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Hexagonal structures in 2D Navier–Stokes flows

Lorenzo Brandolese

Institut Camille Jordan, Universit�e Lyon 1, Universit�e de Lyon, Lyon, France

ABSTRACT
Geometric structures naturally appear in fluid motions. One of the
best-known examples is Saturn’s Hexagon, the huge cloud pattern at
the level of Saturn’s north pole, remarkable both for the regularity of
its shape and its stability during the past decades. In this article, we
will address the spontaneous formation of hexagonal structures in
planar viscous flows, in the classical setting of Leray’s solutions of
the Navier–Stokes equations. Our analysis also makes evidence of
the isotropic character of the energy density of the fluid for suffi-
ciently localized 2D flows in the far field: it implies, in particular, that
fluid particles of such flows are nowhere at rest at large distances.
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1. Introduction

We consider the 2D Navier–Stokes equations,

@tuþr � ðu� uÞ ¼ Du�rp,
r � u ¼ 0
uðx, 0Þ ¼ u0ðxÞ,

x 2 R
2, t > 0

8<
: (NS)

where u denotes the velocity field and p the pressure. The initial velocity u0 is given.
Throughout this article, we will assume u0 2 L2rðR2Þ, the space of L2 and divergence-
free vector-fields in R

2: In this case, it is well known that there exists a unique global
Leray’s weak solution, i.e., a solution solving (NS) in the weak sense, such that u 2
L1ðð0,1Þ, L2rðR2ÞÞ \ L2ðð0,1Þ, _H1ðR2ÞÞ, and satisfying the energy equality

kuðtÞk22 þ 2
ðt
0
kruðsÞk22 ds ¼ ku0k22, t > 0: (1.1)

This solution is also known to be in Cð½0,1Þ, L2rðR2ÞÞ and to solve integral equation

uðx, tÞ ¼ etDu0 �
ðt
0
eðt�sÞD

Pr � ðu� uÞðsÞ ds, x 2 R
2, t > 0: (NSI)

Here, P is Leray’s projector onto divergence-free vector fields and etD denotes the
heat kernel.
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The purpose of this article is to show that, in the absence of any external forcing,
and without of any special structure of the initial data, the flow reveals regular geomet-
ric patterns in the far field. Our main results essentially are the following:

i. Under mild decay assumptions on u0 and its derivatives at infinity, the Euclidean
norm of velocity variations, i.e., the quantity juð�, tÞ � u0ð�Þj, tends to be con-
stant, for a fixed t> 0, in all the points of circles of large radii. In particular, if
f, f0 2 S

1, then

juðRf, tÞ � u0ðRfÞj � juðRf0, tÞ � u0ðRf0Þj, for R � 1:

See Theorem 2.1. Under stronger decay assumptions on u0 at infinity (and no
decay condition on its derivatives), the speed of the fluid juð�, tÞj tends to be con-
stant on circles of large radii:

juðRf, tÞj � juðRf0, tÞj, for R � 1:

This means that the energy density field, x 7! 1
2 juðx, tÞj2, is asymptotically radial

at large distances. See Theorem 2.2. A striking corollary is the following:

For generic flows, fluid particles are nowhere at rest at large distances,

in the sense that for all time t> 0, for some Rt > 0 and all jxj � Rt , one
has juðx, tÞj 6¼ 0:

ii. In the case of strongly decaying data, in contrast with the above isotropic behav-
ior of the speed juð�, tÞj, the components of the velocity have a genuinely aniso-
tropic behavior in the far field. Namely, any component v of the velocity field
spontaneously creates a rigid and regular hexagonal structure. More precisely,
for any fixed t> 0, there are exactly six exceptional directions along which the
decay of v(x, t) as jxj ! 1 is faster. Such curious structures appear immediately
and, after a time-dependent rescaling, rigidly rotate during the evolution, without
changing their shape. See Figure 1 and Theorem 2.3. We will also estimate the
angular speed of such structures and show that for generic solutions their angu-
lar speed goes to zero as t ! þ1 : moreover, when the initial data belong to
_H
�1ðR2Þ these structures converge for long time to a stationary position. See

Corollary 8.3. This corollary will reveal an unexpected geometric interpretation
of the classical energy dissipation problem of Leray’s solution for large time. In
the case of initial data with just a mild decay the picture described above is
slightly different: the hexagonal structures appear for each component of the vec-
tor field x 7! uðx, tÞ � u0ðxÞ:

Our strategy will be to associate to any Leray’s solution a complex-valued map z :
R ! C, defined by formula (2.6), such that jzðtÞj is independent on the chosen coord-
inate system, encoding the most important asymptotic properties of the solution in the
far field. The main results are Theorems 2.1 and 2.3, the latter being probably
more surprising.
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In this article, we focused on 2D finite energy flows, with possibly poorly localized
vorticities. In a companion paper, [4], we discuss the case of planar flows with well
localized vorticity, but possibly infinite energy. The two papers are thus complementary.
In [4], we also compute the spatial asymptotics as jxj ! 1 at any order: such higher-
order asymptotics reveal more general polygonal structures.

2. Statement of the main results

A more formal statement of our first assertion in the Introduction is provided by
Theorem 2.1. We denote by S

1 the unit circle centered at the origin.

Theorem 2.1. Let u0 2 L2r \ LpðR2Þ for some p> 4 and

u0ðxÞ ¼ oðjxj�1 log ðjxjÞ�1=2Þ
ru0ðxÞ ¼ oðjxj�2 log ðjxjÞ�1=2Þ

Du0ðxÞ ¼ oðjxj�3Þ:
as jxj ! 1

8><
>: (2.1)

Let u be the unique global Leray’s solution starting from u0. Then, for all t> 0, the limit

LðtÞ ¼ lim
jxj!þ1

jxj3juðx, tÞ � u0ðxÞj (2.2)

does exist and is given by

LðtÞ :¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ðt
0

ð
ðu21 � u22Þ dy ds

�2

þ
�ðt

0

ð
2u1u2 dy ds

�2
s

: (2.3)

Figure 1. Left: a well-localized initial datum with no special symmetry. Middle: density plot of the
horizontal speed ju1ð�, tÞj, obtained neglecting the lower-order terms at the spatial infinity, in the
limit as t ! 0 : the neighborhoods of the six directions of faster decay are darker. This hexagonal
structure, suitably rescaled, is present for any time 0 < t < 1 and rigidly rotates during the evolu-
tion. If lower-order terms are not neglected, then larger and larger scales are needed to detect this
structure as t approaches 0 or as t grows to infinity. The shape of the structure is essentially the
same, excepted for a change in scale and orientation, for any generic well-localized datum and any
component of the velocity field. Right: in contrast with the speed of the individual components of
the velocity field, the energy density x 7! 1

2 juðx, tÞj2 is asymptotically radial.
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In particular, for all f 2 S
1, the radial limits

lim
R!þ1

R3juðRf, tÞ � u0ðRfÞj (2.4)

do exist and are independent on f.

The decay assumptions (2.1) are natural for finite energy flows: the first of (2.1) is
nothing but a pointwise analog of the usual condition u0 2 L2ðR2Þ; moreover, often
ru0 and Du0 decay, respectively, one and two decay rates faster than u0 (unless u0 has
an oscillating behavior at infinity), which is more than needed in the second and third
condition of (2.1).
We now give a formal statement of what can be inferred in the case of faster decay-

ing data. In this case, no decay of higher-order derivatives is needed.

Theorem 2.2. Let u0 2 L2r \ LpðR2Þ for some p> 2. Assume also that u0ðxÞ ¼ oðjxj�3Þ as
jxj ! 1. Then the unique global Leray’s solution u starting from u0 satisfies, for all t> 0,

LðtÞ ¼ lim
jxj!þ1

jxj3juðx, tÞj ¼ lim
R!þ1

R3juðRf, tÞj ðindependent on f 2 S
1Þ, (2.5)

where L(t) is given by formula (2.3).

Generically, in both (2.2) and (2.5), the limit L(t) will be nonzero, which means that
juð�, tÞj is asymptotically radial at the spatial infinity.
We emphasize that, generically, the limits limjxj!1 jxj3ðuðx, tÞ � u0ðxÞÞ (in the setting

of Theorem 2.1) and limjxj!1 jxj3uðx, tÞ (in the setting of Theorem 2.2) do not exist. So
our results put in evidence a property of the speed (or of the energy) of fluid particles,
rather than of their velocity vectors.
The statement of Theorem 2.1 might look less attractive than that of Theorem 2.2.

