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GLOBAL EXISTENCE VERSUS BLOW UPFOR SOME MODELS OF INTERACTING PARTICLESBYPIOTR BILER (Wroªaw) and LORENZO BRANDOLESE (Lyon)Abstrat. We study the global existene and spae-time asymptotis of solutionsfor a lass of nonloal paraboli semilinear equations. Our models inlude the Nernst�Plank and Debye�Hükel drift-di�usion systems as well as paraboli-ellipti systems ofhemotaxis. In the ase of a model of self-gravitating partiles, we also give a result onthe �nite time blow up of solutions with loalized and osillating omplex-valued initialdata, using a method due to S. Montgomery-Smith.1. Introdution. In this paper we are onerned with semilinearparaboli systems of the form
(1)

∂tuj = ∆uj + ∇ ·
( m∑

h,k=1

cj,h,k uh(∇Ed ∗ uk)
)
, j = 1, . . . ,m,

u(0)(x) = u0(x).Here the unknown is the vetor �eld u = (u1, . . . , um), de�ned on the wholespae R
d (with m ≥ 1 and d ≥ 2), and cj,h,k ∈ L∞(Rd), j, h, k = 1, . . . ,m,are given oe�ients. Moreover, Ed denotes the fundamental solution of theLaplaian in R

d.Systems of the form (1) arise e.g. from plasma, semiondutors and ele-trolytes theories, biology (modelling of hemotaxis phenomena) and statisti-al mehanis. The basi example for us is the model for gravitating partiles:in this ase m = 1, d ≥ 2, and the governing equations are usually writtenas
∂tu = ∆u+ ∇ · (u∇ϕ), ∆ϕ = u.(2)Here u = u(x, t) is the density of the partiles and ϕ is the self-onsistentgravitational potential generated by u. Related systems also appear in thetheory of hemotaxis (see e.g. [8℄, [7℄, [3℄). In this ase the oe�ients cj,h,kare onstant and equal to 1. We do not require that u ≥ 0 in our study, whihis, however, relevant in physial appliations; we even admit omplex-valued2000 Mathematis Subjet Classi�ation: 35K60, 35B40, 82C21.Key words and phrases: interating partiles, paraboli systems, solutions global intime, blowing up solutions. [293℄
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solutions. Another important example is provided by the Debye system, inwhih the �rst equation of (2) is replaed with(3) ∂tu = ∆u−∇ · (u∇ϕ).Amore general model, still belonging to the lass (1), is the drift-di�usionsystem

∂tv = ∆v −∇ · (v∇φ),

∂tw = ∆w + ∇ · (w∇φ),(4)
∆φ = v − w.In the theory by W. Nernst and M. Plank, v and w represent the densityof positively and negatively harged partiles, respetively.A lot is known about the existene and nonexistene of real-valued solu-tions of these models; see e.g. [6℄, [4℄, [2℄, [1℄, and the referenes therein. Forinstane, if d = 1, then the models onsidered have global in time solutions.If d ≥ 2, the Debye system (3) and the more general system (4) have globalin time solutions and their asymptotis is desribed by suitable self-similarsolutions (see [5℄ and [11℄). These may be interpreted as a omplete di�usionof harges to in�nity due to repulsive interations.On the other hand, models desribing either hemotaxis or gravitationalinteration in d ≥ 2 dimensions feature onentration phenomena whih mayeventually lead to a ollapse of solutions. These phenomena manifest them-selves by the formation of singularities of solutions like weak onvergeneeither to Dira point masses or to unbounded funtions ∼ |x|−2.One purpose in this paper is to show that a di�erent kind of �nite timeblow up an our for solutions of (2) (and for a few other partiular asesof (1)). In partiular, we will show that also nonpositive (in fat: omplex-valued) and osillating solutions an blow up. Our seond purpose is to givea global existene result for �small� solutions of (1). Suh a result will provideus with some deay pro�les of solutions in spae-time.The global existene result for �well loalized� solutions an be stated asfollows (see Setion 2 for a more general, and more preise, statement).Theorem 1.1. Let d ≥ 3. There exists η > 0 suh that if(5) |u0(x)| ≤

