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ASYMPTOTIC BEHAVIOR OF THE ENERGY

AND POINTWISE ESTIMATES FOR SOLUTIONS

TO THE NAVIER–STOKES EQUATIONS

LORENZO BRANDOLESE

1. Introduction

In this paper we deal with the asymptotic behavior, in the space-time variables,
of weak and strong solutions to the Navier–Stokes system. For an incompressible
viscous fluid which fills the whole space Rn, in the absence of external forces, the
Navier–Stokes equations read

(NS)

 ∂tu+∇ · (u⊗ u) = ∆u−∇p
u(x, 0) = a(x)
div(u) = 0.

Here u : Rn × [0,∞[→ Rn (n ≥ 2) denotes the velocity field and p(x, t) is the
pressure.

Starting with the pioneering work of Leray [21], a considerable number of papers
is concerned with questions related to the large-time behavior of the L2-norm of
u(t). The problem of finding optimal decay rates for the energy of generic weak
solutions is now well understood.

Indeed, Wiegner [41] showed that ||u(t)||2 ≤ C(1 + t)−α (0 < α ≤ (n+ 2)/4), if
such decay holds for the solution et∆a of the heat equation starting with the same
data. This improved previous results by Kato [17], Schonbek [29] and Kaijkiya-
Miyakawa [19]. The bound on α is now known to be optimal: optimality was first
discussed in [30] and, more recently, in [28], [13], [14] with different methods.

However, exceptional flows which decay much faster do exist. For example, it is
known since a long time that, in dimension n = 2, there exists a very particular
and explicit solution of the Navier–Stokes equations with radial vorticity. This
condition on the vorticity implies that the nonlinearity has the potential form (i.e.
∇ · (u⊗ u) = −∇p), so that u is also a solution of the homogeneous heat equation.
It was pointed out by Majda and Schonbek that for such flow ||u(t)||2 has an
exponential decay at infinity (see e.g. [30], [10], [28]). In dimension 2, no other
examples with such a property seem to be known.

Similar flows with exponential decay exist in higher even dimension and a general
method for their construction is described in [32]. All these solutions, sometimes
called generalized Beltrami flows, turn out to solve simultaneously (NS) and the
heat equation. As discussed in [32], it seems impossible to adapt these examples to
the n = 3 case or for general odd dimensions.
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Beside generalized Beltrami flows, a few other exact solutions of the Navier–
Stokes equations are known (see e.g. [12], [38] and the review [40]). But, at best of
our knowledge, no examples of solutions in R3 with fast decay of the energy have
been constructed so far.

The aim of this paper is to construct, in any dimension n ≥ 2, a class of solutions
such that the energy norm decays at infinity faster that t−(n+2)/4. Such construction
will be achieved by imposing some special symmetries on the initial data, which
are preserved by the Navier–Stokes evolution.

As an application of our results in the n = 3 case, we will provide examples of
initial data a such that the corresponding weak solutions u are non-trivial and sat-
isfy ||u(t)||2 = O(t−9/4). These examples answer a question raised by M. Schonbek
in [30].

Another important feature of our construction is that it provides solutions such
that the nonlinear term P∇ · (u ⊗ u) does not vanish identically (here P is the
Leray-Hopf projector onto the field of soleinoidal vectors). Thus, in general, our
symmetric solutions are not merely generalized Beltrami flows.

We refer to [13], [14] for an interesting geometrical insight of such rapidly de-
caying solutions. We also would like to observe that some of these results can be
adapted in the case of flows in the half-space (see [11]).

In this paper we also study the asymptotic behavior in the space-time variables
of global strong solutions. Pointwise estimates on the decay of u, as |x| + t → ∞,
have been obtained by Takahashi [35] and then improved in [26], [1] and [16], using
different methods.

Miyakawa [26] showed that the Navier–Stokes equations admit a unique strong
solution u which behaves as |u(x, t)| ∼ |x|−αt−β/2, for all α ≥ 0 and β ≥ 0 such
that α+ β ≤ n+ 1, if the initial data satisfies

(1.1) sup
x,t

(1 + |x|)n+1|et∆a(x)| < ε and sup
x,t

(1 + t)(n+1)/2|et∆a(x)| < ε,

with ε > 0 small enough. Examples of flows satisfying (1.1) are provided in [26]
and [27], but this condition seems somewhat too stringent.

The bound ||u(t)||∞ ≤ C(1 + t)−(n+1)/2 was obtained (among other things) also
by Amrouche et al. [1] and He, Xin [16] under more natural assumptions on the
initial data: while [1] deals with data belonging to L2-Sobolev spaces, in [16] a is
supposed to belong to wheighted-Lp spaces. However, it seems difficult to obtain
Miyakawa’s estimate |u(x, t)| ≤ C(1 + |x|)−(n+1) under this type of assumptions.
Let us stress the fact that such space decay rate is optimal for generic flows (see
[3], [4], [8]).

In this paper we will deduce the optimal decay rates of [26], under a smallness
assumption slightly more general than (1.1). Furthermore we show that, inside
the class of “symmetric flows” in Rn (n ≥ 2), we can find strong solutions with
an over-critical space-time decay. This last result was announced in [3]. We will
present it in a slightly sharper form.

The rest of the paper is organized as follows. In sections 2 we deal with weak
solutions: we start recalling a theorem by Miyakawa and Schonbek [28], which
relates the long time behavior of the energy of u with the following non-linear
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integral identities:

(1.2)
∫ ∞

0

∫
uh(x, t)uk(x, t) dx dt = cδh,k (h, k = 1, . . . , n),

with δh,k = 1 if h = k, else δh,k = 0.
Then we introduce the class of symmetric vector field in Rn and we show that,

starting with initial data inside this class, allows us to obtain weak solutions which
are symmetric for all t > 0. Thus, we will be able to prove that nontrivial flows
satisfying (1.2) do exist (this was left open in [28], for n = 3). We finally show that
the existence of solutions such that ||u(t)||2 = o(t−(n+2)/4) at infinity (n ≥ 2) is an
immediate consequence of our construction and of the result of [28].

In section 3, we study in some more detail the asymptotic behavior of symmetric
weak solutions (n = 3, 4). We shall obtain the bound ||u(t)||2 ≤ Ct−(n+6)/4, which
seems to be optimal within the class of symmetric solutions. Our method relies on
the Fourier transform, and more precisely on Schonbek’s Fourier splitting device
[29]. We also make use of the energy inequality and of some recent estimates (see
[31], [16], [10]) on the decay at infinity of the first order moments of |u(·, t)|2.

In section 4 we deal with strong solutions. After treating the case of generic
flows, for symmetric solutions we will obtain the improved decay rates

(1.3) |u(x, t)| ∼ |x|−αt−β/2 α ≥ 0, β ≥ 0, α+ β ≤ n+ 3

as |x|+t→∞. A similar result (in the case α+β = n+3) has been recently proved
also by Miyakawa in [27], using the ideas of [3], after the first version of this paper
was completed. However, Miyakawa’s assumptions on the initial data are slightly
more stringent than ours.

We refer to [5] for a more systematic study of the space-time decay in dimension
two and three and the computation of the spatial decay rates of solutions which are
left invariant under the action of subgroups of the orthogonal group of R2 and R3

Notations. Throughout this paper we shall use the following usual notations. For
any multi-index γ = (γ1, . . . , γn) ∈ Nn and x = (x1, . . . , xn) ∈ Rn, we set

γ! = γ1!γ2! · · · γn! |γ| = γ1 + · · ·+ γn

∂i =
∂

∂xi
(i = 1, . . . , n) ∂γ =

∂|γ|

∂γ1
1 · · · ∂γn

n

and

(1.4) xγ = xγ1
1 x

γ2
2 · · ·xγn

n .

Further, ∇ = (∂1, . . . , ∂n), ∆ denotes the laplacian on Rn and

et∆a(x) =
∫

(4πt)−n/2e−|x−y|2/4ta(y) dy

is the heat semigroup.
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2. Symmetric weak solutions

We start recalling some known facts about the large time behavior of weak
solutions (see e.g. [7], [19], [34] for their construction). By definition, a weak
solution to (NS) is a function

(2.1) u ∈ Cw([0,∞[,L2(Rn)) ∩ L2
loc(R+,H1(Rn)),

such that div(u) = 0, satisfying the integral equation

〈u(t), φ(t)〉 − 〈a, φ(0)〉

=
∫ t

0

{
〈u(s), ∂φ

∂s
(s)〉 − 〈∇u(s),∇φ(s)〉 − 〈(u(s) · ∇)u(s), φ(s)〉

}
ds (t > 0)

(2.2)

for all smooth, compactly supported and soleinoidal vector fields φ ∈ C∞(Rn ×
[0,∞[). Here 〈·, ·〉 is the L2-inner product and Cw is the space of weakly continuous
functions.