However, the former is a deeper result. Indeed, the decay condition, of the latter,
namely u0ðxÞ ¼ oðjxj�3Þ, is too stringent to be physically realistic, because such a strong
decay condition is known to immediately break down during the evolution (see [6]).
On the other hand, the milder decay conditions on u0 required in Theorem 2.1 are pre-
served by the Navier–Stokes flow. Hence, the decay conditions of Theorem 2.1 will be
satisfied in many physically relevant cases.
Formula (2.3) suggests the introduction of the complex-valued map

zðtÞ ¼
�ðt

0

ð
ðu21 � u22Þ dy ds

�
þ i

�ðt
0

ð
2u1u2 dy ds

�
, (2.6)

so that

LðtÞ ¼ 1
p
jzðtÞj:

The use of integrals of the form
Ð
ujuk is inspired by earlier papers by Schonbek [18],

Dobrokhotov and Shafarevich [6] and Miyakawa and Schonbek [16]. Choosing an
appropriate coordinate system (suitably rotating the axis by a time-dependent angle),
one can always set

Ð t
0

Ð ðu21 � u22Þ ¼ 0, or otherwise
Ð t
0

Ð
2u1u2 ¼ 0, thus simplifying the

expression of L(t) in (2.3). Formula (2.3) has however the advantage of being independ-
ent on the choice of the coordinate system.

4 L. BRANDOLESECOMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS



Next theorem shows that, contrary to juð�, tÞj or juð�, tÞ � u0j, the individual
components of the velocity field have a genuinely anisotropic behavior. We will use the
notation AðxÞ � BðxÞ to indicate that the ratio ðA=BÞðxÞ converges to a non-zero real
constant. For an arbitrarily fixed unit vector e of R2, let us denote v ¼ u � e the compo-
nent of u along e: In the same way, we denote v0 ¼ u0 � e:
Theorem 2.3. Let u0 2 L2rðR2Þ satisfying the conditions as in Theorem 2.1, or otherwise
as in Theorem 2.2. Let v be any component of Leray’s solution u. For any t> 0 such that
LðtÞ 6¼ 0, there exists ft 2 C, with jftj ¼ 1, such that the regular hexagon

H ¼ HðtÞ ¼ ff1, f2, :::, f6g,
made of the complex roots of the equation z6 ¼ ft, has the following property:
as R ! þ1,

i. in the setting of Theorem 2.1,

vðx, tÞ � v0ðxÞ � jxj�3 for x ¼ Rf, jfj ¼ 1, f 62 H,
vðx, tÞ � v0ðxÞ ¼ oðjxj�3Þ for x ¼ Rf, jfj ¼ 1, f 2 H

ii. or, simply, in the setting of Theorem 2.2,

vðx, tÞ � jxj�3 for x ¼ Rf, jfj ¼ 1, f 62 H,
vðx, tÞ ¼ oðjxj�3Þ for x ¼ Rf, jfj ¼ 1, f 2 H:

Figure 1 (middle) offers a possible visualization of this theorem. A different way to visu-
alize the conclusion of Theorem 2.3 is to perform an inverse stereographic projection and
to draw the images of the level lines of jvðtÞ � v0j on the stereographic sphere: our the-
orem predicts that close the north stereographic pole the level lines tend to have a snow-
flake shape with a hexagonal symmetry. Yet, Theorem 2.3 cannot be used to explain the
physical phenomenon of Saturn’s hexagon mentioned in the abstract. We refer to [23] for
a recent analysis of the latter. Close to Saturn’s north pole the hexagonal pattern is due to
an hexagonal symmetry of the trajectories of fluid particles. The hexagonal structure in
our paper appears as a symmetry of the absolute values of the components of u(x, t) (for
large x), but it is not a symmetry of the fluid velocity itself.

Example 2.4. If, in a given coordinate system, v ¼ u2 is the vertical component of
Leray’s solution, then the proof will show that one can take ft ¼ ðjzðtÞj2=zðtÞ2Þ, which
is well defined because of the assumption LðtÞ 6¼ 0: Here, z(t) is given by (2.6). For the
horizontal component, v ¼ u1, one has ft ¼ ð�jzðtÞj2=zðtÞ2Þ: So the two hexagonal
structures associated with the horizontal and vertical components of u are always
obtained from each-other performing a rotation of 6p=6:

The proof of the above theorems relies on a refinement of an asymptotic formula for
Navier–Stokes flows in R

d, d � 2,

uðx, tÞ ¼ etDu0ðxÞ þ rHðx, tÞ|fflfflfflfflffl{zfflfflfflfflffl}
�jxj�d�1

þoðjxj�d�1Þ, as jxj ! þ1, (2.7)

first established in [5] under appropriate decay assumptions on u0 (see also Lemari�e-
Rieusset’s book [12, Theorem 4.12] and [10]): see (3.9) for the definition of the scalar
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function H. The crucial observation of the present article is that, focusing on the two-
dimensional case, we can put in evidence two very important properties specific of pla-
nar fluids that, surprisingly, remained unnoticed in earlier studies. The first one is that,
when d¼ 2, the map x 7! jrHðx, tÞj is a radial function. The second one is that each
components of rHð�, tÞ possess exactly six zeros on the unit circle, that are the vertex
of a (time-dependent) regular hexagon. Let us emphasize that the explicit expression of
rHð�, tÞ reduces the proof of both properties to a short and elementary computation.
This computation is contained in Section 7.
Concerning the technical contributions, in this article, we perform a new asymptotic

analysis of the nonlinear term in (NSI), that will allow us to considerably relax the
required conditions on u0 to insure the validity (2.7). Indeed, in earlier papers, the
conditions on u0 were too stringent to encompass the case of only mild decaying data
as in (2.1). This will require a deeper use of the cancelations hidden inside the Oseen
kernel, whereas simpler size estimates were enough in the more restrictive setting con-
sidered in [5, 10, 12,]. Another simple but useful ingredient will be an asymptotic for-
mula for the solutions of the heat equation, that allows us to replace etDu0ðxÞ with
u0ðxÞ in (2.7).

Remark 2.5. As mentioned in the introduction, in a companion paper, [4], we discuss
the case of possibly infinite energy flows with localized vorticity x ¼ @1u2 � @2u1:
Therein, we show in this case that the dominant geometric feature in the far field of the
components of u is no longer hexagonal: a density plot like that in Figure 1 (middle)
would reveal the symmetry of a digon when the total circulation of the flow

Ð
x0 is

non-zero and a quadrilobe shape for flows with zero total circulation. The approach of
[4] is mainly based on the Biot–Savart law, and it is better suited for the geometric
description of the higher-order terms. Moreover, it allows to recover in a simple way a
few of the essential features of the recent analysis of McOwen and Topalov [13, 14]
Sultan and Topalov [19] on the Euler equations in asymptotic spaces.

On the other hand, the advantage of the approach of the present article is that it
allows us to encompass (according to (2.1)) the case of flows with non-integrable vorti-
city, for which the total circulation is not even defined. This will be especially relevant
in Section 8, when we will discuss the large time behavior of Leray’s solutions.

3. The homogeneous part of the kernel of etDPdiv:

3.1. Decompositions of the kernel in R
d, d � 2

It is convenient to denote by Fðx, tÞ ¼ ðFj, h, kÞðx, tÞ the kernel of the operator etDPdiv :

Equivalently, F can be defined through its symbol ðj, h, k ¼ 1, 2Þ, with n 2 R
d and t> 0,

F̂ j, h, kðn, tÞ ¼ e�tjnj2 inhdj, k þ
injinhink
jnj2

 !
, (3.1)

where dj, k is the Kronecker symbol. Therefore, the integral formulation of the
Navier–Stokes equations in R

d, d � 2 reads
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ujðtÞ ¼ etDu0, j �
ðt
0

ð Xd
h, k¼1

Fj, h, kðx� y, t � sÞðuhukÞðsÞ dy ds, ðj ¼ 1, :::, dÞ, (3.2)

together with the incompressibility condition r � u0 ¼ 0: In more compact form, we
will write

uðtÞ ¼ etDu0 �
ðt
0
Fðt � sÞ 	 ðu� uÞðsÞ ds, r � u0 ¼ 0: (3.3)

Let us first recall some known properties of the kernel F. First of all, we have the
scaling relation

Fðx, tÞ ¼ t�ðdþ1Þ=2F x=
ffiffi
t

p
, 1

� �
: (3.4)