η

(1 + |x|)2 ,then there exists C ≥ 0 and a unique solution u of (1) suh that , for all
x ∈ R

d and t ≥ 0,(6) |u(x, t)| ≤ C

(1 + |x|)2 and |u(x, t)| ≤ C

1 + t
.Moreover , if all the oe�ients cj,h,k(x) are onstant in R

d or homogeneousof degree zero, then the smallness assumption (5) an be replaed by the
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weaker , sale invariant , ondition(7) ess sup
x∈Rd

|x|2|u0(x)| ≤ η.It would be possible to establish similar deay pro�les for the solution inspae-time, with a spatial deay rate larger than two. In this ase the deayrate as t → ∞ is also inreased, up to half the deay rate as x → ∞ (orup to the rate d/2 if the spae deay rate is larger than d). The exponenttwo is however the most interesting ase, sine it plays a speial role in thesemodels, for saling reasons. For example, it orresponds to the expeteddeay rate of self-similar solutions (see e.g. [4℄). It is also the deay of the well-known Chandrasekhar solution, ũ(x, t) = 2(d−2)|x|−2, whih is a stationarysolution of (2) for d ≥ 3.We now state our result on the blow up of solutions.Theorem 1.2. There exists u0 ∈ S0(R
d) (the spae of funtions belong-ing to the Shwartz lass, with vanishing moments of all orders) suh thatthe orresponding solution u of (2) blows up in �nite time: there exists t∗ > 0suh that u(t∗) 6∈ Ḃs,q

p (Rd) for all s ∈ R, 1 ≤ p, q ≤ ∞.We will restate this theorem in a more preise way in Setion 3. Therein,we will also reall the de�nition of the Besov norm ‖ · ‖Ḃs,q
p (Rd). Here we onlyobserve that this theorem tells us, in partiular, that ‖u(t)‖Lp blows up forall 1 ≤ p ≤ ∞. The proof of Theorem 1.2 onsists in proving suitable lowerbound estimates for the Fourier transform û. We shall derive suh estimatesusing an idea of Montgomery-Smith [10℄.Our exploding solution u of Theorem 1.2 is in fat omplex-valued sineits Fourier transform enjoys some positivity and nonsymmetry properties. Ofourse, one an rewrite the salar equation (2) for the real and imaginarypart of u. This yields a blow up result for a real system of the form (1),whih is formally lose to (4).Notations. In hains of inequalities, all the onstants will be denotedby C even if they vary from line to line. We will simply write T insteadof T

Rd .2. Global existene for the general model. The proof of Theo-rem 1.1 relies on size estimates of the kernel ∇Ed. We have of ourse
|∇Ed(x)| ≤

C

|x|d−1
.Our method also applies if we replae ∇Ed with any kernel K suh that Kis a measurable funtion in R

d, and(8) |K(x)| ≤ C|x|−d−1+α, 1 < α < d.



296 P. BILER AND L. BRANDOLESE
In what follows, we will onsider this more general situation. For the appli-ations that we have in mind, α = 2, and this explains the restrition d ≥ 3in Theorem 1.1. The two-dimensional ase is often a speial ase in thesemodels, e.g. the Keller�Segel paraboli-ellipti model of hemotaxis.Sine we would obtain the same bounds for all the omponents of u, in theremaining part of this setion we an assume that u is salar and cj,h,k = c.Moreover, without loss of generality, in the proof below we an assume that
c is onstant, essentially beause multiplying K with an L∞ funtion doesnot a�et (8).With this simpli�ation, the models disussed above an be written inthe following integral form:(9) u(t) = et∆u0 +

t\
0

G(t− s) ∗ (u(K ∗ u))(s) ds,where G behaves like a �rst order derivative of the Gaussian heat kernel,namely
G(x, t) = t−(d+1)/2Ψ(x/