For 2 ≤ n ≤ 4, we shall assume that weak solutions satisfy the strong energy
inequality:

(2.3) ||u(t)||22 + 2
∫ t

s

||∇u(r)||22 dr ≤ ||u(s)||22,

for s = 0, almost s > 0 and all t ≥ s. Unicity of weak solutions is still an open
problem for n ≥ 3.

Wiegner’s results [41] states that ||u(t)||2 → 0 at infinity, whenever (2.3) holds
(see also [17], [22], [29], [19] for previous results). Moreover, if the solution of the
heat equation satisfies

(2.4) ||et∆a||2 ≤ c(1 + t)−α0 (t ≥ 0)

then

(2.5) ||u(t)||2 ≤ C(1 + t)−ᾱ, ᾱ = min{α0,
n+2

4 }

and ||u(t) − et∆a||2 = o(t−α0) if 0 ≤ α0 <
n+2

4 . Thus, (2.5) is optimal for such
low decay rates. As pointed out in [41], (2.5) holds even if u does not satisfy (2.3)
(and it may be the case, if n ≥ 5), but can be suitably approximated by functions
satisfying (2.3). Since this is true in any space dimension, Wiegner’s result is
meaningful also for n ≥ 5.

A simple consequence of [41] is the following: if a ∈ L2(Rn) (n ≥ 2) satisfies

(2.6)
∫
|a(x)|(1 + |x|) dx <∞,

then there exists a weak solution of (NS) such that u(0) = a and ||u(t)||2 ≤ C(1 +
t)−(n+2)/4. As it is easy to check, this relies on the fact that the diverge-free
condition implies the cancellation

∫
a(x) dx = 0.

We now recall a characterization by Miyakawa and Schonbek of the exceptional
solutions which decay faster than predicted by Wiegner.

Theorem 2.1 ([28]). Let a ∈ L2(Rn) (n ≥ 2) a soleinoidal vector field satisfy-
ing (2.6) and let u be a weak solution to the Navier–Stokes equations such that
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||u(t)||2 ≤ C(1 + t)−(n+2)/4. We set

(2.7) bh,k =
∫
xhak(x) dx and Λh,k =

∫ ∞

0

∫
(uhuk)(x, t) dx dt

(h, k = 1 . . . , n). Then we have

(1) If (bh,k) ≡ 0 and if there exists C ∈ R such that Λh,k = Cδh,k, then

(2.8) lim
t→∞

t
n+2

4 ||u(t)||2 = 0.

(2) Conversely, if (bh,k) 6≡ 0 or (Λh,k) is not scalar, then

(2.9) lim inf
t→∞

t
n+2

4 ||u(t)||2 > 0.

As the authors themselves observe, nothing is known about the solutions satis-
fying Λh,k = Cδh,k. In particular, they provided as an example just the classical
two-dimensional flow with radial vorticity: let us recall that such flow is defined in
the phase space by û(ξ, t) = (−iξ2, iξ1)|ξ|−2e−t|ξ|2 ω̂0(ξ), where ω̂0 is a smooth and
compactly supported radial function, such that ξ = 0 does not belong to supp(ω̂0).

In this section we will show that part 1 of Theorem 2.1 is non-vacuous in any
space dimension n ≥ 2.

It seems natural to look for solutions with fast decay by studying the class of
initial data which satisfy the following orthogonality relations:

(2.10)
∫
ah(x)ak(x) dx = cδh,k (h, k = 1, . . . , n).

The main difficulty arises from the fact that (2.10), in general, instantaneously
brakes down during the evolution. We refer to [4] for an example.

This leads us to consider the following sub-class of (2.10).

Definition 2.2. We say that a vector field a = (a1, . . . , an) : Rn → Rn is sym-
metric if the the following conditions are satisfied, for all j, k = 1, . . . , n.

aj is odd with respect to xj and even with respect to xk, j 6= k(2.11)

a1(x) = a2(σx) = . . . = an(σn−1x),(2.12)

where σ is the cycle σ(x1, . . . , xn) = (xn, x1, . . . , xn−1).

In the case of two and three-dimensional periodic flows, similar symmetries have
been considered by S. Kida [18], with completely different motivations. See also [5]
for a geometric interpretation of (2.11)-(2.12) and more general class of symmetries.

A simple three dimensional example of a symmetric and soleinoidal vector field
is given by

(2.13) a(x1, x2, x3) =

 x1(x2
3 − x2

2)e
−|x|2

x2(x2
1 − x2

3)e
−|x|2

x3(x2
2 − x2

1)e
−|x|2

 .

This example generalizes in an obvious manner to any dimension n ≥ 3:

(2.14) ah(x1, . . . , xn) = xh(x2
h−1 − x2

h+1)e
−|x|2 , h = 1, . . . , n (n ≥ 3).

Here we posed x0 = xn and xn+1 = x1.
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A simple two-dimensional example is:

(2.15) a(x1, x2) =
(

(x3
1 − 3x1x

2
2)e

−|x|2 − 2(x3
1x

2
2 − x1x

4
2)e

−|x|2

(x3
2 − 3x2

1x2)e−|x|
2 − 2(x2

1x
3
2 − x4

1x2)e|x|
2

)
.

These examples were first considered in [4], in order to show that there is no in-
stantaneous spatial spreading of the velocity field, in general, when (2.10) hold.

We now state a simple but important result concerning the existence of symmet-
ric weak solutions to the Navier–Stokes equations.

Theorem 2.3. Let a ∈ L2(Rn) (n ≥ 2) be a soleinoidal vector field. If a satis-
fies (2.11) (respectively, (2.12)) then there exists a weak solution u(t) to (NS) which
satisfies (2.11) (respectively, (2.12)) for all t ≥ 0.

In particular, for any n ≥ 2 we can find u(x, t) 6≡ 0 satisfying (2.8).

The proof is straightforward and we will only sketch it. We will just follow
the retarded mollifier method of Caffarelli, Kohn and Nirenberg [7] (see also [19],
for the general case n ≥ 2) with slight modifications, in order to ensure that the
symmetries are conserved at any step of their construction. We would obtain the
same result by following other constructions of weak solutions, such as that of [34]
or [16].

Proof. We start by stating simple algebraic properties of symmetric vector fields
in the Hilbert spaces L2(Rn) and Ḣ1(Rn) (the homogeneous Sobolev space). We
denote by S(i) the class of functions f : Rn → Rn which satisfy (2.11), and by S(ii)

the class of functions for which (2.12) holds.
Then we have:

Lemma 2.4. Let S be S(i) or S(ii). All functions f : Rn → Rn can be decomposed
into

f = fS + (f − fS),

where fS ∈ S, and

fS⊥(f − fS) in Ḣ1(Rn), if f ∈ Ḣ1(Rn)(2.16)

fS⊥(f − fS) in L2(Rn), if f ∈ L2(Rn)(2.17)

Proof. The proof in the case S = S(i) is trivial. Let us consider the case S = S(ii).
If n = 2, the decomposition simply reads:(
f1(x1, x2)
f2(x1, x2)

)
=

1
2

(
f1(x1, x2) + f2(x2, x1)
f1(x2, x1) + f2(x1, x2)

)
+

1
2

(
f1(x1, x2)− f2(x2, x1)
−f1(x2, x1) + f2(x1, x2)

)
.

In the general case the decomposition can be performed by choosing:

(2.18) fS(x) =
1
n


f1(x) + f2(σx) + · · ·+ · · ·+ fn(σn−1x)
f1(σx) + f2(σ2x) + · · ·+ fn(x)

· · ·
f1(σn−1x) + f2(x) + · · ·+ fn(σn−2x)

 .

The orthogonality of fS and f − fS , both in L2(Rn) and in Ḣ1(Rn) is simple to
check. �
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In the next lemma we show the symmetries (2.11)-(2.12) are invariant under the
linearized Navier–Stokes evolution. We shall adopt the classical notations of [36]:
we thus denote by V the closure in Ḣ1(Rn) of the set V of all smooth, compactly
supported and divergence-free vector fields. The closure of V in L2(Rn) will be
denoted by H.

Lemma 2.5. Let T > 0 and a ∈ L2(Rn) a soleinoidal vector field. Let W =
(W1, . . . ,Wn) a bounded and divergence-free vector field in C∞(Rn×]0, T [). Then
we know that there exists a unique function u and a distribution p such that

u ∈ C([0, T ],H) ∩ L2(]0, T [, V )(2.19)

∂tu+ (W · ∇)u−∆u = −∇p(2.20)

in the distributional sense and such that u(0) = a. If both a and W (t) belong to S
(S = S(i) or S(ii)) for all t ∈]0, T [, than this property holds true also for u(t).

In the setting of Lemma 2.5, (2.20) means that

d

dt
(u, v) + (W · ∇u, v) + ((u, v)) = 0

for all v ∈ V , where (u, v) =
∫
u(x) · v(x) dx and ((u, v)) =

∑n
j=1(∂ju, ∂jv).

