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GLOBAL EXISTENCE VERSUS BLOW UPFOR SOME MODELS OF INTERACTING PARTICLESBYPIOTR BILER (Wro
ªaw) and LORENZO BRANDOLESE (Lyon)Abstra
t. We study the global existen
e and spa
e-time asymptoti
s of solutionsfor a 
lass of nonlo
al paraboli
 semilinear equations. Our models in
lude the Nernst�Plan
k and Debye�Hü
kel drift-di�usion systems as well as paraboli
-ellipti
 systems of
hemotaxis. In the 
ase of a model of self-gravitating parti
les, we also give a result onthe �nite time blow up of solutions with lo
alized and os
illating 
omplex-valued initialdata, using a method due to S. Montgomery-Smith.1. Introdu
tion. In this paper we are 
on
erned with semilinearparaboli
 systems of the form
(1)

∂tuj = ∆uj + ∇ ·
( m∑

h,k=1

cj,h,k uh(∇Ed ∗ uk)
)
, j = 1, . . . ,m,

u(0)(x) = u0(x).Here the unknown is the ve
tor �eld u = (u1, . . . , um), de�ned on the wholespa
e R
d (with m ≥ 1 and d ≥ 2), and cj,h,k ∈ L∞(Rd), j, h, k = 1, . . . ,m,are given 
oe�
ients. Moreover, Ed denotes the fundamental solution of theLapla
ian in R

d.Systems of the form (1) arise e.g. from plasma, semi
ondu
tors and ele
-trolytes theories, biology (modelling of 
hemotaxis phenomena) and statisti-
al me
hani
s. The basi
 example for us is the model for gravitating parti
les:in this 
ase m = 1, d ≥ 2, and the governing equations are usually writtenas
∂tu = ∆u+ ∇ · (u∇ϕ), ∆ϕ = u.(2)Here u = u(x, t) is the density of the parti
les and ϕ is the self-
onsistentgravitational potential generated by u. Related systems also appear in thetheory of 
hemotaxis (see e.g. [8℄, [7℄, [3℄). In this 
ase the 
oe�
ients cj,h,kare 
onstant and equal to 1. We do not require that u ≥ 0 in our study, whi
his, however, relevant in physi
al appli
ations; we even admit 
omplex-valued2000 Mathemati
s Subje
t Classi�
ation: 35K60, 35B40, 82C21.Key words and phrases: intera
ting parti
les, paraboli
 systems, solutions global intime, blowing up solutions. [293℄
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solutions. Another important example is provided by the Debye system, inwhi
h the �rst equation of (2) is repla
ed with(3) ∂tu = ∆u−∇ · (u∇ϕ).Amore general model, still belonging to the 
lass (1), is the drift-di�usionsystem

∂tv = ∆v −∇ · (v∇φ),

∂tw = ∆w + ∇ · (w∇φ),(4)
∆φ = v − w.In the theory by W. Nernst and M. Plan
k, v and w represent the densityof positively and negatively 
harged parti
les, respe
tively.A lot is known about the existen
e and nonexisten
e of real-valued solu-tions of these models; see e.g. [6℄, [4℄, [2℄, [1℄, and the referen
es therein. Forinstan
e, if d = 1, then the models 
onsidered have global in time solutions.If d ≥ 2, the Debye system (3) and the more general system (4) have globalin time solutions and their asymptoti
s is des
ribed by suitable self-similarsolutions (see [5℄ and [11℄). These may be interpreted as a 
omplete di�usionof 
harges to in�nity due to repulsive intera
tions.On the other hand, models des
ribing either 
hemotaxis or gravitationalintera
tion in d ≥ 2 dimensions feature 
on
entration phenomena whi
h mayeventually lead to a 
ollapse of solutions. These phenomena manifest them-selves by the formation of singularities of solutions like weak 
onvergen
eeither to Dira
 point masses or to unbounded fun
tions ∼ |x|−2.One purpose in this paper is to show that a di�erent kind of �nite timeblow up 
an o

ur for solutions of (2) (and for a few other parti
ular 
asesof (1)). In parti
ular, we will show that also nonpositive (in fa
t: 
omplex-valued) and os
illating solutions 
an blow up. Our se
ond purpose is to givea global existen
e result for �small� solutions of (1). Su
h a result will provideus with some de
ay pro�les of solutions in spa
e-time.The global existen
e result for �well lo
alized� solutions 
an be stated asfollows (see Se
tion 2 for a more general, and more pre
ise, statement).Theorem 1.1. Let d ≥ 3. There exists η > 0 su
h that if(5) |u0(x)| ≤