√
t) with Ψ ∈ S(Rd),(10)

et∆/2G(t/2 − s) = G(t− s).(11)To state our result in a preise way, we introdue a few useful spaes.For θ ≥ 0 we denote by L∞
θ the spae of measurable funtions f on R

d suhthat (1 + | · |)θf ∈ L∞(Rd). Let Eθ be the spae of all measurable funtions
f = f(x, t) in R

d × R
+ suh that
ess sup

x∈Rd, t≥0

(1 + |x|)θ|f(x, t)| <∞,(12)
ess sup

x∈Rd, t≥0

(1 + t)θ/2|f(x, t)| <∞,(13)and(14) f ∈ C((0,∞), L∞
θ ).The spae Eθ is equipped with its natural norm.Theorem 2.1. Let 1 < α < d and K be suh that (8) holds. Assumethat u0 ∈ L∞

α . Then we an �nd η > 0 suh that if(15) ‖u0‖L∞

α
< η,then there exists a unique mild solution u of (9), suh that u ∈ Eα and

u(t)
D′

−→ u0 as t → 0. Moreover , if we assume, in addition, that K ishomogeneous of degree −d− 1 + α, then (15) an be replaed by the weaker ,sale invariant ondition(16) ess sup
x∈Rd

|x|α|u0(x)| < η.
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Proof. The proof relies on the following simple lemma:Lemma 2.1. Let K satisfy the assumption (8).1. If f ∈ L∞
α , then K ∗ f ∈ L∞

1 .2. If φ ∈ Eα, then K ∗ φ ∈ E1.Proof. Using the duality and the interpolation of Lorentz spaes, we get
‖K ∗ f‖L∞ ≤ ‖K‖Ld/(d+1−α),∞‖f‖Ld/(α−1),1 ≤ C‖f‖1−1/α

Ld/α,∞‖f‖1/α
L∞ .Thus,

‖K ∗ f‖L∞ ≤ C‖f‖L∞

α
.In partiular, we may assume |x| ≥ 1. Note that

|K ∗ f(x)| ≤ C
\
|x− y|−d−1+α|f(y)| dy = I1 + I2 + I3,where I1 ≡

T
|y|≤|x|/2 . . . , I2 ≡

T
|x|/2≤|y|≤3|x|/2 . . . , and I3 ≡

T
|y|≥3|x|/2 . . . . Oneeasily heks that these three integrals are bounded by C|x|−1. The �rst partof the lemma follows.On the other hand, by the above inequality,

‖K ∗ φ(t)‖L∞ ≤ C‖φ‖1−1/α

L∞(R+,Ld/α,∞)
‖φ(t)‖1/α

L∞ ≤ C(1 + t)−1/2‖φ‖Eα .Combining this with the �rst part of the lemma, applied to φ(t), yields theresult.For u ∈ Eθ, the nonlinear term u(K ∗u) belongs, by Lemma 2.1, to Eθ+1.Then it is natural to study the behavior of the linear operator(17) L(w)(t) =

t\
0

G(t− s) ∗ w(s) dsin suh a spae.Lemma 2.2. Let 1 < α < d and w ∈ Eα+1. Then L(w) ∈ Eα.Proof. We will use repeatedly the property
‖G(t− s)‖L1 = C(t− s)−1/2,whih is a onsequene of (10). A few estimates below bear some relationsto those of Miyakawa [9℄, yielding spae-time deay results for the Navier�Stokes equations. We start by observing that L(w) ∈ L∞(Rd × R). Indeed,

‖L(w)(t)‖L∞ ≤
t\
0

‖G(t− s)‖L1‖w(s)‖L∞ ds

≤ C‖w‖Eα+1

t\
0

(t− s)−1/2s1/2 ds ≤ C‖w‖Eα+1 .Then we an assume in the following that |x| ≥ 1 and t ≥ 1.
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We an write L(w) = I1 + I2, where

I1 ≡
t\
0

\
|y|≤|x|/2

G(x− y)w(y, s) dy ds,

I2 ≡
t\
0

\
|y|≥|x|/2

G(x− y)w(y, s) dy ds.