Proof. The solution u is obtained by the Faedo-Galerkin scheme. We refer to [7]
for a proof. Let VS = V ∩ S and ṼS the complement of VS in V . Let us denote by
HS and H̃S , respectively, the closure of VS and ṼS in H. Thus,

(2.21) V = VS ⊕ ṼS and H = HS ⊕ H̃S ,

where the orthogonality in H follows from Lemma 2.4.
In constructing the Galerkin approximations of u(t), we may choose an orthonor-

mal basis of V such that all vectors belong to VS or ṼS . By our hypotheses, the
operator W · ∇ is bounded from VS to L2(Rn)∩ S. Thus, by (2.21), when a ∈ HS ,
the Galerkin approximations (um(t)) (m = 1, 2 . . .) still belong to S for all t ∈]0, T [.
Passing to the limit for m→∞ yields u(t) ∈ S for all t. �

We can now outline the proof of Theorem 2.3. As before, we just indicate the
necessary modifications of the classical construction in order to get the symmetries.
For more details on the classical construction we refer to [7] and [19].

For each integer N ≥ 1 and u ∈ L∞(]0, T [,L2(Rn)) we consider the retarded
mollification of u:

ΨN (u) =
1

δn+1

∫ ∫
ψ(y

δ ,
τ
δ )ũ(x− y, t− τ) dy dτ, δ = 1

N .

As in [7] and [19], ψ is a smooth, non-negative function, such that∫ ∫
ψ(x, t) dx dt = 0

and suppψ ⊂ {(x, t) : |x|2 < t, 1 < t < 2}. Moreover, ũ(x, t) = u(x, t) if t ≥ 0 and
ũ(x, t) = 0 if t < 0.
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We now define the approximate solution uN of (NS) (N = 1, 2 . . .) as the solution
of the system

(NSN )

 ∂tuN + (ΨN (uN ) · ∇)uN −∆uN = −∇pN

div(uN ) = 0 (x, t) ∈ Rn × [0, T [.
uN (0) = a,

Note that (NSN ) can be solved subsequentely on the intervals [(k − 1)δ, kδ] (k =
1, . . . , N). Thus, solving (NSN ), is equivalent to solve N linear equations of the
form (2.20).

We now would like to show that uN is symmetric. But this seems not to be the
case under the previous assumptions on ψ. However, we can take ψ(x, t) which, in
addition, is radial in Rn for all t. Thus, a trivial computation shows that if u(s) ∈ S
for all s ∈]t− 2δ, t− δ[, then Ψ(u)(t) also belons to S, for all t. By Lemma 2.5, we
get uN (t) ∈ S for all t ∈]0, T [.

Usual a priori estimates and embedding theorems imply the existence of a subse-
quence uN ′ of uN which converges (e.g., weakly in L2(]0, T [, V )) to a weak solution
of the Navier–Stokes equations. Hence u(t) ∈ S for almost all t > 0. But, since
weak solutions are weakly continuous in L2(Rn), u(t) is symmetric for all t ≥ 0.

The second conclusion of Theorem 2.3 is now an immediate consequence of The-
orem 2.1. Indeed, let us start with the symmetric initial data (2.14) or (2.15).
Obviously, (2.6) holds and

∫
xhak(x) dx = 0 (h, k = 1, . . . , n). On the other hand,

the solution constructed in the first part of the proof of Theorem 2.3 satisfies∫
(uhuk)(x, t) dx = c(t)δh,k for all t ≥ 0 (because of the symmetries). All the

assumptions of Theorem 2.1 are satisfied and (2.8) follows. �

Remark 2.6. Recall that, for a n-dimensional vector field a, the corresponding vor-
ticity field is given by the n×n antisymmetric matrix Ω = ∇a−(∇a)∗. In the sym-
metric case, Ωh,k(x) is an odd function with respect to xh and xk (h, k = 1, . . . , n).
It follows that nontrivial symmetric flows have nonradial vorticity. Thus, sym-
metric solutions are not the natural generalization of the two-dimensional solution
described in [30], [10], [28], but they are quite different flows.

Moreover, a tedious but elementary computation shows that if a is defined by
(2.15) or (2.13), then ∇·(a⊗a) has not the potential form. Thus, the corresponding
solution of (NS) cannot solve simultaneously the heat equation.

3. Decay estimates for symmetric solutions

In this section we obtain some explicit decay rates for the L2-norm of symmetric
solutions. More generally, se shall study the class of solutions such that

(3.1)
∫
uh(x, t)uk(x, t) dx = c(t)δh,k for almost all t > 0.

Let us observe that we are not able to characterize the initial data such that
(3.1) holds true, at least for a suitable weak solution.

We prefer to deal with (3.1), and not with the slightly more general assumption

(3.2)
∫ ∞

0

∫
uh(x, t)uk(x, t) dx dt = Cδh,k

contained in Theorem 2.1, for the following reason: conditions (3.1) are invariant
under the translations τ 7→ u(t+τ). This is obviously the case also for the condition
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||u(t)||2 = o(t−(n+2)/4), but, on the other hand, (3.2) is not invariant. For a detailed
discussion on this point, and the description of a method (very different from ours)
to overcome this type of difficulties, we refer to [13], [14].

We now state our main result of this section:

Theorem 3.1. (1) Let a ∈ L2(Rn) (n = 3, 4) a divergence-free vector field such
that

∫
|x|2|a(x)|2 dx <∞ and ||et∆a||2 ≤ C(1 + t)−α0 , with α0 >

n+2
4 . Then there

exists a weak solution u of (NS), such that u(0) = a and
∫
|x|2|u(x, t)|2 dx <∞ for

all t ≥ 0. If

(3.3)
∫
uh(x, t)uk(x, t) dx = c(t)δh,k, a.e. in ]0,∞[,

then ||u(t)− et∆a||2 = O(t−(n+4)/4) as t→∞. In particular,

(3.4) ||u(t)||2 ≤ C(1 + t)−ᾱ, with ᾱ = min{α0,
n+4

4 }.
(2) Furthermore, if

∫
|x|3|a(x)|2 dx < ∞, then

∫
|x|3|u(x, t)|2 dx < ∞ for all

t ≥ 0. In this case, if α0 >
n+4

4 and if u also satisfies∫
xkuk(x, t)uk(x, t) dx =

∫
xkuh(x, t)uh(x, t) dx(3.5) ∫

xjuh(x, t)uk(x, t) dx = 0, h 6= k(3.6)

for all j, h, k = 1, . . . , n and almost all t > 0, then ||u(t) − et∆a||2 = O(t−(n+6)/4)
as t→∞. Thus, (3.4) is improved by

(3.7) ||u(t)||2 ≤ C(1 + t)−ᾱ, with ᾱ = min{α0,
n+6

4 }.
A few comments are in order:

Remark 3.2. The result about the persistence of the conditions |x|a ∈ L2(Rn) and
|x|3/2a ∈ L2(Rn) is due to [31] and [16]. The simplest examples of data such that
||et∆a||2 ≤ C(1 + t)−α0 are obtained by taking â(ξ) ∈ L2(Rn), with a suitable
vanishing condition for ξ = 0.

Let us also observe that, if a ∈ L2(Rn), then the assumption ||et∆a||2 ≤ C(1 +
t)−α0 is equivalent to

(3.8) a ∈ L2(Rn) ∩ Ḃ
−2α0,∞
2 (Rn) (α0 > 0)

where Ḃ
−2α0,∞
2 (Rn) is the homogeneus Besov space. We refer to the appendix for

a definition of Besov spaces and to [6] for a proof this characterization. Here α is
a parameter which is essentially related to the oscillations of a.

Remark 3.3. We observe that if u(t) is a symmetric vector field, then for all
(j, h, k) ∈ {1, . . . , n}3, x 7→ xjuhuk(x, t) is an odd function with respect to at
least one variable. Thus, all the integrals contained in (3.5)-(3.6) vanish and the
second part of the theorem is non-vacuous. As we will see below, however, the
vanishing of

∫
xku

2
k(x, t) dx (k = 1, . . . , n) would not be necessary.

Remark 3.4. We point out that this theorem implies also the existence of solutions
u such that ||u(t)||2 = o(t−(n+2)/4), but which do not satisfy the conditions of the
theorem of Miyakawa and Schonbek (the same remark is done in [14]). Indeed,
Theorem 2.1, relies on the assumption

(3.9)
∫
|a(x)|(1 + |x|) dx <∞,
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which is slightly more restrictive than |x|a ∈ L2(Rn), at least from the localization
point of view.

An important difference between this last condition and (3.9) is that the former
is conserved for all t (see below, or [16], [31]), while the second, in general, is
not. More exactly, as shown in [3], (3.9) instantaneously brakes down, unless the
orthogonality relations

(3.10)
∫
ah(x)ak(x) dx = cδh,k (h, k = 1, . . . , n)

hold.