η

(1 + |x|)2 ,then there exists C ≥ 0 and a unique solution u of (1) su
h that , for all
x ∈ R

d and t ≥ 0,(6) |u(x, t)| ≤ C

(1 + |x|)2 and |u(x, t)| ≤ C

1 + t
.Moreover , if all the 
oe�
ients cj,h,k(x) are 
onstant in R

d or homogeneousof degree zero, then the smallness assumption (5) 
an be repla
ed by the
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weaker , s
ale invariant , 
ondition(7) ess sup
x∈Rd

|x|2|u0(x)| ≤ η.It would be possible to establish similar de
ay pro�les for the solution inspa
e-time, with a spatial de
ay rate larger than two. In this 
ase the de
ayrate as t → ∞ is also in
reased, up to half the de
ay rate as x → ∞ (orup to the rate d/2 if the spa
e de
ay rate is larger than d). The exponenttwo is however the most interesting 
ase, sin
e it plays a spe
ial role in thesemodels, for s
aling reasons. For example, it 
orresponds to the expe
tedde
ay rate of self-similar solutions (see e.g. [4℄). It is also the de
ay of the well-known Chandrasekhar solution, ũ(x, t) = 2(d−2)|x|−2, whi
h is a stationarysolution of (2) for d ≥ 3.We now state our result on the blow up of solutions.Theorem 1.2. There exists u0 ∈ S0(R
d) (the spa
e of fun
tions belong-ing to the S
hwartz 
lass, with vanishing moments of all orders) su
h thatthe 
orresponding solution u of (2) blows up in �nite time: there exists t∗ > 0su
h that u(t∗) 6∈ Ḃs,q

p (Rd) for all s ∈ R, 1 ≤ p, q ≤ ∞.We will restate this theorem in a more pre
ise way in Se
tion 3. Therein,we will also re
all the de�nition of the Besov norm ‖ · ‖Ḃs,q
p (Rd). Here we onlyobserve that this theorem tells us, in parti
ular, that ‖u(t)‖Lp blows up forall 1 ≤ p ≤ ∞. The proof of Theorem 1.2 
onsists in proving suitable lowerbound estimates for the Fourier transform û. We shall derive su
h estimatesusing an idea of Montgomery-Smith [10℄.Our exploding solution u of Theorem 1.2 is in fa
t 
omplex-valued sin
eits Fourier transform enjoys some positivity and nonsymmetry properties. Of
ourse, one 
an rewrite the s
alar equation (2) for the real and imaginarypart of u. This yields a blow up result for a real system of the form (1),whi
h is formally 
lose to (4).Notations. In 
hains of inequalities, all the 
onstants will be denotedby C even if they vary from line to line. We will simply write T insteadof T

Rd .2. Global existen
e for the general model. The proof of Theo-rem 1.1 relies on size estimates of the kernel ∇Ed. We have of 
ourse
|∇Ed(x)| ≤

C

|x|d−1
.Our method also applies if we repla
e ∇Ed with any kernel K su
h that Kis a measurable fun
tion in R

d, and(8) |K(x)| ≤ C|x|−d−1+α, 1 < α < d.
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In what follows, we will 
onsider this more general situation. For the appli-
ations that we have in mind, α = 2, and this explains the restri
tion d ≥ 3in Theorem 1.1. The two-dimensional 
ase is often a spe
ial 
ase in thesemodels, e.g. the Keller�Segel paraboli
-ellipti
 model of 
hemotaxis.Sin
e we would obtain the same bounds for all the 
omponents of u, in theremaining part of this se
tion we 
an assume that u is s
alar and cj,h,k = c.Moreover, without loss of generality, in the proof below we 
an assume that
c is 
onstant, essentially be
ause multiplying K with an L∞ fun
tion doesnot a�e
t (8).With this simpli�
ation, the models dis
ussed above 
an be written inthe following integral form:(9) u(t) = et∆u0 +

t\
0

G(t− s) ∗ (u(K ∗ u))(s) ds,where G behaves like a �rst order derivative of the Gaussian heat kernel,namely
G(x, t) = t−(d+1)/2Ψ(x/