Now,
|I1(x, t)| ≤ |x|−d

t\
0

\
|y|≤|x|/2

(t− s)−1/2(1 + |y|)−α(1 + s)−1/2 dy ds

≤ C|x|−d
\

|y|≤|x|/2

|y|−α dy ≤ C|x|−α.

On the other hand,
|I2(x, t)| ≤ C|x|−α

t\
0

‖G(t− s)‖L1 s−1/2 ds ≤ C|x|−α.Thus, |L(w)(x, t)| ≤ C(1 + |x|)−α‖w‖Eα+1 and, in partiular,
‖L(w)‖L∞((0,∞),Ld/α,∞) ≤ C‖w‖Eα+1 .To obtain a deay estimate as t→ ∞, we reall (11) and write

L(w)(t) = et∆/2L(w)(t/2) +

t\
t/2

G(t− s) ∗ w ds ≡ J1 + J2.By duality (we denote by gt the Gaussian kernel),
‖J1‖L∞ ≤ C‖gt/2‖Ld/(d−α),1‖L(w)(t/2)‖Ld/α,∞ ≤ Ct−α/2‖w‖Eα+1 .Moreover,

‖J2(t)‖ ≤ Ct−(α+1)/2‖w‖Eα+1

t\
t/2

‖G(t− s)‖L1 ds ≤ Ct−α/2‖w‖Eα+1 .The deay estimates in spae-time for L(w) then follow. The ontinuity withrespet to t being straightforward, the proof of Lemma 2.2 is �nished.By Lemma 2.2, the bilinear operator(18) B(u, v) =

t\
0

G(t− s) ∗ (u(K ∗ v))(s) dsis ontinuous from Eα×Eα to Eα. Note that our last lemma also implies that
‖u(t) − et∆u0‖L∞ ≤ C

√
t, so that u(t) → u0 a.e. and in the distributional
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sense. The existene (and uniqueness) of the solution of (9) under the as-sumption (15) now follows by a standard argument, i.e. the appliation ofthe ontration mapping theorem.In order to �nish the proof of Theorem 2.1 it only remains to showthat the smallness assumption (15) an be relaxed when the kernel K is ahomogeneous funtion. Consider the resaling(19) uλ(x, t) = λαu(λx, λ2t).A diret omputation shows that, if K is homogeneous of degree −d−1+α,and u is a solution of (9), then uλ is a solution of (9) as well. Now let η > 0be the onstant obtained in the �rst part of Theorem 2.1. Assume that thedatum u0 is suh that (16) holds. Then we an hoose a λ̃ > 0 suh that
ess sup

x∈Rd

λ̃α(1 + |x|)α|u0(λ̃x)| < η.We an apply the �rst part of Theorem 2.1 to the initial datum λ̃αu0(λ̃ ·). Ifwe denote by ũ the orresponding solution, we see that ũ
λ̃−1 is the solutionof (9) starting from u0. Theorem 2.1 is now established.Remark 2.1. With minor modi�ations of the deay exponents in theabove proof, one sees that, for any �nite T > 0, the bilinear operator (18) isbiontinuous in the spae C([0, T ], L∞

θ ), for all θ ≥ 0. The ontration map-ping theorem guarantees that, if u0 ∈ L∞
θ , θ ≥ 0 (with arbitrary norm) and

T > 0 is small enough, then there exists a unique solution u ∈ C((0, T ], L∞
θ )suh that u(t) → u0 in the weak sense; we will write u ∈ Cw([0, T ], L∞

θ ) toexpress these properties.3. Blow up for the model of gravitating partiles. In this setionwe show that there exist solutions of (2), with initial data u0 in the Shwartzlass and suh that Txαu0(x) dx = 0 for all α ∈ N
d, whih blow up in �nitetime. Here we adopt a quite general de�nition of solution: we ask that theFourier transform û(·, t), also denoted ût, satis�es for a.e. ξ ∈ R

d and all
t ∈ [0, T ], 0 < T ≤ ∞, the integral equation(20) ût(ξ) = e(s−t)|ξ|2 û0(ξ)+