Proof of Theorem 3.1. The finiteness and the decay of the first order moments of
|u(x, t)|2 was studied e.g. in [31], [16] and [10]. In particular, it is now well known
that the moments of |u(x, t)|2 are finite up to the order 3 (at least when n = 3, 4), if
the datum belongs to the corresponding wheighted L2-spaces. To be more precise,
we recall that if (1 + |x|)a ∈ L2(Rn), then there exists a weak solution u which
satisfies the energy inequality (2.3) and such that supt≥0 ||(1 + |x|)u(t)||2 < ∞.
Moreover, if we also have (1 + |x|3/2)a ∈ L2(Rn), then there exists a constant C
such that

(3.11)
∫

(1 + |x|3)|u(x)|2 dx ≤ C log(2 + t).

We refer to [16] for a detailed proof in the case n = 3, and to [10] for n = 3, 4 (see also
[31]). There it is also shown that it would be possible to get rid of the logarithmic
factor in (3.11), under some supplementary assumptions on the localization of the
data, which we will not need in the sequel.

By Hölder’s inequality,∫
|x| |u(x, t)|2 dx ≤

(∫
|u(x, t)|2 dx

)1/2(∫
|x|2|u(x, t)|2 dx

)1/2

.

Thus, by (2.5) we get

(3.12)
∫ ∞

0

∫
|x| |u(x, t)|2 dx dt <∞.

We now follow Schonbek’s approach [29] and we bound the energy of u by split-
ting ||û(·, t)||22 into two time dependent domains, namely

∫
|ξ|≤g(t)

|û(ξ, t)|2 dξ and∫
|ξ|≥g(t)

|û(ξ, t)|2 dξ. As in [29], we will choose

(3.13) g(t) =
√
α(1 + t)−1/2,

where α > 0 is a large constant.
The first of these two terms is treated in the next lemma.

Lemma 3.5. Under the assumption (3.3) we have:

(3.14)
∫
|ξ|≤g(t)

|û(ξ, t)|2 dξ ≤ C
[
||et∆a||22 + g(t)n+4

]
.

If (3.5)-(3.6) also hold, then

(3.15)
∫
|ξ|≤g(t)

|û(ξ, t)|2 dξ ≤ C
[
||et∆a||22 + g(t)n+6

]
.
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Proof. Taking the Fourier transform of the j-component (j = 1, . . . , n) of the
Navier-Stokes equation in its integral form yields

(3.16) ûj(ξ, t) = e−t|ξ|2 âj(ξ)− i
∫ t

0

e−(t−s)|ξ|2
n∑

h,k=1

ξh

(
δj,k −

ξjξk
|ξ|2

)
ûhuk(ξ, s) ds.

This is justified by the application of the Plancherel theorem and a simple limiting
argument, choosing in (2.2) φ in the following way:

(3.17) φ̂(ξ, s) = e−(t∗−s)|ξ|2 φ̂0(ξ) (0 ≤ s ≤ t),

for any fixed t and t∗ (0 < t < t∗), where φ0 ∈ C∞0 (Rn) is an arbitrary soleinoidal
smooth vector field. We refer to [41] for the details of this argument (see also [30]).

By (3.3), we have

(3.18) ûhuk(ξ, t) = c(t)δh,k + ξ ·
∫ 1

0

∇ûhuk(ξθ, t) dθ, a.e. in ]0,∞[,

for all h, k = 1, . . . , n. Here the application of the Taylor formula is justified
by (3.12).

But, for any fixed j (j = 1, . . . , n),
n∑

h,k=1

ξh(δj,k − ξjξk|ξ|−2)δh,k =
n∑

k=1

ξkδj,k − ξj ≡ 0

Hence, (3.16) and (3.18) yield

ûj(ξ, t) = e−t|ξ|2 âj(ξ)

− i
∫ t

0

∫ 1

0

e−(t−s)|ξ|2
n∑

h,k=1

ξh

(
δj,k −

ξjξk
|ξ|2

)
ξ · ∇ûhuk(ξθ, s) ds dθ.

(3.19)

Thus, |û(ξ, t)| ≤ e−t|ξ|2 |â(ξ)|+C|ξ|2
∫∞
0

∫
|x| |u(x, s)|2 dx ds and (3.14) immediately

follows.
The proof of (3.15) is very similar, but we have to postpone it, since it is a

consequence of the first part of Theorem 3.1 (namely, estimate (3.4)). �

As in [41], Schonbek’s Fourier splitting idea will be used with the integrated
equation. We have

(3.20) ||∇u(t)||22 ≥ g(t)2
∫
|ξ|≥g(t)

|û(ξ, t)|2 dξ = g(t)2||u(t)||22 − β(t),

where

(3.21) β(t) = g(t)2
∫
|ξ|≤g(t)

|û(ξ, t)|2 dξ.

Integrating this inequality and (2.3) yield

(3.22) ||u(t)||22 +
∫ t

s

g(r)2||u(r)||22 dr ≤ ||u(s)||22 +
∫ t

s

β(r) dr

for s = 0, almost all s > 0 and all t ≥ s.
We now state the following lemma (we use the same notations as in [41]).
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Lemma 3.6. Let g(t), y(t) and β(t) be three functions defined on [0,∞[, such that
g is smooth, y(t) ≥ 0, β(t) ≥ 0, y is locally bounded and β is locally integrable.
Assume that (after suitable modification of the values of y(t) on a set of measure
zero)

(3.23) y(t) +
∫ t

s

g(r)2y(r) dr ≤ y(s) +
∫ t

s

β(r) dr

holds for s = 0, almost all s > 0 and all t ≥ s. Let also e(t) = exp(
∫ t

0
g(r)2 dr).

Then,

y(t)e(t) ≤ y(0) +
∫ t

0

e(r)β(r) dr for all t ≥ 0.

Proof. This lemma is implicit in Wiegner’s paper [41], but we give the proof for
reader’s convenience.

Let us fix T > 0 and consider t and h such that h ≥ 0, t− h ≥ 0 and t ≤ T . We
start observing that, by Taylor’s formula,

e(t)− e(t− h) = e(t− h)
∫ t

t−h

g(r)2 dr + εt(h),

where |εt(h)| ≤ C0(T )h2, for some positive constant C0(T ) and all t ∈ [0, T ]. Then,
for almost all h,

y(t)e(t)− y(t− h)e(t− h)

= y(t)e(t− h)
∫ t

t−h

g(r)2 dr + e(t− h)(y(t)− y(t− h)) + y(t)εt(h).(3.24)

Using y(t) − y(t − h) ≤ −
∫ t

t−h
g(r)2y(r) dr +

∫ t

t−h
β(r) dr, we see that the right

hand side of (3.24) is bounded by

e(t− h)
∫ t

t−h

(y(t)− y(r))g(r)2 dr + e(t− h)
∫ t

t−h

β(r) dr + C1(T )h2.

But,
∫ t

t−h
(y(t)− y(r))g(r)2 dr ≤ C2(T )h

∫ t

t−h
β(τ) dτ. Thence,

y(t)e(t)− y(t− h)e(t− h) ≤ C3(T )h
∫ t

t−h

β(r) dr +
∫ t

t−h

e(r)β(r) dr + C1(T )h2.

The conclusion of Lemma 3.6 immediately follows by summation, letting h→ 0. �

Choosing y(t) = ||u(t)||22 , g as in (3.13) and β as in (3.21), we get

(3.25) ||u(t)||22(1 + t)α ≤ ||a||22 +
∫ t

0

(1 + s)αβ(s) ds.

By (3.14), β(s) is bounded by Cα(1+s)−1[(1+s)−2α0 +(1+s)−(n+4)/2]. Now (3.4)
immediately follows, by choosing α > (n+ 4)/2.

We now come to the proof of (3.15) and (3.7). Let us take α0 >
n+4

4 . Since∫
|x|2|u(x, t)|2 dx ≤

(∫
|u(x, t)|2 dx

)1/3(∫
|x|3|u(x, t)|2 dx

)2/3

,
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by (3.4) and (3.11) we get

(3.26)
∫ ∞

0

∫
|x|2 |u(x, t)|2 dx dt <∞.

Then, by Taylor’s formula,

ûhuk(ξ, t) = c(t)δh,k +
n∑

i=1

ξi∂iûhuk(0, t)

+
∑
|γ|=2

ξγ

∫ 1

0

2(1− θ)
γ!

∂γ ûhuk(θξ, t) dθ.(3.27)

We claim that under the assumptions (3.5)-(3.6) the identities

(3.28)
n∑

i,h,k=1

ξiξh(δj,k − ξjξk|ξ|−2)∂iûhuk(0, t) ≡ 0 (j = 1, . . . , n)

hold true, for almost all t ∈]0,∞[. Then, (3.15) follows from (3.16), (3.27) and
(3.28), by the same argument that we used to get (3.14).

Our claim is an immediate consequence of the following very simple lemma.

Lemma 3.7. Let µihk ∈ R (i, h, k = 1, . . . , n), such that

µihk = µikh for all i, h, k = 1, . . . , n.