√
t) with Ψ ∈ S(Rd),(10)

et∆/2G(t/2 − s) = G(t− s).(11)To state our result in a pre
ise way, we introdu
e a few useful spa
es.For θ ≥ 0 we denote by L∞
θ the spa
e of measurable fun
tions f on R

d su
hthat (1 + | · |)θf ∈ L∞(Rd). Let Eθ be the spa
e of all measurable fun
tions
f = f(x, t) in R

d × R
+ su
h that
ess sup

x∈Rd, t≥0

(1 + |x|)θ|f(x, t)| <∞,(12)
ess sup

x∈Rd, t≥0

(1 + t)θ/2|f(x, t)| <∞,(13)and(14) f ∈ C((0,∞), L∞
θ ).The spa
e Eθ is equipped with its natural norm.Theorem 2.1. Let 1 < α < d and K be su
h that (8) holds. Assumethat u0 ∈ L∞

α . Then we 
an �nd η > 0 su
h that if(15) ‖u0‖L∞

α
< η,then there exists a unique mild solution u of (9), su
h that u ∈ Eα and

u(t)
D′

−→ u0 as t → 0. Moreover , if we assume, in addition, that K ishomogeneous of degree −d− 1 + α, then (15) 
an be repla
ed by the weaker ,s
ale invariant 
ondition(16) ess sup
x∈Rd

|x|α|u0(x)| < η.
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Proof. The proof relies on the following simple lemma:Lemma 2.1. Let K satisfy the assumption (8).1. If f ∈ L∞
α , then K ∗ f ∈ L∞

1 .2. If φ ∈ Eα, then K ∗ φ ∈ E1.Proof. Using the duality and the interpolation of Lorentz spa
es, we get
‖K ∗ f‖L∞ ≤ ‖K‖Ld/(d+1−α),∞‖f‖Ld/(α−1),1 ≤ C‖f‖1−1/α

Ld/α,∞‖f‖1/α
L∞ .Thus,

‖K ∗ f‖L∞ ≤ C‖f‖L∞

α
.In parti
ular, we may assume |x| ≥ 1. Note that

|K ∗ f(x)| ≤ C
\
|x− y|−d−1+α|f(y)| dy = I1 + I2 + I3,where I1 ≡

T
|y|≤|x|/2 . . . , I2 ≡

T
|x|/2≤|y|≤3|x|/2 . . . , and I3 ≡

T
|y|≥3|x|/2 . . . . Oneeasily 
he
ks that these three integrals are bounded by C|x|−1. The �rst partof the lemma follows.On the other hand, by the above inequality,

‖K ∗ φ(t)‖L∞ ≤ C‖φ‖1−1/α

L∞(R+,Ld/α,∞)
‖φ(t)‖1/α

L∞ ≤ C(1 + t)−1/2‖φ‖Eα .Combining this with the �rst part of the lemma, applied to φ(t), yields theresult.For u ∈ Eθ, the nonlinear term u(K ∗u) belongs, by Lemma 2.1, to Eθ+1.Then it is natural to study the behavior of the linear operator(17) L(w)(t) =

t\
0

G(t− s) ∗ w(s) dsin su
h a spa
e.Lemma 2.2. Let 1 < α < d and w ∈ Eα+1. Then L(w) ∈ Eα.Proof. We will use repeatedly the property
‖G(t− s)‖L1 = C(t− s)−1/2,whi
h is a 
onsequen
e of (10). A few estimates below bear some relationsto those of Miyakawa [9℄, yielding spa
e-time de
ay results for the Navier�Stokes equations. We start by observing that L(w) ∈ L∞(Rd × R). Indeed,

‖L(w)(t)‖L∞ ≤
t\
0

‖G(t− s)‖L1‖w(s)‖L∞ ds

≤ C‖w‖Eα+1

t\
0

(t− s)−1/2s1/2 ds ≤ C‖w‖Eα+1 .Then we 
an assume in the following that |x| ≥ 1 and t ≥ 1.
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We 
an write L(w) = I1 + I2, where

I1 ≡
t\
0

\
|y|≤|x|/2

G(x− y)w(y, s) dy ds,

I2 ≡
t\
0

\
|y|≥|x|/2

G(x− y)w(y, s) dy ds.