Computing the inverse Fourier transform in (3.1), using the identity jnj�2 ¼Ð1
0 e�sjnj2 ds, yields the usual decomposition F ¼ Fð1Þ þ Fð2Þ, with

Fð1Þj;h, kðx, tÞ ¼ @hgt dj, k Fð2Þj;h, kðx, tÞ ¼
ð1
t
@j@h@kgsðxÞ ds: (3.5)

Here, gtðxÞ ¼ ð4ptÞ�d=2e�jxj2=ð4tÞ is the heat kernel. From this decomposition, it is easy
to deduce the classical pointwise bound

sup
x2Rd, t>0

jxjdþ1jFðx, tÞj < 1: (3.6)

There is another decomposition of the kernel F, pointed out in [2], holds: it reads

Fðx, tÞ ¼ FðxÞ þ jxj�d�1W x=
ffiffi
t

p� �
: (3.7)

Here F is a homogeneous tensor of degree �d � 1, whose components are given by

Fj;h, kðxÞ¼ @j@h@kEdðxÞ (3.8)

where Ed is the fundamental solution of the Laplacian in R
d: Moreover, W ¼ ðWj, h, kÞ is

smooth outside the origin and such that, for all a 2 N
d, and x 6¼ 0, there exist C, c > 0

such that

j@aWðxÞj 
 Ce�cjxj2 :

This second decomposition of F is very useful in the study of the far-field asymptotics
of the velocity field. Indeed, in formula (2.7), the scalar function H is given by

Hðx, tÞ :¼ r2EdðxÞ :
ðt
0

ð
ðu� uÞðy, sÞ dy ds

" #

¼
Xd
h, k¼1

@h@kEdðxÞ
ðt
0

ð
ðuhukÞðy, sÞ dy ds: (3.9)

Therefore, the vector field rH is constructed by taking linear combinations of com-
ponents of the tensor F:
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4. Persistence results on pointwise decay

The goal of this section is to state a couple of propositions about the persistence of
pointwise decay for u0 and its derivatives. The former is needed to establish Theorem
2.1 and the second to establish Theorem 2.2. Results in this vein go back to Takahashi
[20] and were refined by several authors, see [15, 21]. However, the precise assertions
of the propositions below do not seem to be covered by earlier results.

Proposition 4.1. Let u0 2 L2rðR2Þ \ LpðR2Þ for some 4 < p 
 1, be such that

u0ðxÞ ¼ oðjxj�1ð log jxjÞ�1=2Þ
ru0ðxÞ ¼ oðjxj�2ð log jxjÞ�1=2Þ as jxj ! 1:

(
(4.1)

Then the unique Leray’s solution u starting from u0 satisfies, for all 0 < T < 1,

supt2ð0,TÞ t
1=pjuðx, tÞj ¼ oðjxj�1ð log jxjÞ�1=2Þ

supt2ð0,TÞ t
1=2þ1=pjruðx, tÞj ¼ oðjxj�2ð log jxjÞ�1=2Þ as jxj ! 1:

8<
: (4.2)

We need the technical assumption that u0 2 LpðR2Þ with p> 4 to deduce, from stand-
ard heat kernel estimates and a fixed point argument, that rðu� uÞ 2
L1locðRþ, L1ðR2ÞÞ: This information is useful in proving Proposition 4.1.

Proposition 4.2. Let u0 2 L2r \ LpðR2Þ, for some p> 2, be such that

u0ðxÞ ¼ oðjxj�3=2Þ as jxj ! 1: (4.3)

Then the unique Leray’s solution u starting from u0 satisfies, for all 0 < T < 1,

sup
t2ð0,TÞ

t1=p juðx, tÞj ¼ oðjxj�3=2Þ as jxj ! 1: (4.4)

These results would remain true with more general decay profiles. See the comments
after the proof. The main role of the additional Lp-assumptions is to prevent a too sin-
gular behavior of the solution near t¼ 0. The proof of these propositions is postponed
in Section 9.

5. Asymptotics of the nonlinear term

The main issue of this section is the spatial asymptotics of the linear integral term

LðwÞðx, tÞ ¼
ðt
0

ð
Fðx � y, t � sÞwðy, sÞ dy ds: (5.1)

As the analysis of (5.1) is independent on the space dimension, in this section we
work in R

d, d � 2: We have in view the application of the results of this section to the
quadratic term

wðx, tÞ ¼ ðu� uÞðx, tÞ:
To this purpose, let us establish two lemmas.
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Lemma 5.1. Let 0 < T < 1, w 2 ðL1ðRd � ð0,TÞÞÞd�d and 0 
 a < 1. Assume that

ess sup
t2ð0,TÞ

tajrwðx, tÞj ¼ oðjxj�d�1 log ðjxjÞ�1Þ,

as jxj ! 1. Then, for jxj 6¼ 0 and t 2 ð0,TÞ,

LðwÞðx, tÞ ¼ FðxÞ :
ðt
0

ð
wðy, sÞ dy dsþ jxj�d�1�ðx, tÞ, (5.2)

where

j�ðx, tÞj ! 0 as jxj ! 1:

The colon symbol stands for a summation on the last two subscripts of Fj, h, kðxÞ, as in
(3.9). Let us now state our second Lemma:

Lemma 5.2. Let 0 < T 
 1, w 2 L1ðRd � ð0,TÞÞ and 0 
 a < 1. Assume that

ess sup
t2ð0,TÞ

tajwðx, tÞj ¼ oðjxj�d�1Þ, as jxj ! 1:

Then conclusion (5.2) holds.

The first Lemma is the most interesting one, as its conclusion is reached dropping
any decay assumption on w: it just relies on a condition on rw, that is usually less
stringent than the corresponding decay condition on w itself, at least when w is the
quadratic nonlinearity of the Navier–Stokes equations. As we will see, the proof the lat-
ter lemma is elementary. On the other hand, the proof of the former makes use of
deeper cancelation properties of the kernel F.

Proof of Lemma 5.1. Let us decompose

LðwÞ ¼ ðL1 þ L2 þ L3ÞðwÞ,
with

L1ðwÞðx, tÞ :¼
ðt
0

ð
jyj
jxj=2

Fðx � y, t � sÞwðy, sÞ dy ds,

L2ðwÞðx, tÞ :¼
ðt
0

ð
jyj
jxj=2

Fðy, t � sÞwðx� y, sÞ dy ds, and

L3ðwÞðx, tÞ :¼
ðt
0

ð
jx�yj�jxj=2, jyj�jxj=2

Fðx � y, t � sÞwðy, sÞ dy ds: (5.3)

We dropped the colon symbol between F and w to simplify the notations and pro-
ceed as all the functions were scalar. We start estimating L2ðwÞ:
Then we have

jrwðx, tÞj 
 Ct�ajxj�d�1ð log ðeþ jxjÞÞ�1�2ðxÞ, (5.4)

for some constant C> 0 independent on x and t 2 ð0,TÞ, and a function �2, independ-
ent on time, such that �2ðxÞ ! 0 as jxj ! 1: A crucial observation is thatð

jyj
R
Fðy, tÞ dy ¼ 0, for all t > 0 and R > 0, (5.5)
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as one easily checks applying (3.5) and the antisymmetries of Fð1Þ and Fð2Þ: Therefore,
we can rewrite L2ðwÞ as

L2ðwÞðx, tÞ ¼
ðt
0

ð
jyj
jxj=2

Fðy, t � sÞ wðx� y, sÞ � wðx, sÞ� 	
dy ds:

Applying the gradient estimate (5.4) we get

jL2ðx,tÞj
Cjxj�d�1ðlogðeþjxjÞÞ�1
ðt
0

ð
jyj
jxj=2

jFðy,t�sÞj jyj s�a dy ds

�
sup

jyj�jxj=2
�2ðyÞ

�
:

But, from (3.4) and (3.6), we see that

jFðy, t � sÞj 
 C minfjyj�d�1, ðt � sÞ�ðdþ1Þ=2g:
Hence,





ðt
0

ð
jyj
jxj=2

jFðy, t � sÞj jyj s�a dy ds









 
 C
ðt
0

ð
jyj
 ffiffiffiffiffi

t�s
p ðt � sÞ�ðdþ1Þ=2jyj s�a dy dsþ C

ðt
0

ð
ffiffiffiffiffi
t�s

p 
jyj
jxj=2
jyj�ds�a dy ds


 C

�
t1�a þ 1jxj�2

ffiffi
t

p
ðt
0
log ðjxj= 2

ffiffiffiffiffiffiffiffiffiffi
t � s

p� �
Þs�a ds

�

 CT1�a log ðeþ TÞ log ðeþ jxjÞ:

We conclude that, for ~�1ðxÞ ¼ supjyj�jxj=2 �1ðyÞ,
sup

t2ð0,TÞ
jL2ðx, tÞj ¼ oðjxj�d�1Þ:

We next estimate L3ðwÞ: Using (3.6) we get

jL3ðx, tÞj 
 jxj�d�1
ðt
0

ð
jyj�jxj=2

jwðy, sÞj dy ds:

As w 2 L1ðRd � ð0,TÞÞ, by the dominated convergence theorem
Ð t
0

Ð
jyj�jxj=2j

wðy,sÞj dy ds!0 as jxj!1, uniformly with respect to t2ð0,TÞ:
We end up with the analysis of L1ðwÞ: Recalling (3.7), we split L1ðwÞ as

L1ðwÞðx, tÞ ¼ FðxÞ :
ðt
0

ð
wðy, sÞ dy ds

� FðxÞ :
ðt
0

ð
jyj�jxj=2

wðy, sÞ dy ds

þ
ðt
0

ð
jyj
jxj=2

Fðx� y, t � sÞ � Fðx, t � sÞ� 	
: wðy, sÞ dy ds

þ jxj�d�1
ðt
0
W x=

ffiffiffiffiffiffiffiffiffiffi
t � s

p� �
:

ð
jyj
jxj=2

wðy, sÞ dy ds: (5.6)

For the last term in (5.6), we can make use, e.g., of the rough estimate jWðyÞj 

Cjyj�2ð1�aÞ, that implies the bound, for this last term,
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Ct1�a jxj�d�3þ2a kwkL1ðRd�ð0,TÞÞ

which decays faster than jxj�d�1 as jxj ! 1: Hence the last term in (5.6) is settled.
Now, let us consider the third term in the right-hand side of (5.6). It is well known,

and easy to check with (3.7), that jrFðx, tÞj 
 Cjxj�d�2: Therefore, the third term in
(5.6) is bounded by

Cjxj�d�2
ðt
0

ð
jyj
jxj=2

jyj jwðy, sÞj dy ds:

By the dominated convergence theorem,ðT
0

ð
jxj�1jyj jwðy, sÞj 1jyj
jxj=2ðyÞ dy ds ! 0 as jxj ! 1:

Therefore, the third term in the right-hand side of (5.6) is oðjxj�d�1Þ as jxj ! 1,
uniformly in t 2 ð0,TÞ: This settles also the third term (5.6)
The second term in the right-hand side of (5.6) is the simplest one, and can be

treated as L3: Summarizing, we proved that

LðwÞðx, tÞ ¼ FðxÞ :
ðt
0

ð
wðy, sÞ dy dsþ jxj�d�1�ðx, tÞ,

where

j�ðx, tÞj 
 ð1þ t1�a log ðeþ tÞÞ~�ðxÞ
with ~� independent on t and such that ~�ðxÞ ! 0 as jxj ! þ1: w

Proof of Lemma 5.2. Going back to the decomposition (5.3) of LðwÞ, we see that L1ðwÞ
and L3ðwÞ can be treated exactly as before. The estimate of L2ðwÞ is more direct:
indeed, by the assumption on w, there exists C > 0 independent on x and t, and a func-
tion �2 independent on t, with �2ðxÞ ! 0, as jxj ! 1, such that

jwðx, tÞj 
 C t�ajxj�d�1�2ðxÞ: (5.7)

Then we have

jL2ðwÞjðx, tÞ 
 Cjxj�d�1
ðt
0

ð
jyj
jxj=2

jFðy, t � sÞjs�a�1ðx� yÞ dy ds


 Cjxj�d�1
ðt
0
kFðt � sÞk1s�a ds sup

jyj�jxj=2
�1ðyÞ


 Cjxj�d�1t1=2�a sup
jyj�jxj=2

�1ðyÞ:

Hence L2ðwÞðx, tÞ ¼ oðjxj�d�1Þ as jxj ! 1, for all fixed t 2 ð0,TÞ: Notice that in
conclusion (5.2) we have now

j�ðx, tÞj 
 t1=2�a~�ðxÞ
with ~� independent on t and such that ~�ðxÞ ! 0 as jxj ! 1: w
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6. Linear asymptotics in 2D

In this section, we put in evidence what conditions on u0 ensure that

sup
t2ð0,TÞ

jetDu0ðxÞj ¼ oðjxj�3Þ, as jxj ! 1

We denote by gtðxÞ ¼ ð4ptÞ�1e�jxj2=4t the 2D heat kernel, for t> 0 and x 2 R
2:

Lemma 6.1. Let u0 2 L2ðR2Þ. Assume also that at least one of the following condi-
tions holds:

i. Either u0ðxÞ ¼ oðjxj�3Þ, or
ii. ru0ðxÞ ¼ oðjxj�3Þ, or
iii. Du0ðxÞ ¼ oðjxj�3Þ:

Then there exists a polynomial P ¼ PðTÞ and a function � ¼ �ðxÞ, such that
limjxj!1 �ðxÞ ¼ 0 and

sup
t2ð0,TÞ

jetDu0ðxÞ � u0ðxÞj 
 PðTÞjxj�3�ðxÞ (6.1)

for all T> 0.

Proof. For m¼ 0, 1, 2, let us introduce the four terms

D1 �
ð
jyj
jxj=2

u0ðx � yÞ �
X

jcj
m�1

ð�1Þjcj
c!

@cu0ðxÞyc
2
4

3
5gtðyÞ dy,

D2 �
ð
jyj
jxj=2

gtðx� yÞu0ðyÞ dy,

D3 �
ð
jyj�jxj=2, jx�yj�jxj=2

u0ðx � yÞgtðyÞ dy dy

and

D4 � �
X

jcj
m�1

ð�1Þjcj
c!

@cu0ðxÞ
ð
jyj�jxj=2

ycgtðyÞ dy:

In the case (i), we choose above m¼ 0, so that

etDu0 ¼ D1 þ D2 þ D3 and D4 ¼ 0:

Using that kgtk1 ¼ 1, we see that the D1 and D3 integrals are oðjxj�3Þ, uniformly

with respect to t 2 ð0,1Þ: For D2, we use supjyj
jxj=2 gtðx � yÞ 
 Ctjxj�4, and thatÐ
jyj
jxj=2ju0ðyÞj dy 
 C log ðeþ jxjÞ: Here, and throughout the proof, C> 0 will denote a

suitable constant depending only on u0. This proves the result (6.1) with a polynomial
P of degree 1.
In the case (ii), we choose m¼ 1 above, so that D4 ¼ �u0ðxÞ

Ð
jyj�jxj=2gðyÞ dy: AsÐ

gt ¼ 1, we see that
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etDu0 � u0 ¼ D1 þ D2 þ D3 þ D4:

By the first-order Taylor formula and assumption (ii),

jD1j 

�

sup
jyj�jxj=2

jru0ðyÞj
�ð

jyj
jxj=2
jyjgtðyÞ dy ¼ ffiffi

t
p

oðjxj�3Þ:

This estimate for D1 is in agreement with (6.1). For D2 we can use the inequality

sup
jyj
jxj=2

gtðx � yÞ 
 Cjxj�7t5=2:

Next, the gradient estimate of u0 implies that u0 is Lipschitz outside a ball of large
radius. Hence,

Ð
jyj
jxj=2ju0j 
 Cð1þ jxjÞ3: The fast decay of the heat kernel thus settles

the D2 integral. For the integral D3, using again the Lipschitz property of u0 we have

jD3j 
 C
ð
jyj�jxj=2

ð1þ jyjÞgtðyÞ dy 
 Cðt2 þ t5=2Þjxj�4:

For D4, we write, for some R0 > 0 dependent only on u0 and all jxj � R0,

jD4j 
 Cjx
ð
jyj�jxj=2

jyjgtðyÞ dy 
 Ct3jxj�4:







This establishes (6.1) with a polynomial P of degree 3.
In case (iii), we choose m¼ 2. Notice that in the summations over c, all the terms

corresponding to jcj ¼ 1 vanish after integrating with respect to y (because of the anti-
symmetry of y1gtðyÞ and y2gðyÞ: Hence, D4 is the same as in case (ii) and D1 þ D2 þ
D3 þ D4 equals etDu0 � u0, as before. But now in D1 we can apply the second-order
Taylor formula. In fact, in D1, the mixed derivatives @j@ku0 will play no role when j 6¼
k, because yjykgðyÞ is anti-symmetric and vanish after integration. And

