small
enough.

We state as a corollary a slight improvement of Furioli and Terraneo’s theorem.
Corollary 4.3. Let 1

2 < δ < 9
2 and a ∈ Xδ. Then there exists T > 0 such that

(IE) can be uniquely solved in C([0, T ], Xδ).
Proof. The result is true for 1

2 < δ < 7
2 and δ �= 3

2 ,
5
2 because of the identification

between Xδ and Zδ. For 7
2 < δ < 9

2 we use the fact that every divergence-free vector
field which is in L1(R3) must have a vanishing integral. Hence the existence and
unicity result for (IE) in Xδ again follows from the corresponding result in Zδ and
the last conclusion of Proposition 3.1.

In the case δ = 3
2 we can observe that if u, v ∈ C([0, T ], X3/2), then B(u, v) be-

longs, e.g., to C([0, T ], Z2), which is contained in C([0, T ], X3/2). A similar argument

can be used for δ = 5
2 ,

7
2 and the conclusion easily follows.

As claimed in the introduction, the restriction δ < 9
2 cannot be removed in The-

orem 1.1. Indeed, if u is a solution to (IE) such that u ∈ C([0, T ], Z9/2), for some
T > 0, then the initial datum must satisfy the conditions of Dobrokhotov and Sha-
farevich:

∫
(ajak) = 0 if j �= k and

∫
a2
1 =

∫
a2
2 =

∫
a2
3. This is due to the fact

that the localization condition a ∈ L2(R3, (1+ |x|2)5/2dx) is not conserved during the
evolution (see [6]). For the same reason, the condition a ∈ Xδ, δ > 9

2 breaks down (in
general). But we do not know if the condition a ∈ X9/2 (or a ∈ X1/2) propagates.

We conclude by observing that spatially localized flows u(t), belonging to Zδ and
Xδ with δ > 9

2 , do, however, exist. Examples of such flows can be found in [4].
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