Now,
|I1(x, t)| ≤ |x|−d

t\
0

\
|y|≤|x|/2

(t− s)−1/2(1 + |y|)−α(1 + s)−1/2 dy ds

≤ C|x|−d
\

|y|≤|x|/2

|y|−α dy ≤ C|x|−α.

On the other hand,
|I2(x, t)| ≤ C|x|−α

t\
0

‖G(t− s)‖L1 s−1/2 ds ≤ C|x|−α.Thus, |L(w)(x, t)| ≤ C(1 + |x|)−α‖w‖Eα+1 and, in parti
ular,
‖L(w)‖L∞((0,∞),Ld/α,∞) ≤ C‖w‖Eα+1 .To obtain a de
ay estimate as t→ ∞, we re
all (11) and write

L(w)(t) = et∆/2L(w)(t/2) +

t\
t/2

G(t− s) ∗ w ds ≡ J1 + J2.By duality (we denote by gt the Gaussian kernel),
‖J1‖L∞ ≤ C‖gt/2‖Ld/(d−α),1‖L(w)(t/2)‖Ld/α,∞ ≤ Ct−α/2‖w‖Eα+1 .Moreover,

‖J2(t)‖ ≤ Ct−(α+1)/2‖w‖Eα+1

t\
t/2

‖G(t− s)‖L1 ds ≤ Ct−α/2‖w‖Eα+1 .The de
ay estimates in spa
e-time for L(w) then follow. The 
ontinuity withrespe
t to t being straightforward, the proof of Lemma 2.2 is �nished.By Lemma 2.2, the bilinear operator(18) B(u, v) =

t\
0

G(t− s) ∗ (u(K ∗ v))(s) dsis 
ontinuous from Eα×Eα to Eα. Note that our last lemma also implies that
‖u(t) − et∆u0‖L∞ ≤ C

√
t, so that u(t) → u0 a.e. and in the distributional
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sense. The existen
e (and uniqueness) of the solution of (9) under the as-sumption (15) now follows by a standard argument, i.e. the appli
ation ofthe 
ontra
tion mapping theorem.In order to �nish the proof of Theorem 2.1 it only remains to showthat the smallness assumption (15) 
an be relaxed when the kernel K is ahomogeneous fun
tion. Consider the res
aling(19) uλ(x, t) = λαu(λx, λ2t).A dire
t 
omputation shows that, if K is homogeneous of degree −d−1+α,and u is a solution of (9), then uλ is a solution of (9) as well. Now let η > 0be the 
onstant obtained in the �rst part of Theorem 2.1. Assume that thedatum u0 is su
h that (16) holds. Then we 
an 
hoose a λ̃ > 0 su
h that
ess sup

x∈Rd

λ̃α(1 + |x|)α|u0(λ̃x)| < η.We 
an apply the �rst part of Theorem 2.1 to the initial datum λ̃αu0(λ̃ ·). Ifwe denote by ũ the 
orresponding solution, we see that ũ
λ̃−1 is the solutionof (9) starting from u0. Theorem 2.1 is now established.Remark 2.1. With minor modi�
ations of the de
ay exponents in theabove proof, one sees that, for any �nite T > 0, the bilinear operator (18) isbi
ontinuous in the spa
e C([0, T ], L∞

θ ), for all θ ≥ 0. The 
ontra
tion map-ping theorem guarantees that, if u0 ∈ L∞
θ , θ ≥ 0 (with arbitrary norm) and

T > 0 is small enough, then there exists a unique solution u ∈ C((0, T ], L∞
θ )su
h that u(t) → u0 in the weak sense; we will write u ∈ Cw([0, T ], L∞

θ ) toexpress these properties.3. Blow up for the model of gravitating parti
les. In this se
tionwe show that there exist solutions of (2), with initial data u0 in the S
hwartz
lass and su
h that Txαu0(x) dx = 0 for all α ∈ N
d, whi
h blow up in �nitetime. Here we adopt a quite general de�nition of solution: we ask that theFourier transform û(·, t), also denoted ût, satis�es for a.e. ξ ∈ R

d and all
t ∈ [0, T ], 0 < T ≤ ∞, the integral equation(20) ût(ξ) = e(s−t)|ξ|2 û0(ξ)+