Then the two following conditions are equivalent:
(1)

(3.29)
n∑

i,h,k=1

µihkξiξjξhξk =
n∑

i,h=1

µihjξiξh|ξ|2 for all ξ ∈ Rn and j = 1, . . . , n

(2) the coefficients µihk satisfy

µkkk = µkhh (h, k = 1, . . . , n)(3.30)
µihk = 0 for all h 6= k (i, h, k = 1, . . . , n).(3.31)

Proof. This is elementary: indeed, if (3.29) holds, then for any j the polynomial∑n
i,h=1 µihjξiξh is divisible by ξj . Hence, µihj = 0 if i 6= j and h 6= j. Further,

µhhj = µhjh = 0 if h 6= j. This gives (3.31). But from (3.31) and (3.29) we
immediately get (3.30).

Proving that (3.30) and (3.31) imply (3.29) is an obvious computation. �

We are now in position to prove (3.7). From (3.15) and (3.21) we get an improved
bound for β. Indeed, β(s) ≤ Cα(1+s)−1[(1+s)−2α0 +(1+s)−(n+6)/2]. Conclusion
(3.7) now follows from (3.25).

To finish the proof of Theorem 3.1 we now have to show that the decay rates (3.4)
and (3.7) are optimal. This will be done by showing that, under the assumptions
of the first part of Theorem 3.1, we have

||u(t)− et∆a||2 = O(t−(t+4)/4) as t→∞.

Further, we have to show that

||u(t)− et∆a||2 = O(t−(t+6)/4), (t→∞)
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under the supplementary conditions (3.5)-(3.6).
To do this, we will use a well known strategy (see e.g. [29], [19], [41]): we replace

u(t) with D(t) = u(t) − et∆a and we proceed along the same lines. Note that D
satisfies an energy inequality (in slightly modified form):

||D(t)||22 +
∫ t

s

||∇D(r)||22 dr ≤ ||D(s)||22 +
∫ t

s

||u(r)||22 ||er∆a||2∞ dr

for almost all s ≥ 0 and all t ≥ s (see [41]).
Let us choose g as in (3.13). Next we observe that∫

|ξ|≤g(t)

|D̂(ξ, t)| dξ ≤ Cg(t)n+4

(and the better bound
∫
|ξ|≤g(t)

|D̂(ξ, t)| dξ ≤ Cg(t)n+6 holds, under the assumptions
of the second part of Theorem 3.1).

Then, conclusion ||D(t)||2 ≤ C ′(1 + t)−(t+4)/4 (respectively, ||D(t)||2 ≤ C ′(1 +
t)−(t+6)/4) follows applying Lemma 3.6 with

y(t) = ||D(t)||22 and β(t) = ||u(t)||22 ||et∆a||2∞ +
∫
|ξ|≤g(t)

|D̂(ξ, t)| dξ.

This completes the proof of Theorem 3.1.

4. Pointwise estimates of strong solutions

In this section, motivated by previous results of Takahashi [35], Miyakawa [26],
He and Xin [16] and Amrouche et. al. [1] we want construct global strong solutions
u to the Navier–Stokes equations with profiles at infinity of the form

(4.1) |u(x, t)| ∼ |x|−αt−β/2,

for any α ≥ 0, β ≥ 0 such that α+ β = γ and 1 ≤ γ ≤ n+ 3.
The existence of such solutions is already known in many important situations,

namely the under-critical case 1 ≤ γ ≤ n + 1 (see the the previously cited papers
and the remarks below). To deal with the case γ > n + 1, we will use symmetric
initial data.

It should be emphasized that the existence of solutions with profile (4.1), in
the special situation α = 0 and n + 1 < β ≤ n + 3 immediately follows from
Theorem 3.1 and the results of [1]. Indeed, Amrouche et al. prove that, under
suitable assumptions on the data, ||u(t)||∞ ≤ C(1 + t)−n/4||u(t)||2 (2 ≤ n ≤ 5).
Moreover, decay estimates for the spatial derivatives of u would also follow from
[1] but, for sake of simplicity, we will not discuss such estimates in this paper.

However, in the case α > 0, profiles (4.1) are not a consequence of the results of
[1]. Further, we want to derive (4.1) in any space dimension.

To prove (4.1) we will apply the fixed point theorem to the integral form of (NS),
in some L∞-weighted subspaces of C([0,∞[,Ln

w(Rn)) (here, Ln
w = Ln,∞ denotes the

weak Ln space). This approach have already been used in [26].
Recall that the integral formulation of (NS) reads

(IE) u(t) = et∆a−
∫ t

0

e(t−s)∆P∇ · (u⊗ u)(s) ds.
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Here et∆P∇ is a convolution operator and the components of its kernel F (x, t) are
given by

(4.2) F̂jhk(ξ, t) = iξhe−t|ξ|2(δj,k − ξjξk|ξ|−2).

We will prove the following:

Theorem 4.1. Let 1 ≤ γ ≤ n + 3 and let a be a divergence-free vector field such
that

(4.3) (1 + |x|)γa(x) ∈ L∞(Rn).

If γ = n, n+ 1, n+ 2 or n+ 3 we also assume

(4.4) sup
x∈Rn,t≥0

(1 + |x|)γ |et∆a(x)| <∞.

In the case γ = n, we also suppose that tn/2|et∆a(x)| is uniformly bounded in x
and t.

When n+ 1 < γ ≤ n+ 3, we assume a to be symmetric.
Then, there exists an absolute constant η > 0 with the following property. If

(4.5) sup
x∈Rn

|x| |a(x)| < η,

then there exist a constant C and a solution u of (IE) such that u(0) = a (e.g. in
the distributional sense) and

(4.6) |u(x, t)| ≤ C(1 + |x|)−γ , |u(x, t)| ≤ C(1 + t)−γ/2.

Remark 4.2. Conclusion (4.6) is due to [26] in the case 1 ≤ γ ≤ n+1 (see also [35],
for the case 1 ≤ γ ≤ n and [16], for γ = n, n + 1). The result in the over-critical
case γ > n + 1 was announced in [3], but the proof was only sketched. A recent
proof in the case γ = n+ 3 (under slightly more stringent assumptions), based on
the ideas of [3], is contained in [27].

We also recall that if u(x, t) is a solution to the Navier–Stokes equations, then
the same is true for uλ(x, t) = λu(λx, λ2t) (λ > 0). But the smallness assumptions
of [26], [16], [1], [3] and [27] are not invariant under this natural scaling. On the
other hand, (4.5) is invariant.

Remark 4.3. The solution is unique in C([0,∞[,L∞γ (Rn)), where L∞γ (Rn) is the
space of all functions f such that (1+|x|)γf(x) ∈ L∞(Rn) and the continuity in t = 0
is defined in the distributional sense (as it is usually done in non-separable spaces).
The proof of the continuity with respect to the time variable is straightforward and
will be omitted (the standard argument is described e.g. in [24]).

The proof of Theorem 4.1 will be based on three lemmata, which are useful to
describe the space-time decay of the linear evolution et∆a(x). The first lemma
gives examples of initial data satisfying (4.4) and explain why the assumptions of
Theorem 4.1 are slightly more stringent in the particular cases γ = n, n+ 1, n+ 2,
and n+ 3.

Lemma 4.4. Let a such that (1 + |x|)γa(x) ∈ L∞(Rn). We set I(r) = [r] (the
integer part), for any noninteger real number r, and I(r) = r − 1 if r is integer.

(1) If 1 ≤ γ < n then, for some constant C > 0,

(4.7) sup
t≥0

|et∆a(x)| ≤ C(1 + |x|)−γ
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Estimate (4.7) holds true when γ ≥ n, provided that (1+ |x|)γ−na ∈ L1(Rn)
and the moments of a vanish up to the order I(γ − n).

(2) For γ ≥ 1 and γ 6= n, let a be such that (4.7) holds. Then

(4.8) sup
x∈Rn

|et∆a(x)| ≤ C ′(1 + t)−γ/2

Conclusion 1 is well known: see e.g. [26]. Conclusion 2 is slightly more deeper
and follows from the theory of weak Hardy and Besov spaces. In the appendix we
will provide a proof of this second statement, which is a straightforward adaptation
of an argument due to [25] and [26].

In Theorem 4.1 we made no assumptions on the moments of a. Actually, these as-
sumptions are implicit for localized symmetric and soleinoidal vector fields. Indeed
the divergence-free condition implies many conditions on the higher-order moments
of a:

Lemma 4.5. Let m ∈ N and let a be a soleinoidal vector field such that (1+|x|)ma ∈
L1(Rn). Then, for any α = (α1, . . . , αn) ∈ Nn such that 1 ≤ |α| ≤ m+ 1, we have

(4.9) α1

∫
xα1−1

1 xα2
2 . . . xαn

n a1(x) dx+ · · ·+ αn

∫
xα1

1 xα2
2 . . . xαn−1

n an(x) dx = 0.

In particular,

(4.10)
∫
aj(x) dx =

∫
xjaj(x) dx = . . . =

∫
xm

j aj(x) dx = 0

and, if m ≥ 1,

(4.11)
∫
xhak(x) dx = −

∫
xkah(x) dx (h, k = 1, . . . , n).

