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GLOBAL EXISTENCE VERSUS BLOW UP
FOR SOME MODELS OF INTERACTING PARTICLES

BY
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Abstract. We study the global existence and space-time asymptotics of solutions
for a class of nonlocal parabolic semilinear equations. Our models include the Nernst—
Planck and Debye—Hiickel drift-diffusion systems as well as parabolic-elliptic systems of
chemotaxis. In the case of a model of self-gravitating particles, we also give a result on
the finite time blow up of solutions with localized and oscillating complex-valued initial
data, using a method due to S. Montgomery-Smith.

1. Introduction. In this paper we are concerned with semilinear
parabolic systems of the form

atuj :A’LL]'-FV' ( Z cxh’kuh(VEd*uk)), j=1....,m,
(1) ho=1

u(0)(z) = uo(x).
Here the unknown is the vector field u = (u1, ..., uy,), defined on the whole
space R? (with m > 1 and d > 2), and ¢, € L®(RY), 4,hk=1,...,m,
are given coeflicients. Moreover, E; denotes the fundamental solution of the
Laplacian in R%.

Systems of the form (1) arise e.g. from plasma, semiconductors and elec-
trolytes theories, biology (modelling of chemotaxis phenomena) and statisti-
cal mechanics. The basic example for us is the model for gravitating particles:
in this case m = 1, d > 2, and the governing equations are usually written
as

(2) Oou=Au+V - (uVy), Ap=u.

Here u = u(x,t) is the density of the particles and ¢ is the self-consistent
gravitational potential generated by u. Related systems also appear in the
theory of chemotaxis (see e.g. [8], [7], [3]). In this case the coefficients c; p,
are constant and equal to 1. We do not require that « > 0 in our study, which
is, however, relevant in physical applications; we even admit complex-valued
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solutions. Another important example is provided by the Debye system, in
which the first equation of (2) is replaced with

(3) 0w = Au—V - (uVep).

A more general model, still belonging to the class (1), is the drift-diffusion
system

o = Av —V - (vV9),
(4) dw = Aw + V- (wVe),
Ap =v—w.

In the theory by W. Nernst and M. Planck, v and w represent the density
of positively and negatively charged particles, respectively.

A lot is known about the existence and nonexistence of real-valued solu-
tions of these models; see e.g. [6], [4], [2], [1], and the references therein. For
instance, if d = 1, then the models considered have global in time solutions.
If d > 2, the Debye system (3) and the more general system (4) have global
in time solutions and their asymptotics is described by suitable self-similar
solutions (see [5] and [11]). These may be interpreted as a complete diffusion
of charges to infinity due to repulsive interactions.

On the other hand, models describing either chemotaxis or gravitational
interaction in d > 2 dimensions feature concentration phenomena which may
eventually lead to a collapse of solutions. These phenomena manifest them-
selves by the formation of singularities of solutions like weak convergence
either to Dirac point masses or to unbounded functions ~ |z|~2.

One purpose in this paper is to show that a different kind of finite time
blow up can occur for solutions of (2) (and for a few other particular cases
of (1)). In particular, we will show that also nonpositive (in fact: complez-
valued) and oscillating solutions can blow up. Our second purpose is to give
a global existence result for “small” solutions of (1). Such a result will provide
us with some decay profiles of solutions in space-time.

The global existence result for “well localized” solutions can be stated as
follows (see Section 2 for a more general, and more precise, statement).