1

(2π)d

t\
0

e(s−t)|ξ|2iξ ·
(
ûs(ξ)∗

iξ

−|ξ|2 ûs(ξ)

)
ds.The de�nition of the Fourier transform for integrable fun
tions that we adoptis ût(ξ) =

T
u(x, t)e−iξ·x dx.There are several ways to give a sense to the above integral and ensurethe validity of (20). An obvious way is to 
onsider the (lo
al) solutionsobtained in the setting of Remark 2.1, with θ > d. But the above equalityis true in more general settings. For example, it holds for the solutions u ∈

Cw([0, T ], PMd−2) (with 0 < T ≤ ∞ and d ≥ 3) 
onstru
ted in [4℄, where
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PMa is the spa
e of pseudomeasures

PMa = {v ∈ S ′(Rd) : v̂ ∈ L1
loc(R

d), ‖v‖PMa ≡ ess sup
ξ∈Rd

|ξ|a|v̂(ξ)| <∞}.As pointed out in [4℄, a distributional solution of the Cau
hy problem for (2)also satis�es (20).In this se
tion we will 
onsider initial data with nonnegative Fouriertransform, and supported in (R+)d. Under this 
ondition, one immediately
he
ks that the iteration s
heme yielding a solution in Cw([0, T ],PMd−2), orin Cw([0, T ], L∞
θ ), 
onverges in the subset of fun
tions u su
h that û(ξ, t) ≥ 0for all t ∈ [0, T ] and a.e. ξ ∈ R

d. The 
ru
ial fa
t that will lead to the blowup is the following:Lemma 3.1. Let
Hj(û)(ξ, t) ≡

t\
0

\
e(s−t)|ξ|2ξj

ηj

|η|2 ûs(ξ − η)ûs(η) dη ds, j = 1, . . . , d.Then, if 0 ≤ û ≤ v̂ and supp û and supp v̂ are 
ontained in {ξ ∈ R
d : ξl ≥ 0,

l = 1, . . . , d}, then 0 ≤ Hj(û) ≤ Hj(v̂) and their supports are still 
ontainedin {ξ ∈ R
d : ξl ≥ 0, l = 1, . . . , d}.This simple observation allows us to adapt to our situation the argumentintrodu
ed by Montgomery-Smith for the �
heap� Navier�Stokes equations(see [10℄).Let us �rst re
all the de�nition of the Besov norm ‖ · ‖Ḃa,∞

∞

, a ∈ R.We 
onsider a fun
tion ψ ∈ S(Rd) su
h that ψ̂ ≥ 0 in R
d, ψ̂(ξ) ≥ 1 for

1/2 ≤ |ξ| ≤ 1, and ψ̂(ξ) = 0 for |ξ| ≤ 1/3 or |ξ| ≥ 4/3. Then, for adistribution f , we de�ne(21) ‖f‖Ḃa,∞
∞

= sup
k∈Z

2(a+d)k‖ψ(2k·) ∗ f‖L∞ .Remark 3.1. It is well known that any Besov spa
e Ḃs,q
p (Rd), as well asany Triebel�Lizorkin spa
e Ḟ s,q

p (Rd) (so in parti
ular the Lp-spa
es, whi
hare identi�ed to Ḟ 0,2
p ), with s∈R, 1≤p, q≤∞, is embedded in Ḃs−d/p,∞

∞ (Rd).It is then su�
ient to show that u(t) blows up in the Ḃa,∞
∞ norm, for all a ∈ R,to dedu
e that all Besov and Triebel�Lizorkin norms of u must blow up. Tobe more pre
ise, L1 is not a Triebel�Lizorkin spa
e, but we will see that ût∗be
omes unbounded for a �nite t∗, hen
e ‖u(t)‖L1 does blow up.A similar remark applies to pseudomeasure norms, sin
e PMa is 
ontin-uously embedded in Ḃa−d,∞