Conditions (4.10) and (4.11) are due to Truesdell (see [37]), at least for three-
dimensional vector fields. The general conditions (4.9) are not so much known,
but they can be probably deduced from the slightly more difficult Truesdell’s iden-
tities after some computations (and conversely). Here we give a more direct and
elementary proof of (4.9), using the Fourier transform.

Proof. We start observing that, for ` = 0, 1 . . . ,m we have

(4.12)
n∑

h=1

∑
|γ|=`

ξγξh
γ!

∂γ âh(ξ) ≡ 0

(here we use the notations introduced in (1.4)). Indeed, this is obvious for ` = 0.
The general case follows by induction on m: for any fixed k = 1, . . . , n, let ek =
(0, . . . , 1, . . . , 0) be the k-th vector of the canonical base in Rn. If γ = (γ1, . . . , γn) ∈
Nn and |γ| ≤ m− 1 then we have:

∂k

( n∑
h=1

ξγξh∂
γ âh(ξ)

)
= ξγ∂γ âk(ξ) +

n∑
h=1

γkξ
γ−ekξh∂

γ âh(ξ) +
n∑

h=1

ξγξh∂
γ∂kâh(ξ).

Multiplying this expression by ξk/γ! and summing on k and γ yields, by induction,
(4.13)

0 =
n∑

k=1

∑
|γ|=`

ξγξk
γ!

∂γ âk(ξ)+
n∑

h,k=1

∑
|γ|=`

γkξ
γξh
γ!

∂γ âh(ξ)+
n∑

h,k=1

∑
|γ|=`

ξγξhξk
γ!

∂γ∂kâh(ξ).
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If (4.12) holds true for all ` (0 ≤ ` ≤ m − 1), then we see that the two first terms
on the right hand side of (4.13) vanish. But,

n∑
k=1

∑
|γ|=`

ξkξ
γ

γ!
∂γ∂kâh(ξ) ≡ (`+ 1)

∑
|β|=`+1

ξβ∂β

β!
âh(ξ).

Thus, (4.12) holds true also for ` = m.
Now, if a ∈ L1(Rn, (1 + |x|m)dx), the left hand side in (4.12) is a continuous

function in ξ, for all ` = 0, . . . ,m. Taking ξ = rη, η ∈ Rn, |η| = 1 and r → 0, we
get

n∑
h=1

∑
|γ|=`

∂γ âh(0)
γ!

ηγηh = 0, |η| = 1, ` = 0, . . . ,m

and the vanishing of this homogeneous polynomial is equivalent to (4.9).
Choosing α = (0, . . . , ` + 1, . . . , 0) (with ` = 0, . . . ,m) yields (4.10). In order

to see that
∫
xhak(x) dx is skew-symmetric, we just take α = eh + ek (h, k =

1, . . . , n). �

The following lemma is now immediate:

Lemma 4.6. Under the assumptions of Theorem 4.1 we have, for any 1 ≤ γ ≤
n+ 3,

sup
t≥0

|et∆a(x)| ≤ C(1 + |x|)−γ , and(4.14)

sup
x∈Rn

|et∆a(x)| ≤ C(1 + t)−γ/2.(4.15)

Proof. Indeed, this is obvious for γ = n and it is a consequence of Lemma 4.4 for
γ 6= n. To apply Lemma 4.4, observe that the vanishing of

∫
a(x) dx (when γ > n),

as well as the vanishing of
∫
xjaj(x) dx (when γ > n+ 1) comes from Lemma 4.5.

On the other hand, the vanishing of the integrals
∫
xjak(x) dx (j 6= k) comes from

the symmetry of a. When n + 2 < γ ≤ n + 3, the vanishing of
∫
xjxhak(x) dx

(j, h, k = 1, . . . , n) is an immediate consequence of the symmetries as well. �

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. We first consider the case γ = 1. By (4.3), (4.5) and a
rescaling argument, we can assume that supx(1 + |x|)|a(x)| is small (if necessary,
we replace a(x) by λ0a(λ0x), with a suitable λ0 > 0).

Our solution to (IE) will be constructed applying the standard fixed point argu-
ment in the space defined by (4.16) below. To do this, let us introduce the bilinear
operator

B(u, v)(t) =
∫ t

0

e(t−s)∆P∇ · (u⊗ v) ds.

Then we define the approximate solutions u(0) = et∆a, u(k+1) = et∆a−B(u(k), u(k))
(k = 1, 2, . . .).

Let us show that B is bounded on the space of functions such that

(4.16) sup
x,t

(1 + |x|)|u(x, t)| <∞ and sup
x,t

(1 + t)1/2 |u(x, t)| <∞.
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This is due to [26] and it follows from some well known decay properties of the
kernel F . Indeed, by (4.2) we have

|F (x, t)| ≤ C|x|−(n+1), |F (x, t)| ≤ Ct−(n+1)/2,(4.17)

||F (·, t)||1 ≤ Ct−1/2, F (x, t) = t−(n+1)/2F (xt−1/2, 1)(4.18)

(see e.g. [26]). Then the bound

(4.19) sup
x,t

(1 + |x|) |B(u, v)(x, t)| <∞

easily follows by splitting B(u, v)(t) into
∫ t

0

∫
|y|≤|x|/2

F (x−y, t−s)(u⊗v)(y, s) dy ds
and

∫ t

0

∫
|y|≥|x|/2

F (x− y, t− s)(u⊗ v)(y, s) dy ds.
On the other hand, we can write

(4.20) B(u, v)(t) = et∆/2B(u, v)(t/2) +
∫ t

t/2

F (t− s) ∗ (u⊗ v)(s) ds.

Because of (4.19), applying Lemma 4.6 to B(u, v), we see that the first term on the
right hand side is bounded by Ct−1/2. The estimate of the second term is obvious,
by (4.17) and (4.18).

On the other hand, applying again Lemma 4.6 with γ = 1, we see that the linear
term et∆a belongs to the space given by (4.16) (with a small norm). Theorem 4.1
is thus proved for γ = 1.

To prove the theorem in the case γ > 1 we could apply the fixed point theorem in
the space of functions such that |u(x, t)| ≤ C(1+|x|)−γ and |u(x, t)| ≤ C(1+t)−γ/2.
This was done in [26], [3], [27]. We will not use the approach, since it leads to too
stringent assumptions on the data

We will obtain the conclusion in the case γ > 1 by means of some boot-strap
arguments. A first essential step is the following lemma.

Lemma 4.7. Let γ > 1 and a as in Theorem 4.1. Then there exists δ (1 < δ ≤ γ)
and a constant C such that the solution u obtained for γ = 1 satisfies

|u(x, t)| ≤ C(1 + |x|)−δ and(4.21)

|u(x, t)| ≤ C(1 + t)−δ/2,(4.22)

for all x ∈ Rn and t ≥ 0.

Proof. We first show that u satisfies

(4.23) ||∇u(·, t)||n/β ≤ ct−1+β/2, 0 < β < 1,

for some small constant c > 0 and all t > 0. The proof of (4.23) is almost the same
as in [17] and relies on two simple facts. Firstly,

||∇et∆a||n/β ≤ C||∇gt||Ln/(n−1+β),1 ||a||Ln,∞ ≤ ηCt−1+β/2,

(here and below, gt(x) = (4πt)−n/2e−t|x|2/(4t) is the gaussian) by Young’s inequality
for Lorentz spaces (see [2]).

Secondly, B(u, v) is bounded in the subspace of C([0,∞[,Ln,∞(Rn)) given by all
soleinoidal vector fields satisfying (4.16) and (4.23). To see this, we first observe
that, by the divergence-free condition, ∇F (t − s) ∗ (u ⊗ v)(s) can be written as
∇e(t−s)∆P(u · ∇)v. Next, the kernel F̃ of ∇e(t−s)∆P essentially equals F , and
satisfies the same bounds (4.17) and (4.18). By Young and Hölder’s inequality, and
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since ||u(s)||r ≤ C||u(s)||n/r
Ln,∞ ||u(s)||1−n/r

∞ (n < r <∞), we have, if 0 < β < 1 and
n < r < n/(1− β),

||∇B(u, v)(t)||n/β ≤
∫ t

0

||F̃ (t− s)|| r
r−1

||u(s)||r||∇v(s)||n/β ds

≤ K(u, v)
∫ t

0

(t− s)−1/2−n/2rs−3/2+n/2r+β/2 ds

≤ K(u, v) t−1+β/2.