1

(2π)d

t\
0

e(s−t)|ξ|2iξ ·
(
ûs(ξ)∗

iξ

−|ξ|2 ûs(ξ)

)
ds.The de�nition of the Fourier transform for integrable funtions that we adoptis ût(ξ) =

T
u(x, t)e−iξ·x dx.There are several ways to give a sense to the above integral and ensurethe validity of (20). An obvious way is to onsider the (loal) solutionsobtained in the setting of Remark 2.1, with θ > d. But the above equalityis true in more general settings. For example, it holds for the solutions u ∈

Cw([0, T ], PMd−2) (with 0 < T ≤ ∞ and d ≥ 3) onstruted in [4℄, where
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PMa is the spae of pseudomeasures

PMa = {v ∈ S ′(Rd) : v̂ ∈ L1
loc(R

d), ‖v‖PMa ≡ ess sup
ξ∈Rd

|ξ|a|v̂(ξ)| <∞}.As pointed out in [4℄, a distributional solution of the Cauhy problem for (2)also satis�es (20).In this setion we will onsider initial data with nonnegative Fouriertransform, and supported in (R+)d. Under this ondition, one immediatelyheks that the iteration sheme yielding a solution in Cw([0, T ],PMd−2), orin Cw([0, T ], L∞
θ ), onverges in the subset of funtions u suh that û(ξ, t) ≥ 0for all t ∈ [0, T ] and a.e. ξ ∈ R

d. The ruial fat that will lead to the blowup is the following:Lemma 3.1. Let
Hj(û)(ξ, t) ≡

t\
0

\
e(s−t)|ξ|2ξj

ηj

|η|2 ûs(ξ − η)ûs(η) dη ds, j = 1, . . . , d.Then, if 0 ≤ û ≤ v̂ and supp û and supp v̂ are ontained in {ξ ∈ R
d : ξl ≥ 0,

l = 1, . . . , d}, then 0 ≤ Hj(û) ≤ Hj(v̂) and their supports are still ontainedin {ξ ∈ R
d : ξl ≥ 0, l = 1, . . . , d}.This simple observation allows us to adapt to our situation the argumentintrodued by Montgomery-Smith for the �heap� Navier�Stokes equations(see [10℄).Let us �rst reall the de�nition of the Besov norm ‖ · ‖Ḃa,∞

∞

, a ∈ R.We onsider a funtion ψ ∈ S(Rd) suh that ψ̂ ≥ 0 in R
d, ψ̂(ξ) ≥ 1 for

1/2 ≤ |ξ| ≤ 1, and ψ̂(ξ) = 0 for |ξ| ≤ 1/3 or |ξ| ≥ 4/3. Then, for adistribution f , we de�ne(21) ‖f‖Ḃa,∞
∞

= sup
k∈Z

2(a+d)k‖ψ(2k·) ∗ f‖L∞ .Remark 3.1. It is well known that any Besov spae Ḃs,q
p (Rd), as well asany Triebel�Lizorkin spae Ḟ s,q

p (Rd) (so in partiular the Lp-spaes, whihare identi�ed to Ḟ 0,2
p ), with s∈R, 1≤p, q≤∞, is embedded in Ḃs−d/p,∞

∞ (Rd).It is then su�ient to show that u(t) blows up in the Ḃa,∞
∞ norm, for all a ∈ R,to dedue that all Besov and Triebel�Lizorkin norms of u must blow up. Tobe more preise, L1 is not a Triebel�Lizorkin spae, but we will see that ût∗beomes unbounded for a �nite t∗, hene ‖u(t)‖L1 does blow up.A similar remark applies to pseudomeasure norms, sine PMa is ontin-uously embedded in Ḃa−d,∞

∞ (Rd).Theorem 3.1. Let w0 ∈ S(Rd) be suh that ŵ0 is nonnegative and sup-ported in the ball B1/4(3e1/4), where e1 is the unit vetor , and ‖ŵ0‖L1 = 1.Let A > 219/3(2π)d and u0 = Aw0 (so in partiular u0 ∈ S0(R
d)). Assume