THEOREM 1.1. Let d > 3. There exists n > 0 such that if

n
5 ug(z)| < ———,
then there exists C > 0 and a unique solution u of (1) such that, for all
zeR? and t >0,

C C
6 uw(z,t)| < —— and |u(z,t)| < ——.
(6 )| € s and )| < 7
Moreover, if all the coefficients c; . (x) are constant in R? or homogeneous

of degree zero, then the smallness assumption (5) can be replaced by the
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weaker, scale invariant, condition
(7) ess sup |z|?|uo(x)| < n.
r€R4

It would be possible to establish similar decay profiles for the solution in
space-time, with a spatial decay rate larger than two. In this case the decay
rate as t — oo is also increased, up to half the decay rate as © — oo (or
up to the rate d/2 if the space decay rate is larger than d). The exponent
two is however the most interesting case, since it plays a special role in these
models, for scaling reasons. For example, it corresponds to the expected
decay rate of self-similar solutions (see e.g. [4]). It is also the decay of the well-
known Chandrasekhar solution, (x,t) = 2(d —2)|z|~2, which is a stationary
solution of (2) for d > 3.

We now state our result on the blow up of solutions.

THEOREM 1.2. There exists ug € So(R?) (the space of functions belong-
ing to the Schwartz class, with vanishing moments of all orders) such that
the corresponding solution u of (2) blows up in finite time: there exists t* > 0

such that u(t*) ¢ ByY(R%) for all s € R, 1 < p,q < 0.

We will restate this theorem in a more precise way in Section 3. Therein,
we will also recall the definition of the Besov norm || - ||BS,q(Rd). Here we only
P

observe that this theorem tells us, in particular, that ||u(t)||L» blows up for
all 1 < p < o0. The proof of Theorem 1.2 consists in proving suitable lower
bound estimates for the Fourier transform #. We shall derive such estimates
using an idea of Montgomery-Smith [10].

Our exploding solution u of Theorem 1.2 is in fact complex-valued since
its Fourier transform enjoys some positivity and nonsymmetry properties. Of
course, one can rewrite the scalar equation (2) for the real and imaginary
part of w. This yields a blow up result for a real system of the form (1),
which is formally close to (4).

Notations. In chains of inequalities, all the constants will be denoted
by C even if they vary from line to line. We will simply write { instead

of {pa-

2. Global existence for the general model. The proof of Theo-
rem 1.1 relies on size estimates of the kernel VE,;. We have of course

C

[VE4(z)| < W

Our method also applies if we replace VEy; with any kernel K such that K
is a measurable function in R?, and

(8) |K(z)| < Clz|" 12 1<a<d.
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In what follows, we will consider this more general situation. For the appli-
cations that we have in mind, o = 2, and this explains the restriction d > 3
in Theorem 1.1. The two-dimensional case is often a special case in these
models, e.g. the Keller—Segel parabolic-elliptic model of chemotaxis.

Since we would obtain the same bounds for all the components of u, in the
remaining part of this section we can assume that u is scalar and ¢;, = c.
Moreover, without loss of generality, in the proof below we can assume that
c is constant, essentially because multiplying K with an L* function does
not affect (8).

With this simplification, the models discussed above can be written in
the following integral form:

t
(9) u(t) = e Aug + S G(t —s) * (u(K = u))(s)ds,

0
where G behaves like a first order derivative of the Gaussian heat kernel,
namely

(10) G(z,t) = =TV 20 (2 /1)  with ¥ € S(RY),
(11) eA2GQ(t)2 — s) = G(t — s).

To state our result in a precise way, we introduce a few useful spaces.
For 6 > 0 we denote by Lg° the space of measurable functions f on R? such

that (14 |- |)?f € L°(RY). Let & be the space of all measurable functions
f = f(z,t) in R? x R* such that

(12) esssup (1-+ [])°] (z, )] < oo,
z€R?, 1>0

(13) esssup (14 t)%2| f(z,1)| < oo,
z€RY, t>0

and

(14) f€C((0,00), Lg?).

The space & is equipped with its natural norm.

THEOREM 2.1. Let 1 < o < d and K be such that (8) holds. Assume
that ug € LY. Then we can find n > 0 such that if
(15) [uollge <,
then there exists a unique mild solution u of (9), such that v € &, and

u(t) r, ug as t — 0. Moreover, if we assume, in addition, that K is
homogeneous of degree —d — 1 + «, then (15) can be replaced by the weaker,
scale invariant condition

(16) esssup |z|%|ug(z)| < .
z€RY
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Proof. The proof relies on the following simple lemma:
LEMMA 2.1. Let K satisfy the assumption (8).