Here,

K(u, v) ≤ C sup
t>0

t1−β/2 ||∇v(t)||n/β

(
sup
t>0

||u(t)||Ln,∞ + sup
t>0

t1/2 ||u(t)||∞
)
,

where C is an absolute constant,
It is now easy to show that u(t) belongs to Lp(Rn), for all p such that max{1, n

γ } <
p ≤ ∞, uniformly in time. This is obviously true for t = 0, by (4.3). Moreover, the
approximate solutions u(k) (see the first step of the proof) converge in the space of
functions which satisfy all the previous conditions and which, in addition, belong
to L∞(]0,∞[,Lp(Rn)). Indeed, ||et∆a||p ≤ ||a||p and

||B(u, v)(t)||p ≤ C

∫ t

0

(t− s)−β/2||∇u(s)||n/β ||v(s)||p ds

≤ C sup
s>0

||∇u(s)||n/β sup
s>0

||v(s)||p,

for any 0 < β < 1. Thus, ||u(k+1)(t)||p ≤ ||a||p + c′ sups>0 ||u(k)(s)||p where, by
(4.5) and (4.23), c′ is a small constant independent of t. This in turn gives

sup
t>0

||u(t)||p <∞.

We are now in position to improve estimates (4.16). Let us choose p = n
2 (1+ 1

γ ).
Then we write u(t) = et∆a − B(u, u)(t) and we apply Young’s inequality to the
linear evolution. This yields

||et∆a||∞ ≤ Ct−n/2p = Ct−γ/(γ+1).

Moreover, if β > 0 is small enough, so that n
2p + β

2 < 1, we have

||B(u, u)(t)||∞ ≤ C

∫ t

0

(t− s)−n/2p−β/2||u(s)||p||∇u(s)||n/β ds

≤ C

∫ t

0

(t− s)−n/2p−β/2s−1+β/2 ds

≤ Ct−n/2p = Ct−γ/(γ+1).

Thus,

(4.24) |u(x, t)| ≤ C(1 + t)−γ/(γ+1), x ∈ Rn, t ≥ 0,

which is slightly better than the second of (4.16).
By the first of (4.16) and (4.24), we get

(4.25) |u⊗ u|(y, s) ≤ C(1 + |y|)−(1+(γ−1)/(2γ))(1 + s)−1/2.
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We now split B(u, u)(x, t) as before into∫ t

0

∫
|y|≤|x|/2

F (x− y, t− s) (u⊗ u)(y, s) dy ds

and ∫ t

0

∫
|y|≥|x|/2

F (x− y, t− s)(u⊗ u)(y, s) dy ds.

Using |F (x, t)| ≤ C|x|−nt−1/2 and (4.25), we see that the first integral is bounded
by c|x|−(1+(γ−1)/(2γ)). But this estimate holds true also for the second integral,
because of ||F (·, t)||1 = Ct−1/2 and (4.25).

Since 1 < 1 + (γ − 1)/(2γ) < γ (when γ > 1), Lemma 4.4 and u(t) = et∆a −
B(u, u)(t) imply

|u(x, t)| ≤ C(1 + |x|)−(1+(γ−1)/(2γ)), x ∈ Rn, t ≥ 0.

Lemma 4.7 is thus proved. �

Proof of Theorem 4.1 in the case 1 < γ ≤ 2. Let δ be as in Lemma 4.7. We may
assume 1 < δ < γ ≤ 2. By (4.21) and (4.22), we have

(4.26) |u⊗ u|(y, s) ≤ C(1 + |y|)−2δ+1(1 + s)−1/2 (y ∈ Rn, s ≥ 0).

Let us first treat the case n = 2 and 3
2 < δ < γ ≤ 2: arguing as in Lemma 4.7, (4.26)

yields |B(u, u)(x, t)| ≤ C|x|−2. Thus, |u(x, t)| ≤ (1+|x|)−γ . If n = 2 and δ = 3
2 , the

bilinear term is bounded at infinity by |x|−2 log(x). But this allows us to improve
the rate of decay in (4.26). Thus, we can obtain the bound |u(x, t)| ≤ C(1 + |x|)−γ

as we did for n = 2 and δ > 3
2 .

We now consider the other cases, i.e. n = 2 and 1 < δ < min{ 3
2 , γ}, or n ≥ 3

and 1 < δ < γ ≤ 2. The same argument as above implies that |B(u, u)(x, t)| is
uniformly bounded by c|x|−2δ+1. Thus,

|u(x, t)| ≤ C(1 + |x|)−δ1 , δ1 = min{γ, 2δ − 1}.
This is slightly better than (4.21).

Let us show that we have also

(4.27) |u(x, t)| ≤ C(1 + t)−δ1/2, x ∈ Rn, t ≥ 0.

We start by splitting B(u, u) as in (4.20). For the second term, we obviously have∫ t

t/2

||F (t− s) ∗ (u⊗ u)(s)|| ds ≤ t−δ+1/2.

For the first term, we have

||et∆/2B(u, u)(t/2)||∞ ≤ t−δ1/2.

This can be seen as follows. If δ1 < n we simply use ||B(u, u)(t/2)||Ln/δ1,∞ ≤ C
and the duality between Ln/(n−δ1),1(Rn) and Ln/δ1,∞(Rn). If δ1 ≥ n (since δ < 2,
this happens only if δ1 = n = γ = 2), we have

||et∆/2B(u, u)(t/2)||∞ ≤ ||gt/2||∞||B(u, u)(t/2)||1

≤ Ct−1

∫ t/2

0

||F (t/2− s)||1||u(s)||22 ds ≤ Ct−1,(4.28)

where g is the gaussian and gt(x) = t−n/2g(x/
√
t).
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This implies (4.27). If δ1 = γ the proof is finished. If δ1 < γ the conclusion
follows after finitely many iterations.

Proof in the case 2 < γ ≤ n. By the above proof, in (4.21) and (4.22) we can
choose δ such that 2 < δ < n. We easily obtain e.g. |B(u, u)|(x, t)| ≤ C|x|−δ−1.
Hence,

|u(x, t)| ≤ C(1 + |x|)−δ̃, δ̃ = min{γ, δ + 1}.
If δ̃ < γ ≤ n, (4.20) and (4.22) imply ||B(u, u)(t)||∞ ≤ Ct−δ̃/2 + Ct−δ+1/2. Thus,
|u(x, t)| ≤ C(1 + t)−δ̃/2. After finitely many iterations of this argument, we find
δ̃ = γ ≤ n. Hence, |u(x, t)| ≤ C(1 + |x|)−γ .

On the other hand, if γ < n the estimate |u(x, t)| ≤ C(1 + t)−γ/2 now follows
from (4.20) and the duality of Lorentz spaces. If γ = n, the conclusion follows by
arguing exactly as in the case γ = n = 2.

Proof in the case n < γ ≤ n + 1. In this case we may choose δ > n in (4.21)
and (4.22). In particular,

∫∞
0

∫
|u(y, s)|2 dy ds < ∞. By (4.17) and (4.18) we get

|B(u, u)(x, t)| ≤ C|x|−(n+1). Thus, |u(x, t)| ≤ C(1 + |x|)−γ .
The time decay estimate of the bilinear term is also immediate. Indeed,

||B(u, u)(t)||∞ ≤
∫ t/2

0

||F (t− s)||∞||u(s)||22 ds+
∫ t

t/2

||F (t− s)||1||u(s)||2∞ ds.

The first term is bounded by t−(n+1)/2 and the second by t−δ+1/2. Thus, ||u(t)||∞ ≤
C(1 + t)−γ/2.

Proof in the case n + 1 < γ ≤ n + 3 (a symmetric). Let us first observe that
approximate solutions u(0) = et∆a, u(m+1) = et∆a − B(u(m), u(m)) are symmetric
for all t. This can be seen by induction, in the following way: we first introduce
the vector fields θ(x, t) and φ(x, t) which are defined in the phase space by

θ̂(ξ, t) ≡
n∑

h=1

ξh
̂

u
(m)
h u(m)(ξ, t)

and

φ̂(ξ, t) = ξ|ξ|−2
n∑

h,k=1

ξhξk
̂

u
(m)
h u

(m)
k (ξ, t).

If u(m)(x, t) is a symmetric vector field for all t, then the same is true for û(m)(ξ, t).
Thus, θ̂(ξ, t) and φ̂(ξ, t) are symmetric for all t, with respect to the ξ variable.
Then,

B̂(u(m), u(m))(ξ, t) = i
∫ t

0

e−(t−s)|ξ|2(θ̂(ξ, s)− φ̂(ξ, s)) ds

is symmetric.
Passing to the limit for m → ∞, implies that the solution u(t) obtained in the

first step of the proof is symmetric for all t.
Before going further, let us recall some known decay estimates for the spatial

derivatives of F (see e.g. [10]). For any α ∈ Nn we have

|∂αF (x, t)| ≤ C|x|−n−1−|α|,(4.29)

|∂αF (x, t)| ≤ Ct−(n+1+|α|)/2.(4.30)
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The conclusion of Theorem 4.1, at least in the case n ≥ 3, will be an immediate
consequence of the following lemma.