∞ (Rd).Theorem 3.1. Let w0 ∈ S(Rd) be su
h that ŵ0 is nonnegative and sup-ported in the ball B1/4(3e1/4), where e1 is the unit ve
tor , and ‖ŵ0‖L1 = 1.Let A > 219/3(2π)d and u0 = Aw0 (so in parti
ular u0 ∈ S0(R
d)). Assume
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also that u(·, t) is a tempered distribution su
h that for all t ≥ 0, ût ≥ 0and (20) holds for a.e. ξ ∈ R
d. Then, for all a ∈ R,(22) ‖u(·, t∗)‖Ḃa,∞

∞

= ∞, where t∗ = log(21/3).Proof. Set t0 = 0, tk = log 2(
∑k

j=1 2−2j) and wk = w2k

0 . Set also
αk(t) = 22k+6−6·2k

e−2kt
1t≥tk (k ∈ N).We 
laim that, for k = 0, 1, . . . ,(23) ût(ξ) ≥ A2k

αk(t)ŵk(ξ).This is seen by indu
tion. For k = 0 the 
laim follows from Lemma 3.1:
ût(ξ) ≥ Ae−t|ξ|2ŵ0(ξ) ≥ Ae−tŵ0(ξ), t ≥ 0.Now assume that (23) holds for k − 1. Set

Ek = {ξ ∈ R
d : 2k−1 ≤ ξ1 ≤ |ξ| ≤ 2k}, k = 0, 1, . . . ,Note that ŵk = (2π)−dŵk−1 ∗ ŵk−1. Thus, supp ŵk ⊂ Ek.But, for a.e. ξ ∈ Ek, estimating from below by zero all the terms on theright hand side of (20), ex
ept for the �rst term obtained after 
omputingthe s
alar produ
t, we get

ût(ξ) ≥
1

(2π)d

t\
0

\
e(s−t)|ξ|2 ξ1η1

|η|2 ûs(ξ − η)ûs(η) dη ds

≥
t\

tk−1

\
η∈Ek−1

e(s−t)|ξ|2 ξ1η1

|η|2 (A2k−1
αk−1(s))

2 ŵk−1(ξ − η)ŵk−1(η)

(2π)d
dη ds

≥ A2k
24k+7−6·2k

e−2kt
( t\

tk−1

e(s−t)22k
ds

)
ŵk(ξ).In the se
ond inequality we used our indu
tion assumption. Now, for all

t ≥ tk, we have t− tk−1 ≥ 2−2k log 2, so that 1 − e(tk−1−t)22k ≥ 1/2. This inturn implies Tttk−1
e(s−t)22k

ds ≥ 2−2k−1. Then, for all t ≥ tk, we get
ût(ξ) ≥ A2k

22k+6−6·2k
e−2kt,and (23) follows.Moreover, ‖ŵk‖L1 = (2π)−d‖ŵk−1‖2

L1 . Sin
e ‖ŵ0‖L1 = 1, by indu
tionwe get
‖ŵk‖L1 = (2π)−d(2k−1).Set t∗ = limk→∞ tk = log(21/3). We have ψ̂(2−k ·) ≥ 1 in Ek. Hen
e,

ψ̂(2−kξ)ût∗(ξ) ≥ A2k
αk(t

∗)ŵk(ξ) ≥ 0.



302 P. BILER AND L. BRANDOLESE
Then
‖ut∗‖Ḃa,∞

∞

≥ sup
k∈N

2(a+d)k|ψ(2k·) ∗ ut∗(0)| = (2π)−d sup
k∈N

2ak‖ψ̂(2−k·)ût∗‖L1

≥ sup
k∈N

A2k
(2π)−d 2k

2ak+2k+6−6·2k
e−2kt∗

= sup
k∈N

{(A 2−19/3(2π)−d)2
k
2(a+2)k+6} = ∞.Remark 3.2. The same proof goes through for solutions of (1), underthe additional 
onditions ĉj,h,k ≥ 0 for all j, h, k = 1, . . . ,m, and, say, ĉ1,h,k ≥

c > 0. In this 
ase, one 
an obtain a solution u = (u1, . . . , um) su
h that the�rst 
omponent blows up, starting from a datum u0 su
h that û0 ≥ 0 andwith the �rst 
omponent satisfying the 
onditions of Theorem 3.1.Remark 3.3. Analogous results 
an be obtained for spa
e-periodi
 so-lutions of (1), i.e. those de�ned on the d-dimensional torus. Instead of theFourier transform, we then 
onsider the Fourier 
oe�
ients û(ξ), ξ ∈ Z
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