1. If f € LS, then K x f € L§°.
2. If p € &,, then K x ¢ € &£1.

Proof. Using the duality and the interpolation of Lorentz spaces, we get

1-1 1
1K 5 fllzoe < | asas-anoo Ll parena < CIAN /o £
Thus,
1K * flle < Cllfllzze-

In particular, we may assume |z| > 1. Note that
K x f(a)| < Cle = yI~ 0 f(y)ldy = I + Lo + I,

where I = S\ylélm\/Q o= S|$‘/2§‘y|§3l$‘/2 ...,and I3 = Sly\23\w|/2 ....One
easily checks that these three integrals are bounded by C|z|~!. The first part
of the lemma follows.

On the other hand, by the above inequality,

IK 5 @)l < Cllol e pasomn IO < CUL+ )26 .

Combining this with the first part of the lemma, applied to ¢(t), yields the
result. m

For u € &, the nonlinear term u(K *u) belongs, by Lemma 2.1, to &y 1.
Then it is natural to study the behavior of the linear operator
t
(17) L(w)(t) = | G(t — 5) x w(s) ds
0
in such a space.

LEMMA 2.2. Let 1 < a<d and w € Eqq1. Then L(w) € &,.

Proof. We will use repeatedly the property
IG(t = s)llr = C(t — )71/,

which is a consequence of (10). A few estimates below bear some relations
to those of Miyakawa [9], yielding space-time decay results for the Navier—
Stokes equations. We start by observing that L(w) € L% (R¢ x R). Indeed,

t

IL(w)(#)l|z < §IG(E = )] ][w(s) e~ ds
0
t

< Cllwllg,,, [ (8= 5)7/21 2 ds < Cllw]e
0
Then we can assume in the following that |x| > 1 and ¢ > 1.

a+1°



298 P. BILER AND L. BRANDOLESE

We can write L(w) = I} + Iz, where

I

| Gl —ywy,s) dyds,
<

ly|<|z|/2

O e o+ O ey

Iy | Ga—ywly,s) dyds.
lyl>[al/2

Now,

L@ Ol < J[) (=97 P+ ) (1 +s) P dy ds
ly|<|=|/2
|yl dy < Clz|7™

ly|<|z|/2

O ey

U

< Clz|”

On the other hand,
¢
|Ia(x,1)] < Cla|* |Gt = 5)|[p1 57/ ds < Cla| ™.
0
Thus, |L(w)(z,t)| < C(1+ [z|)~*|lwl|e

IL(w)| oo ((0,00), Laracey < Cllwllgnys-

-1 and, in particular,

To obtain a decay estimate as t — oo, we recall (11) and write
t

L(w)(t) = ePL(w)(t/2) + | Gt —s) xwds = Jy + Ja.
t/2

By duality (we denote by g; the Gaussian kernel)

3

11l < Cllgijall pasea-ea | L(w) (¢/2)|| pasae < O |lw]|g -

Moreover,

t

 1G(E = 8)prds < Ot wle,,,-
t/2

1 72(8)]] < Ot D2

a+1

The decay estimates in space-time for L(w) then follow. The continuity with
respect to ¢ being straightforward, the proof of Lemma 2.2 is finished. =

By Lemma 2.2, the bilinear operator
t
(18) B(u,v) = SG(t —8)x (u(K xv))(s)ds
0
is continuous from &, x &, to &,. Note that our last lemma also implies that
lu(t) — et®ug| e < CVt, so that u(t) — ug a.e. and in the distributional
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sense. The existence (and uniqueness) of the solution of (9) under the as-
sumption (15) now follows by a standard argument, i.e. the application of
the contraction mapping theorem:.