Lemma 4.8. Let n ≥ 3 and u(x, t) a symmetric vector field such that (4.21)
and (4.22) hold with δ = n+ 1. Then

|B(u, u)(x, t)| ≤ C(1 + |x|)−(n+3) and(4.31)

|B(u, u)(x, t)| ≤ C(1 + t)−(n+3)/2.(4.32)

Proof. For h, k = 1, . . . , n, we introduce the functions

rh,k = uhuk(x, t)− λ(t)g(x)δh,k,

where λ(t) =
∫
u2

1(x, t) dx = . . . =
∫
u2

n(x, t) dx and g is the gaussian, normalized
by

∫
g(x) dx = 1. By the parity conditions on u, we have∫

rh,k(x, t) dx =
∫
xlrh,k(x, t) dx = 0,

for all h, k, l = 1, . . . , n and all t ≥ 0. Moreover, by (4.2) we have
∑n

h=1 Fjhh(·, t) ∗
g ≡ 0. Thus,

B(u, u)j(t) =
n∑

h,k=1

∫ t

0

Fjhk(·, t− s) ∗ rh,k(s) ds (j = 1, . . . , n).

Using (4.18), we see that
∫ t

0

∫
|y|≥|x|/2

|F (x − y, t − s)| |r(y, s)| dy ds is bounded
by (1 + |x|)−2n−1. Since the moments of rh,k vanish (up to the order 1), we can
split

∫ t

0

∫
|y|≤|x|/2

Fjhk(x− y, t− s) ∗ rh,k(s) dy ds into

I1 ≡
∫ t

0

∫
|y|≤|x|/2

[Fjhk(x− y,t− s)− Fjhk(x, t− s)

−
∑

lyl∂lFjhk(x, t− s)]rh,k(y, s) dy ds(4.33)

and

I2 ≡ −
∫ t

0

∫
|y|≥|x|/2

[Fjhk(x, t− s) +
∑

lyl∂lFjhk(x, t− s)]rh,k(y, s) dy ds.

The first integral is treated by means of the Taylor formula. By (4.29) (with
|α| = 2), and the fact that

∫∞
0

∫
|y|2|rh,k(y, s)| dy ds < ∞ (here we use n ≥ 3), we

get I1 ≤ |x|−n−3.
The second integral is treated by means of (4.29) and (4.30). We immediately

find that |I2| is bounded at infinity by |x|−2n−1. This ends the proof of (4.31).
To obtain (4.32), we split

∫ t

0

∫
Fjhk(x− y, t− s) ∗ rh,k(s) dy ds into

J1 ≡
∫ t/2

0

∫
[Fjhk(x− y, t− s)− Fjhk(x, t− s)

−
∑

lyl∂lFjhk(x, t− s)]rh,k(y, s) ds(4.34)

and

J2 ≡
∫ t

t/2

∫
Fjhk(x− y, t− s)rh,k(y, s) dy ds.

By the Taylor formula and (4.30) we get |J1| ≤ Ct−(n+3)/2. On the other hand, (4.18)
yields |J2| ≤ Ct−n−1/2 and (4.32) follows. �
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Theorem 4.1 is completely proved for n ≥ 3. An obvious modification is nec-
essary for n = 2. Indeed, under the assumption of Lemma 4.8, we only have∫∞
0

∫
|y| |u(y, s)|2 dy ds <∞. But the same argument as before gives |B(u, u)|(x, t) ≤

C(1 + |x|)−(n+2) and |B(u, u)|(x, t) ≤ C(1 + t)−(n+2)/2.
The theorem follows for n = 2 and 3 < γ ≤ 4. If 4 < γ ≤ 5, we get∫∞

0

∫
|y|2 |u(y, s)|2 dy ds <∞. Thus, the same arguments above now applies also in

the n = 2 case.

Appendix

Besov and weak-Hardy Spaces. The aim of this section is to recall the basic
definitions and properties of the Besov and weak Hardy spaces. Next we recall an
useful injection by Miyakawa which will play an important role in the proof of the
second part of Lemma 4.4. More details can be found e.g. in [2], [9], [23] or [25].

Recall that a tempered distribution f is in the Hardy–Lorentz space Hp,q (0 <
p <∞ and 0 < q ≤ ∞) if and only if:

f∗(x) = sup
t>0

|et∆f(x)| ∈ Lp,q(Rn),

where Lp,q(Rn) is the usual Lorentz space (see [2]). Moreover, ||f ||Hp,q = ||f∗||Lp,q .
In particular, Hp = Hp,p is the usual Hardy space and Hp

w = Hp,∞ is the weak
Hardy space.

This space can be also defined by real interpolation. Indeed, for 0 < p0 < p1 < 1,

(4.35) Hp
w = (Hp0 ,Hp1)θ,∞, 1/p = (1− θ)/p0 + θ/p1 (0 < θ < 1)

(see [15]).
Besov spaces can be easily defined by means of a Littlewood–Paley decom-

position: let us choose a scalar function ψ ∈ S(Rn) such that ψ̂ is supported
by {1/2 ≤ |ξ| ≤ 2} and |ψ̂(ξ)| ≥ c > 0, if 1 ≤ |ξ| ≤ 2. We next define
ψj(x) = 2njψ(2jx) (j ∈ Z). The homogeneous Littlewood-Paley decomposition
of a tempered distribution u is the series

∑∞
j=−∞∆ju, where ∆j is the convolu-

tion with ψj . As it is well known, this series converges in the distributional sense,
modulo polynomials.

For any s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞, the homogeneous Besov (quasi-)norm
is defined by

(4.36) ||u||Ḃs,q
p

=
( ∞∑

j=−∞
(2js||∆ju||p)q

)1/q

.

Now, let m = [s− n/p] (the integer part) if s− n/p 6∈ Z and m = s− n/p− 1 if
s − n/p ∈ Z. Let us denote by Pm the set of polynomials of degree ≤ m (Pm = ∅
if m ≤ −1). The homogeneous Besov space are then defined in the following way:
f ∈ Ḃs,q

p (Rn) if and only if f =
∑∞

j=−∞∆ju, with u ∈ S ′/Pm, where the series
converges in S ′/Pm and ||f ||Ḃs,q

p
<∞.

Since ∆j∆j′ ≡ 0, for |j − j′| ≥ 2, and ∆j′∆j is essentially equal to ∆j , for
|j − j′| ≤ 1, the space Ḃs,q

p (Rn) is independent of the particular choice of the test
function ψ.
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A basic interpolation result on Besov spaces reads

(4.37) Ḃs,∞
1 = (Ḃs0,1

1 , Ḃs1,1
1 )θ,∞, 1/s = (1− θ)/s0 + θ/s1, 0 < θ < 1

(see [2]).

We refer to [9] for a Littlewood–Paley characterization of the Hardy spaces. Such
characterization immediately gives the injection

(4.38) Hp ⊂ Ḃ−n(1/p−1),q
1 (Rn), 0 < p < 1, 1 ≤ q ≤ ∞.

Using this, with s0 = −n(1/p0 − 1), s1 = −n(1/p1 − 1), (4.35) and (4.37), we
get Miyakawa’s injection (see [25])

(4.39) Hp
w ⊂ Ḃ−n(1/p−1),∞

1 (Rn), (0 < p < 1).

Time decay for the heat equation. We can now prove the following statement,
which we used in the proof of Theorem 4.1.

Lemma 4.9. Let γ ≥ 1, γ 6= n and a ∈ S ′(Rn), such that supt≥0 |et∆a(x)| ≤
c(1 + |x|)−γ . Then, there exists a constant C > 0 such that, for all t ≥ 0,

(4.40) sup
x∈Rn

|et∆a(x)| ≤ C(1 + t)−γ/2.

Proof. Let us first consider the case γ > n. Then (1+ |x|)−γ belongs to the Lorentz
space Ln/γ

w (Rn). Thus, a ∈ Hn/γ
w and, by (4.39), a ∈ B−(γ−n),∞

1 (Rn). We now
consider the Littlewood-Paley decompositions

∑
j ∆jgt and

∑
j ∆ja, respectively,

of the gaussian and a. The two series obviously converge in S ′(Rn). Then (4.40)
follows from the straightforward duality argument below:

||et∆a||∞ ≤ C
∞∑

j=−∞
||(∆ja) ∗ (∆jgt)||∞

≤ C sup
j

2−j(γ−n)||∆ja||1
( ∞∑

j=−∞
2j(γ−n)||∆jgt||∞

)
≤ C||a||

Ḃ
−(γ−n),∞
1

||gt||Ḃ(γ−n),1
∞

≤ Ct−γ/2,

In the case 1 ≤ γ < n we do not need Besov spaces. We simply observe that
a ∈ Ln/γ

w (Rn) and the conclusion follows from the duality of Lorentz spaces. �

When |a(x)| ≤ C(1+ |x|)−γ , the estimate supt≥0 |et∆a(x)| ≤ c(1+ |x|)−γ follows
easily if e.g.

∫
(1 + |x|)[γ−n]|a(x)| dx < ∞ and the moments of a vanish, up to the

order [γ − n] (or γ − n− 1, if γ is integer). We point out that in this slightly more
restrictive case, the estimate |et∆a(x)| ≤ C(1 + t)−γ/2 can be proved by simple
computations (without the using of Hardy or Besov spaces). We refer to [27] for
more details.
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