Ð
jyj
jxj=2y

2
1gtðyÞ

dy ¼ Ðjyj
jxj=2y
2
2gtðyÞ dy: Hence,

D1 ¼ 1
4

ð1
0

ð
jyj
jxj=2

Du0ðx � hyÞjyj2gtðyÞ dy dh:

Thus,

jD1j 
 C t

�
sup

jyj�jxj=2
jDu0ðyÞj

�
,

and this can be bounded as in the right-hand side of (6.1), by assumption (iii). To esti-
mate the other terms, we first need a control on the growth of u0 at infinity. We can
write u0 ¼ /þ vu0 where / is an L2-compactly supported function, v is smooth and
v � 0 near the origin, v � 1 in a neighborhood of infinity, and such that jDðvu0ÞðxÞj 

Cð1þ jxjÞ�3: Letting

w ¼ 1
2p

ð
log ðjx� yjÞDðvu0ÞðyÞ dy,

we see that Dw ¼ Dðvu0Þ, so that vu0 � w is a harmonic polynomial. Moreover, w has
a logarithmic growth. It follows that ju0ðxÞj is bounded by some polynomial Q(x) for
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large enough jxj: But then, the estimates of the other terms D2, D3 and D4 can be per-
formed essentially as before. In (6.1), the degree of P will then depend on that of Q. w

Notice that conclusion of the Lemma remains true if one replaces the L2-condition
on u0 by the more general one u0 2 E0ðR2Þ þ L1locðR2Þ, where E0ðR2Þ is the space of
compactly supported distributions. In case iii), however, one would need also some
“controlled growth at infinity” for u0. For example, u0ðxÞ ¼ OðejxjaÞ for
some 0 
 a < 2:

7. Proof of Theorem 2.1, Theorem 2.2 and Theorem 2.3

The proof of the main theorems is a simple consequence of the persistence properties
of the spatial decay (Propositions 4.1 and 4.2), of the two previous lemmas, and a few
remarkable properties of the kernel F in 2D.

Proof of Theorem 2.1. Under the assumptions of Theorem 2.1, Proposition 4.1 applies.
Hence, u satisfies (4.2). Hence, w ¼ u� u does satisfy the conditions of Lemma 5.1
with a ¼ 1=2þ 2=p < 1 and d¼ 2.
Hence, applying also case (iii) of Lemma 6.1, we get, for all fixed t 2 ð0,TÞ,

uðx, tÞ ¼ u0ðxÞ þ FðxÞ :
ðt
0

ð
ðu� uÞðy, sÞ dy dsþ otðjxj�3Þ

¼ u0ðxÞ þ rHðx, tÞ þ otðjxj�3Þ, (7.1)

where H was defined in (3.9). Here, otðjxj�3Þ denotes a time-dependent function decay-
ing faster than jxj�3 at the spatial infinity.
Let us now study in more detail the vector fields of the form ðx1, x2Þ 7!rHðx1, x2, tÞ:

Such vector fields of potential type consist of homogeneous functions of degree �3:
their components are linear combinations of third-order derivatives of E2ðx1, x2Þ ¼
� 1

4p log ðx21 þ x22Þ: To this purpose, let us fix t> 0 and denote

a b
b d

� �
:¼

ðt
0

ð
u21ðx, sÞ dy ds

ðt
0

ð
ð2u1u2Þðx, sÞ dy dsðt

0

ð
ð2u1u2Þðx, sÞ dy ds

ðt
0

ð
u22ðx, sÞ dy ds

0
BBB@

1
CCCA: (7.2)

From the expression of E2ðx1, x2Þ we get

rHðx1, x2, tÞ ¼
@1

@2

 !
Hðx1, x2, tÞ ¼

a@3
1 þ b@2

1@2 þ d@1@2
2

a@2
1@2 þ b@1@2

2 þ d@3
2

 !
E2ðx1, x2Þ

¼ 1

pðx21 þ x22Þ3
�ða� dÞðx31 � 3x1x22Þ � bð3x21x2 � x32Þ
ða� dÞðx32 � 3x21x2Þ þ bðx31 � 3x1x22Þ

 !
: (7.3)

Let us compute jrHðx, tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@1Hðx, tÞ2 þ @2Hðx, tÞ2

q
: A crucial remark, specific to

the 2D case, is that jrHðx, tÞj is a radial function for all possible choice of a, b and d.
Indeed, by a direct computation we get
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jrHðx, tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ b2

q
pjxj3 : (7.4)

It then follows that it does exist the limit

lim
jxj!þ1

jxj3juðx, tÞ � u0ðxÞj ¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ b2

q
:

Going back to the original notations, the above limit equals

LðtÞ ¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ðt
0

ð
ðu21 � u22Þ dy ds

�2

þ
�ðt

0

ð
2u1u2 dy ds

�2
s

:

w

Proof of Theorem 2.2. The proof is the same as above, the only change is that one needs
to apply Proposition 4.2 instead of Proposition 4.1, next case (i) of Lemma 6.1, and
finally and Lemma 5.2 instead of Lemma 5.1. w

Proof of Theorem 2.3. Because of the invariance of the Navier–Stokes equations under
rotations, we can assume without loss of generality that v ¼ u2, the vertical component
of the velocity field. Under the assumptions of Theorem 2.1, by the asymptotic profile
(7.1), we see that

u2ðx, tÞ � u0, 2ðxÞ ¼ @2Hðx, tÞ þ otðjxj�3Þ as jxj ! þ1:

Under the assumptions of Theorem 2.2, the term u0, 2ðxÞ on the left-hand side can be
incorporated inside the remainder terms.
Let Pðh, tÞ ¼ rHð cos h, sin h, tÞ: We easily get, rewriting (7.3) in terms of trigono-

metric functions,

Pðh, tÞ ¼ 1
p

ðd � aÞ cos ð3hÞ � b sin ð3hÞ
ðd � aÞ sin ð3hÞ þ b cos ð3hÞ

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � aÞ2 þ b2

q
p

cos ð3hþ aÞ
sin ð3hþ aÞ

 !
,

where the angle a 2 ½0, 2pÞ, which is the argument of the complex number z(t), is
uniquely defined by the system

cos a ¼ d � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � aÞ2 þ b2

q
sin a ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd � aÞ2 þ b2
q :

8>>>>><
>>>>>:

(7.5)

Here a, just like a, b and d, depends on time. In particular,

jPðh, tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ b2

q
p

,
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and the fact that the right-hand side is independent of h is another way of recovering
the already observed fact that jrHð�, tÞj is radial. Moreover, for x ¼ ðR cos h,R sin hÞ,
with R> 0,

@2Hðx, tÞ ¼ @2HðR cos h,R sin hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � aÞ2 þ b2

q
p

R�3 sin ð3hþ aÞ:

Then, for any fixed t> 0 and h 2 ½0, 2pÞ,

R3u2ðR cos h,R sin h, tÞ � R3u0, 2ðR cos h,R sin hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ b2

q
p

sin ð3hþ aÞ þ oð1Þ,

as R ! þ1: Let t such that LðtÞ 6¼ 0: For such times t, we have ða� dÞ2 þ b2 6¼ 0: It
then just remains to check whether or not the term sin ð3hþ aÞ vanishes. To the six
zeros in ½0, 2p½ of the periodic function h 7! sin ð3hþ aÞ correspond six distinct points
in the circle: e�ia=3þkp, k ¼ 0, :::, 5: These are the 6th-complex roots of e�2ia: But eia ¼
zðtÞ=jzðtÞj, so the assertion of the theorem applies, for the vertical component v ¼ u2,
with ft ¼ ðjzðtÞj2=zðtÞ2Þ: w

The function L(t) (see (2.3) for the definition) and the hexagons HðtÞ can be defined
for any 2D Leray solution, even though one should not expect such objects play any
special role, if one just assumes u0 2 L2rðR2Þ, without any additional decay condition
on the data.
Ruling out the non-generic situation in which the matrix in (7.2) is a multiple of the

identity matrix, i.e., assuming that

ðd � aÞ2 þ b2 6¼ 0,

we see that the term rHð�, tÞ is not identically zero. In fact, one generically expects that
LðtÞ 6¼ 0: This, of course, is an useful information in the application of asymptotic pro-
files like (2.7). Next remark allows to establish rigorously that LðtÞ 6¼ 0 at least for a
short time interval, as soon as one starts from a “non-symmetric” initial datum.
Therefore, the formation of hexagonal structures can be granted at least in some inter-
val ð0,T0Þ:
Remark 7.1. Let u0 2 L2rðR2Þ and u the associated Leray’s solution. Assume also that u0
satisfies the following “non-symmetry” conditions:

The 2� 2 matrix
ð
ðu0 � u0ÞðxÞ dx is not a scalar multiple of the identity matrix:

(7.6)

Then there exists T0 > 0 such that LðtÞ 6¼ 0 for all t 2 ð0,T0Þ:
The proof of the remark is immediate: it relies on the fact that

lim
t!0þ

LðtÞ
t

¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ð
ðu20, 1 � u20, 2Þ dy

�2

þ
�ð

2u0, 1u0, 2 dy

�2

:

s

Therefore, under condition (7.6), L(t) cannot vanish when t> 0 is small enough.
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Notice that the non-symmetry condition (7.6) can be reformulated in an equivalent
way as follows: “there exists a coordinate system such that

Ð
u20, 1 6¼

Ð
u20, 2”. Yet another

equivalent formulation is: “there exists a coordinate system such that
Ð
u0, 1u0, 2 6¼ 0”.

8. Large time behavior of hexagonal structures

The goal of this section is to estimate the angular velocity

H:ðtÞ
of the hexagons HðtÞ: Even though the orientation of the hexagon HðtÞ depends on the
component v of the velocity field vector, its angular velocity is independent on v. To
study the large time behavior of the spatial limit L(t), we need the following Lemma.

Lemma 8.1. Let u0 2 L2rðR2Þ \ _H
�1ðR2Þ. Then the corresponding Leray’s solution belongs

to L2ð½0,1Þ, L2ðR2ÞÞ. In this case, L(t) does have a limit as t ! þ1 and

lim
t!þ1 LðtÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ð1
0

ð
ðu21 � u22Þ dy ds

�2

þ
�ð1

0

ð
2u1u2 dy ds

�2
s

:

Proof. Indeed, we have the obvious estimate ketDu0k22 
 ku0k22, and alsoÐ
e�2tjnj2 û0ðxÞj2 dn 
 ku0k2_H�1ðsupn e�2tjnj2 jnj2Þ�ku0k2_H�1 t�1:




 Hence,

ketDu0k22 
 Cð1þ tÞ�1:

Wiegner’s theorem [22] applies and gives the following L2-estimate for the difference
u� etDu0 :

kuðtÞ � etDu0k22 
 Cð1þ tÞ�2 log 2ðeþ tÞ:
Therefore, u 2 L2ðRþ, L2ðR2ÞÞ if (and only if) etDu0 2 L2ðRþ, L2ðR2ÞÞ: But,ð1

0

ð
e�2tjnj2 jû0ðnÞj2 dn dt ¼

ð
jnj�2jû0ðnÞj2 dn ¼ ku0k _H

�1 :

Thus, etDu0 2 L2ðRþ, L2ðR2ÞÞ if and only if u0 2 _H
�1ðR2Þ and the conclusion

follows. w

In view of our next corollary, let us introduce the following notion.

Definition 8.2. We call generic a Leray’s solution in R
2 such that

L :¼ lim inf
t!þ1 LðtÞ > 0, (8.1)

where L(t) is given by (2.3).
We do not attempt to give a precise topological description of this notion of generic-

ity. This terminology is justified by the fact that the condition limt!þ1 LðtÞ ¼ 0 is
expected to achievable only with special solutions, like those featuring specific symme-
tries, and that in all the other cases (8.1) holds. Of course, in the case u0 2 L2r \
_H
�1ðR2Þ, applying Lemma 8.1, shows that a Leray solution is generic if and only if
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�ð1
0

ð
u2hu

2
k dy ds

�
h, k

is not a scalar multiple of the identitymatrix: (8.2)

This is the analog, for the solution u, of the non-symmetry condition (7.6) for the
datum u0.
Condition (8.2) first appeared in [16] in connection with the construction of fast dis-

sipative flows. Namely, the main result of [16] essentially states that weak solutions of
solution u of Navier–Stokes in R

d are rapidly dissipative, i.e., kuðtÞk22 ¼ oðt�ðdþ1Þ=2Þ if
and only if ketDu0k22 ¼ oðt�ðdþ1Þ=2Þ and u does not satisfy (8.2). See also [8] for an
insightful analysis of such flows using the invariant manifolds theory.
Next corollary reveals that condition (8.2), and its more general formulation (8.1),

not only appears in the setting of rapidly dissipative flows, but also has a deeper signifi-
cation in the large time structure of the flow.

Corollary 8.3.

i. For generic Leray’s solutions, the angular speed H:ðtÞ of the hexagonal structure is
such that

j H:ðtÞj ¼ OðkuðtÞk22Þ as t ! þ1:

In particular, this angular speed slows down to zero for large time.

ii. If u0 2 _H
�1ðR2Þ and u satisfies (8.2), then the hexagon HðtÞ converge to a sta-

tionary position H1 as t ! þ1:

Proof. To estimate the angular speed of the hexagons H ¼ HðtÞ we compute the time
derivative of the function a ¼ aðtÞ defined in (7.5). We find

jH: j ¼ jb0ðd � aÞ � bðd � aÞ0j
ðd � aÞ2 þ b2

:

Therefore, recalling the definition of L ¼ LðtÞ in (2.3),

jH: j 
 jb0j þ jd0 � a0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � aÞ2 þ b2

q
¼
Ð
2u1u2 dxjþ

 

 Ð ðu21 � u22Þ dxj

pL

Maximizing the numerator under energy constraint we finally get that the angular
speed of H is estimated by

j H:ðtÞj 

ffiffiffi
2

p kuðtÞk22
pLðtÞ : (8.3)

Then the first conclusion follows from condition (8.1). By a classical result of Kato
and Masuda, kuðtÞk22 ! 0 (see [22] for a proof) and so j H:ðtÞj ! 0 for generic solu-
tions. In the case u0 2 L2r \ _H

�1ðR2Þ, and (8.2) holds, the application of Lemma 8.1
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and an integration in time in an interval of the form ½t0,1Þ yields the second conclu-
sion. w

Conditions (8.1) and (8.2) can be difficult to check for an arbitrarily given u0.
However, if the size of u0 2 L2r \ _H

�1ðR2Þ is small enough in the L2-norm, then such
conditions are both very easily checked, using the Fourier transform, applying the fol-
lowing criterion.

Proposition 8.4. Let u0 2 L2r \ _H
�1ðR2Þ, be such that ~u0 :¼ ð�DÞ�1=2u0 is non-symmet-

ric (in the sense that of condition (7.6) holds with ~u0 instead of u0). Then there exists
d > 0 such that if ku0k2 < d, then Leray’s solution starting from u0 does satisfy (8.2).

Proof. Our condition that ~u0 is non-symmetric can be expressed by the fact that

j0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ð jû0, 1ðnÞj2 � jû0, 2ðnÞj2

jnj2 dn

�2

þ
�ð

2
û0, 1ðnÞû0, 2ðnÞ

jnj2 dn

�2
s

6¼ 0:

Let us introduce the Banach space X of measurable functions in R
2 � ð0,1Þ such

that

kukX ¼ ess sup
t>0

kuðtÞk2 þ ess sup
t>0

ffiffi
t

p kuðtÞk1 þ
�ð1

0
kuðtÞk22 dt

�1=2

:

If u0 2 L2r \ _H
�1ðR2Þ then we have by standard heat kernel estimates, and recalling

the last line of the proof of Lemma 8.1,

ketDu0kX 
 C0ðku0k2 þ ku0k _H
�1Þ,

where C0 > 0 is an absolute constant. To prove the bilinear estimate

kBðu, vÞkX 
 KkukXkvkX , (8.4)

with K independent on u and v, we only have to establish that�ð1
0
kBðu, vÞk22 dt

�1=2


 K 0kukXkvkX ,

as the other contributions of the X-norm of B(u, v) are just standard Kato’s estimates.
To establish the latter estimate, first observe that if u and v belong to X, then f :¼

kuk2kvk2 2 L1 \ L1ðRþÞ, with norm bounded by kukXkvkX: Then,

kBðu, vÞk2ðtÞ 

ðt=2
0

kFðt � sÞk2f ðsÞ dsþ
ðt
t=2

kFðt � sÞk6=5kuðsÞk3kvðsÞk3 ds


 Ct�1
ðt=2
0

f ðsÞ dsþ Ckuk1=3X kvk1=3X

ðt
t=2

ðt � sÞ�2=3f ðsÞ2=3s�1=3 ds:

We have t�1
Ð t=2
0 f ðsÞ ds 
 Cð1þ tÞ�1kukXkvkX , which indeed in L2ðRþÞ as a func-

tion of the t variable.
To estimate the second term we will make use of classical H€older and Young inequal-

ities for Lorentz spaces and their interpolation properties, see [11]. As f 2=3 2 L3=2 \
L1ðRþÞ and the map s 7! s�1=3 belong to the weak-L3ðRþÞ space, we get that the map
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s 7! f ðsÞ2=3s�1=3 belongs the Lorentz space Lp, qðRþÞ, for all 1 < p < 3 and 1 
 q 
 1:

In particular, this map belongs to L6=5, 1ðRþÞ: On the other hand, the map
s 7! ðt � sÞ�2=3 belongs to the weak-L3=2ðRþÞ space and L3=2,1 	 L6=5, 1ðRþÞ 
L2, 1ðRþÞ  L2ðRþÞ with continuous embeddings. These considerations prove that the
last integral is bounded in L2ðRþÞ by Ckuk2=3X kvk2=3X : This in turn implies (8.4).
Notice, for any k > 0, a rescaled solution ukðx, tÞ ¼ kuðkx, k2tÞ, satisfies (8.2) if and

only if u does satisfy (8.2). Therefore, it is convenient to work with a suitably rescaled
datum u0, k ¼ ku0ðk�Þ, in a such way that the smallness assumption ku0k2 < d insure
that

ku0, kk2 þ ku0, kk _H
�1 < 2d < C0=ð4KÞ:

This is possible taking a large enough k, so that ku0, kk _H
�1 ¼ k�1ku0k _H

�1 ¼ d:
To make the notations lighter in the sequel, we abusively temporary drop the scaling

parameter k, and write u instead of uk, even though from now on we do work with the
rescaled solution.
The global solution u 2 X constructed by fixed point (that agrees with Leray’s solu-

tion) satisfy u ¼ etDu0 þ Bðu, uÞ, with
kukX 
 2ku0kX 
 4d:

Moreover, for any component of u (j¼ 1, 2),

u2j ¼ ðetDu0, jÞ2 þ 2etDu0, jBðu, uÞj þ Bðu, uÞ2j :
Integrating in space-time we get, for an absolute constant C> 0,ð1

0

ð
u2j �

ð1
0

ð
ðesDu0, jÞ2 � 2ketDu0kL2x, tkBðu, uÞkL2x, t � kBðu, uÞk2L2x, t

�
ð1
0

ð
ðesDu0, jÞ2 � Cd3 � Cd4

�
ð jû0j2ðnÞ

jnj2 dn� Cd3:

If we now reproduce the same calculation for
Ð1
0

Ð ðu21 � u22Þ and for
Ð1
0

Ð
2u0, 1u0, 2

we obtain, for another absolute constant C > 0,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ð1
0

ð
ðu21 � u22Þ dy ds

�2

þ
�ð1

0

ð
2u1u2 dy ds

�2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ð jû0, 1ðnÞj2 � jû0, 2ðnÞj2

jnj2 dn

�2

þ
�ð

2
û0, 1ðnÞû0, 2ðnÞ

jnj2 dn

�2
s

� Cd3

¼ j0 k�2 � Cd3

¼ j0 d2ku0k�2
_H
1 � Cd3:

The last expression is strictly positive when d < j0=ðCku0k2_H�1Þ: Under this condition
and the previous condition 2d < C0=ð4KÞ, the rescaled solution uk, and hence the
non-rescaled solution u itself, do satisfy (8.2). w
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Remark 8.5. There are examples of (non-generic) flows such that LðtÞ � 0: The best
known are classical circular flows with radial vorticity, described, e.g., in [18]. For such
flows, HðtÞ is not well defined and no hexagonal structure is present. Such flows are
somehow trivial, as the nonlinearity P � rðu� uÞ identically vanishes, but very import-
ant to describe the large time dynamics of general flows. See [9].

Following the author (see [11, Chapt. 25]), we call symmetric a 2D flow such that

i. ðx1, x2Þ 7! u1ðx1, x2, tÞ is odd with respect to x1 and even with respect to x2.
ii. u1ðx1, x2, tÞ ¼ uðx2, x1, tÞ for all x 2 R

2 and t � 0:

Symmetric flows provide another example of non-generic (and non-trivial) solutions
such that LðtÞ � 0: Let us call “half-symmetric” a flow satisfying just one of conditions
i) or ii). For half-symmetric flows, one in general has LðtÞ 6¼ 0, so that the hexagonal
structure HðtÞ is present. But a� d � 0 or b � 0 : in both cases, one concludes from
our previous computations that H: � 0: In other words, for half-symmetric flows the
hexagonal structure always remains in a fixed position.
The curious concentration-diffusion effects pointed out in [3] and also [7] can be

interpreted as follow: there are flows such that LðtÞ 6� 0, but such that L has an arbi-
trarily large number of zeros.

9. Proof of Proposition 4.1 and Proposition 4.2

The proof of Proposition 4.1 is carried in two steps. In the first one, the solution is
proved to belong, for some T0 > 0 small enough, to a Banach space Xp,T0 , of functions
such that u and ru have a suitable pointwise decay at the spatial infinity, at least for
0 < t 
 T0: In the second step, the spatial decay for u and ru is proved to persist
beyond T0, and to hold also in ½T0,T�: This second step is based on an argument of
Vigneron [21].
Let us consider the weight functions

/ðxÞ ¼ ð1þ jxjÞ log ðeþ jxjÞ1=2 and wðxÞ ¼ ð1þ jxjÞ2 log ðeþ jxjÞ1=2: (9.1)

For any T> 0 and 1 
 p 
 1, let us set

kukXp,T :¼ ess sup
t2ð0,TÞ

t1=pk/ uðtÞk1 þ ess sup
t2ð0,TÞ

t1=pþ1=2kw ruðtÞk1:

So we can define the Banach space Xp,T of measurable functions u on R
2 � ð0,TÞ

such that kukXp,T < 1: We also consider the closed subspace Yp,T  Xp,T defined as
follows:

Yp,T ¼
�
u 2 Xp,T : /ðxÞ ess sup

t2ð0,TÞ
t1=pjuðx, tÞj ! 0 and

wðxÞ ess sup
t2ð0,TÞ

t1=pþ1=2 jruðx, tÞj ! 0, as jxj ! 1
�
:

Lemma 9.1. Let Bðu, vÞðtÞ ¼ � Ð t0 Fðt � sÞ 	 ðu� vÞðsÞ ds the bilinear term of the
Navier–Stokes equations. For all T> 0 and all 4 < p 
 1, we have the estimate
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kBðu, vÞkXp,T 
 Cp T1=2�1=p 1þ
ffiffiffiffi
T

p� �
kukXp,TkvkXp,T , (9.2)

where Cp > 0 depends only on p.
Moreover, if u and v belong to Yp,T then B(u, v) does also belong to Yp,T :

Proof. First of all, we have

kBðu, vÞðtÞk1 

ðt
0
kFðt � sÞk1kuðsÞk1kvðsÞk1 ds 
 Cpt

1�2=pkukXp,TkvkXp,T :

Moreover, for jxj � 2e,

jBðu, vÞjðx, tÞ 
 Cjxj�3
ðt
0

ð
jyj
jxj=2

juj jvjðy, sÞ dy ds

þ
ðt
0

ð
jyj�jxj=2

jFðx � y, t � sÞjs�2=p dy ds /ðxÞ�2kukXp,TkvkXp,T


 Cpðt1�2=pjxj�3 log ð log jxjÞÞ þ
ðt
0
kFðt � sÞk1s�2=p ds /ðxÞ�2ÞkukXp,TkvkXp,T


 Cpðt1=2�2=pÞ 1þ ffiffi
t

p� �
/ðxÞ�1kukXp,TkvkXp,T

Similarly,

krBðu, vÞðtÞk1 

ðt
0
kFðt � sÞk1krðu� vÞðsÞk1 ds 
 Cp t�2=pkukXp,TkvkXp,T :