GLOBAL EXISTENCE VERSUS BLOW UP 301

also that u(·, t) is a tempered distribution suh that for all t ≥ 0, ût ≥ 0and (20) holds for a.e. ξ ∈ R
d. Then, for all a ∈ R,(22) ‖u(·, t∗)‖Ḃa,∞

∞

= ∞, where t∗ = log(21/3).Proof. Set t0 = 0, tk = log 2(
∑k

j=1 2−2j) and wk = w2k

0 . Set also
αk(t) = 22k+6−6·2k

e−2kt
1t≥tk (k ∈ N).We laim that, for k = 0, 1, . . . ,(23) ût(ξ) ≥ A2k

αk(t)ŵk(ξ).This is seen by indution. For k = 0 the laim follows from Lemma 3.1:
ût(ξ) ≥ Ae−t|ξ|2ŵ0(ξ) ≥ Ae−tŵ0(ξ), t ≥ 0.Now assume that (23) holds for k − 1. Set

Ek = {ξ ∈ R
d : 2k−1 ≤ ξ1 ≤ |ξ| ≤ 2k}, k = 0, 1, . . . ,Note that ŵk = (2π)−dŵk−1 ∗ ŵk−1. Thus, supp ŵk ⊂ Ek.But, for a.e. ξ ∈ Ek, estimating from below by zero all the terms on theright hand side of (20), exept for the �rst term obtained after omputingthe salar produt, we get

ût(ξ) ≥
1

(2π)d

t\
0

\
e(s−t)|ξ|2 ξ1η1

|η|2 ûs(ξ − η)ûs(η) dη ds

≥
t\

tk−1

\
η∈Ek−1

e(s−t)|ξ|2 ξ1η1

|η|2 (A2k−1
αk−1(s))

2 ŵk−1(ξ − η)ŵk−1(η)

(2π)d
dη ds

≥ A2k
24k+7−6·2k

e−2kt
( t\

tk−1

e(s−t)22k
ds

)
ŵk(ξ).In the seond inequality we used our indution assumption. Now, for all

t ≥ tk, we have t− tk−1 ≥ 2−2k log 2, so that 1 − e(tk−1−t)22k ≥ 1/2. This inturn implies Tttk−1
e(s−t)22k

ds ≥ 2−2k−1. Then, for all t ≥ tk, we get
ût(ξ) ≥ A2k

22k+6−6·2k
e−2kt,and (23) follows.Moreover, ‖ŵk‖L1 = (2π)−d‖ŵk−1‖2

L1 . Sine ‖ŵ0‖L1 = 1, by indutionwe get
‖ŵk‖L1 = (2π)−d(2k−1).Set t∗ = limk→∞ tk = log(21/3). We have ψ̂(2−k ·) ≥ 1 in Ek. Hene,

ψ̂(2−kξ)ût∗(ξ) ≥ A2k
αk(t

∗)ŵk(ξ) ≥ 0.
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Then
‖ut∗‖Ḃa,∞

∞

≥ sup
k∈N

2(a+d)k|ψ(2k·) ∗ ut∗(0)| = (2π)−d sup
k∈N

2ak‖ψ̂(2−k·)ût∗‖L1

≥ sup
k∈N

A2k
(2π)−d 2k

2ak+2k+6−6·2k
e−2kt∗

= sup
k∈N

{(A 2−19/3(2π)−d)2
k
2(a+2)k+6} = ∞.Remark 3.2. The same proof goes through for solutions of (1), underthe additional onditions ĉj,h,k ≥ 0 for all j, h, k = 1, . . . ,m, and, say, ĉ1,h,k ≥

c > 0. In this ase, one an obtain a solution u = (u1, . . . , um) suh that the�rst omponent blows up, starting from a datum u0 suh that û0 ≥ 0 andwith the �rst omponent satisfying the onditions of Theorem 3.1.Remark 3.3. Analogous results an be obtained for spae-periodi so-lutions of (1), i.e. those de�ned on the d-dimensional torus. Instead of theFourier transform, we then onsider the Fourier oe�ients û(ξ), ξ ∈ Z
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