In order to finish the proof of Theorem 2.1 it only remains to show
that the smallness assumption (15) can be relaxed when the kernel K is a
homogeneous function. Consider the rescaling

(19) u(z,t) = Au(Az, \2t).
A direct computation shows that, if K is homogeneous of degree —d —1+ a,
and u is a solution of (9), then wu) is a solution of (9) as well. Now let n > 0
be the constant obtained in the first part of Theorem 2.1. Assume that the
datum wug is such that (16) holds. Then we can choose a A > 0 such that

esssup A% (1 + |z])*|uo(Az)| < 1.

rER

We can apply the first part of Theorem 2.1 to the initial datum Xauo(X ). If
we denote by u the corresponding solution, we see that ﬁ:\,l is the solution
of (9) starting from ug. Theorem 2.1 is now established. m

REMARK 2.1. With minor modifications of the decay exponents in the
above proof, one sees that, for any finite 7" > 0, the bilinear operator (18) is
bicontinuous in the space C([0,77], Lg°), for all # > 0. The contraction map-
ping theorem guarantees that, if ug € L3°, # > 0 (with arbitrary norm) and
T > 0 is small enough, then there exists a unique solution u € C((0,T7, Lg®)
such that u(t) — wg in the weak sense; we will write u € Cy([0,T], Lg°) to
express these properties.

3. Blow up for the model of gravitating particles. In this section
we show that there exist solutions of (2), with initial data ug in the Schwartz
class and such that {2%ug(z)dz = 0 for all & € N%, which blow up in finite
time. Here we adopt a quite general definition of solution: we ask that the
Fourier transform (-, t), also denoted i, satisfies for a.e. £ € RY and all
t €[0,7], 0 < T < oo, the integral equation

3

(20)  Tu(€) = PG )+

1 2 13
W S DI e (ﬁs(@* W ﬁs(&)) ds.
0

The definition of the Fourier transform for integrable functions that we adopt
is w (&) = Su(z, t)e % dx.

There are several ways to give a sense to the above integral and ensure
the validity of (20). An obvious way is to consider the (local) solutions
obtained in the setting of Remark 2.1, with 6 > d. But the above equality
is true in more general settings. For example, it holds for the solutions u &
Cw ([0, T], PM2) (with 0 < T < oo and d > 3) constructed in [4], where
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PM? is the space of pseudomeasures

PM® = {v € S'(RY): T € Ligo(RY), |[v]lpme = esssup [€]*[3(€)] < oo}
£eRd
As pointed out in [4], a distributional solution of the Cauchy problem for (2)
also satisfies (20).

In this section we will consider initial data with nonnegative Fourier
transform, and supported in (R, )?. Under this condition, one immediately
checks that the iteration scheme yielding a solution in Cy ([0, T, PM92), or
in Cy ([0, 7], Lg®), converges in the subset of functions u such that u(¢,t) > 0
for all ¢ € [0, 7] and a.e. £ € R%. The crucial fact that will lead to the blow
up is the following:

LEMMA 3.1. Let
t

Hy(@)(&,1) = | | 0P ,Z—;as(s —n)us(n)dnds, j=1,....d.
0
Then, if 0 < U < v and suppu and supp v are contained in {£ € R%: & >0,
l=1,...,d}, then 0 < Hj(u) < Hj(v) and their supports are still contained
in{€€R: >0, 1=1,...,d}.

This simple observation allows us to adapt to our situation the argument
introduced by Montgomery-Smith for the “cheap” Navier-Stokes equations
(see [10]).

Let us first recall the definition of the Besov norm || - || 30, @ € R.
We consider a function 1 € S(R?) such that ¢ > 0in RY 12({) > 1 for
1/2 < |¢] < 1, and 9(¢) = 0 for €] < 1/3 or |¢| > 4/3. Then, for a
distribution f, we define

(21) 1£1| pae = sup 200+ D¥|gp(2%-) 5 |l oo
kEZ

REMARK 3.1. It is well known that any Besov space B;’q(Rd), as well as
any Triebel-Lizorkin space F,'?(R%) (so in particular the LP-spaces, which
are identified to FS’Q), with seR, 1<p, ¢ <00, is embedded in ngd/p’oo(Rd).
It is then sufficient to show that w(t) blows up in the B%> norm, for all a € R,
to deduce that all Besov and Triebel-Lizorkin norms of u must blow up. To
be more precise, L' is not a Triebel-Lizorkin space, but we will see that -
becomes unbounded for a finite ¢*, hence ||u(t)|| ;1 does blow up.

A similar remark applies to pseudomeasure norms, since PM“ is contin-
uously embedded in B% > (R?).

THEOREM 3.1. Let wg € S(R?) be such that @y is nonnegative and sup-
ported in the ball By,4(3e1/4), where ey is the unit vector, and ||wol[z1 = 1.

Let A > 219/3(2m)¢ and ug = Awy (so in particular ug € So(R?)). Assume
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also that u(-,t) is a tempered distribution such that for all t > 0, uy > 0
and (20) holds for a.e. ¢ € R, Then, for all a € R,

(22) [u(-,t)| gace = 00, where t* = log(2/3).
Proof. Set to =0, ti = log 2(2?21 2727 and wy, = wo Set also

ap(t) = 22k 662" 2%y (L e W),
We claim that, for k =0,1,...,
(23) (€) > A% ap () (9.
This is seen by induction. For k = 0 the claim follows from Lemma 3.1:
0(&) > Ae P Gg(€) > Aet@o(€), > 0.
Now assume that (23) holds for £ — 1. Set
Ep={¢cR: 2" <g <lg<2"}, k=0,1,...,

Note that @y, = (27) %Wg_1 * Wg_1. Thus, supp Wy C Ej.

But, for a.e. £ € E}, estimating from below by zero all the terms on the
right hand side of (20), except for the first term obtained after computing
the scalar product, we get

t
- 1 senle2 €
() 2 o | Jel S (€ = () dn s
0
t —~ —~
S p(s—BlE? SUIL okt oo Wi—1(§ — n)Wk—1(n) dn ds
> 1) e (A e ) =
t
2A2k24k+7—6-2k€—2kt( S o(s—1)2? ds)wk(g)
tk—1

In the second inequality we used our induction assumpti(zn. Now, for all
t > t, we have t — t;_; > 27%Flog2, so that 1 — e(th—1-)22 > 1/2. This in
turn implies Sik—l e(s=t)2% g > 272k=1 Then, for all t > t;, we get

(&) > A2"92k+6-6:2F —2kt
- 9
and (23) follows.

Moreover, ||@g| ;1 = (2m)~¢||@Wg_1]|2,. Since ||@oz» = 1, by induction
we get

@l 1 = (2m) 421,

Set t* = limy_ oo t1, = log(2'/?). We have 1/)(2_’g ) > 1 in Ej. Hence,
V(2 (&) > A an ()i (€) > 0.
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Then
g | gaoe > sup 2 F DK (25.) s g (0)] = (27) ™ sup 2% ¢h (275 )i | 1
o keN keN
> sup AQ’“(27r)—d2’“2ak+2k+6—6-2k6—2kt*
 keN
= sup{(4 2719/3(27_‘_)7d)2k2(a+2)k+6} . =
keN
REMARK 3.2. The same proof goes through for solutions of (1), under
the additional conditions ¢, > O forall j,h,k = 1,...,m, and, say, ¢i p 1, >
¢ > 0. In this case, one can obtain a solution u = (uq, ..., u;,) such that the

first component blows up, starting from a datum wug such that iy > 0 and
with the first component satisfying the conditions of Theorem 3.1.

REMARK 3.3. Analogous results can be obtained for space-periodic so-
lutions of (1), i.e. those defined on the d-dimensional torus. Instead of the
Fourier transform, we then consider the Fourier coefficients u(¢), & € Z%.
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