And, for jxj � e,

jrBðu, vÞjðx, tÞ 
 Cjxj�3
ðt
0

ð
jyj
jxj=2

jrðu� vÞjðy, sÞ dy ds

þ C
ðt
0

ð
jyj�jxj=2

jFðx � y, t � sÞjs�1=2�2=p dy ds /ðxÞ�1wðxÞ�1kukXp,TkvkXp,T


 Cpðt1=2�2=pjxj�3 þ
ðt
0
kFðt � sÞk1s�1=2�2=p ds /ðxÞ�1wðxÞ�1ÞkukXp,TkvkXp,T


 Cpðt1=2�2=p þ t�2=pÞwðxÞ�1kukXp,TkvkXp,T

Combining the four previous estimates implies (9.2).
If u and v belong to the closed subset Yp,T , then going back to the previous estimates

one readily see that Bðu, vÞ 2 Yp,T : w

Lemma 9.2. Let 1 
 p 
 1 and u0 2 LpðR2Þ, be such u0ðxÞ ¼ oð/ðxÞ�1Þ and ru0ðxÞ ¼
oðwðxÞ�1Þ as jxj ! þ1. Then, for all T> 0, etDu0 2 Yp,T :

Proof. From u0 2 LpðR2Þ, the usual heat kernel estimates gives

sup
t>0

t1=pketDu0k1 þ sup
t>0

t1=pþ1=2kretDu0k1 < 1: (9.3)

Moreover, there exists R0 > 1 such that, for all jxj � R0 we have ju0ðxÞj 
 /ðxÞ�1

and jru0ðxÞj 
 wðxÞ�1: The spatial decay estimates as jxj ! 1 are simple: splitting the
heat integral

Ð
gtðx� yÞu0ðyÞ dy at y ¼ jxj=2 and using gtðx=2Þ

Ð
jyj
jxj=2ju0ðyÞj dy 
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Cjxj�4t jxj2ð1�1=pÞ, one obtains for all jxj � 2R0,

jetDu0ðxÞj 
 Cðtjxj�2 þ /ðxÞ�1Þ 
 Cð1þ tÞ/ðxÞ�1:

with C> 0 independent on t. Hence,

sup
t2ð0,TÞ

t1=pk/ etDu0k1 
 Cð1þ T1þ1=pÞ:

Next, let v be a cutoff function equal to 1 for jxj 
 R0, vanishing for jxj � 2R0: We
have retDu0 ¼ ðrgtÞ 	 ðvu0Þ þ gt 	 r½ð1� vÞu0�: Hence, for jxj � 4R0,

jretDu0jðxÞ 
 Cjxj�3
ð
jyj
2R0

ju0j þ gtðx=2Þ
ð
R0
jyj
jxj=2

jr ð1� vÞu0½ �j þ ess sup
jyj�jxj=2

jru0jðyÞ


 C 1þ ffiffi
t

p� �
wðxÞ�1:

Therefore,
sup

t2ð0,TÞ
t1=pþ1=2 kw retDu0k1 
 Cð1þ T1þ1=pÞ:

In fact, using that u0ðxÞ ¼ oð/ðxÞ�1Þ and ru0ðxÞ¼oðwðxÞ�1Þ as jxj!1, allow us to
reinforce previous conclusion into /1ðxÞsupt2ð0,TÞ jetDu0jðxÞ!0 and /2ðxÞsupt2ð0,TÞ
jetDu0jðxÞ!0, getting etDu02Yp,T : w

Proof of Proposition 4.1. We first make use of the spatial decay assumption for u0,ru0,
of the condition u0 2 LpðR2Þ, with 4 < p 
 1 and the divergence-free condition on
u0. Observe that norm of the bilinear operator of B : Xp,T � Xp,T ! Xp,T goes to zero
as T ! 0, as we checked in establishing (9.2). If we choose T0 > 0 small enough, then
applying the standard fixed point argument in Yp,T0 we get from the two previous
Lemmas the existence of a local-in-time solution u 2 Yp,T0 of the Navier–Stokes equa-
tions, written in its integral form, u ¼ etDu0 þ Bðu, uÞ: This solution is obtained as the
limit u ¼ limk!1 uk in the Xp,T0 -norm, where, accordingly with the usual iteration
scheme, u1 :¼ etDu0 and ukþ1 ¼ u1 þ Bðuk, ukÞ for k ¼ 1, 2, :::
In fact, u0 does also belong to L2rðR2Þ, and the above iteration scheme is known to

converge also in L4ð½0,T0�, _H1=2ðR2ÞÞ by classical Fujita and Kato’s result. Therefore the
solution u agrees with Leray’s solution in such time interval (see [1]). But Leray’s solu-
tion is defined beyond T0 and is such that, for all T > T0,

sup
t2 T0,T½ �

kuðtÞk1 < 1: (9.4)

See, e.g., [17, 24] for fine L1-estimates of 2D Navier–Stokes flows valid also in the
more general settings of infinite energy solutions. We now work on ½T0,T�, where T >

T0 is arbitrary. It will be convenient to consider the new initial datum

~u0ðxÞ ¼ uðx,T0Þ:
From the fact that u 2 Yp,T0 we infer that

/ ~u0 2 L1ðR2Þ
w r~u0 2 L1ðR2Þ and

/ðxÞ~u0ðxÞ ! 0
wr~u0ðxÞ ! 0

as jxj ! 1: (9.5)
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We now argue as in Vigneron’s paper [21] to deduce, from (9.4) and (9.5), that the
spatial decay of ~u0 and r~u0 is preserved by the flow, in the whole interval ½T0,T�: To
this purpose, let us introduce, for a> 0,

uaðxÞ ¼ ð1þ jxjÞa:
Observe that ua is submultiplicative for all a> 0, hence uaðxÞ 
 uaðx � yÞuaðyÞ: For

the moment, we take

a ¼ 2=3:

Next we will improve the decay rates for u by bootstrapping. First of all, we have, for
all T0 
 s < t 
 T,

uðtÞ ¼ eðt�sÞDuð�, sÞ �
ðt
s
Fðt � sÞ 	 ðu� uÞðsÞ ds: (9.6)

By the scaling relations and the decay of the kernel F we have, for any T> 0,

supt2 0,T½ � t
1=2kuaFð�, tÞk1 < 1

supt2 0,T½ � tkuarFð�, tÞk1 < 1,

(

(we cannot take here a¼ 1 because ku1FðtÞk1 ¼ 1: On the other hand, any choice
of a 2 ð0, 1Þ would do). The following linear estimates hold:

sup
t2 0,T½ �

kua etDvk1 þ sup
t2 0,T½ �

kua retDvk1 
 Aðkuavk1 þ kuarvk1Þ, (9.7)

with A ¼ AðTÞ: We have, for all T0 
 s 
 t 
 T, and for some constant B ¼ BðTÞ
independent on s and t, and T0,

juaðxÞFðt�sÞ	ðu�uÞðx,sÞj

ð
uaðx�yÞjFðx�y,t�sÞj uaðyÞ juðy,sÞj juðy,sÞj dy


kuaFðt�sÞk1kuauðsÞk1kuðsÞk1

Bðt�sÞ�1=2kuauðsÞk1kuðsÞk1:

(9.8)

In the same way,

juaðxÞr Fðt � sÞ 	 ðu� uÞ½ �ðx, sÞj 

ð
uaðx � yÞ jFðx � y, t � sÞj uaðyÞ jruðy, sÞj juðy, sÞj dy


 kuaFðt � sÞk1kuaruðsÞk1kuðsÞk1

 Bðt � sÞ�1=2kuaruðsÞk1kuðsÞk1:

(9.9)

Combining the two latter estimates with (9.7), we get from Eq. (9.6), for all
T0 
 s 
 t 
 T,

kuauðtÞk1 þ kuaruðtÞk1

 AðkuauðsÞk1 þ kuaruðsÞk1Þ

þ 2Bðt � sÞ1=2 sup
s2 s, t½ �

kuðsÞk1 ð sup
s2 s, t½ �

kuauðsÞk1 þ sup
s2 s, t½ �

kuaruðsÞk1Þ:
(9.10)
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We may assume u 6� 0 on ½T0,T�: Starting with T0, we construct a strictly increasing
sequence of times ðTiÞi�0 such that, for i � 0,

2BðTiþ1 � TiÞ1=2 sup
s2 T0,T½ �

kuðsÞk1 ¼ 1=2:

Let N 2 N be such that TN 
 T < TNþ1: We thus have

N 
 ðT � T0Þð4B sup
s2 T0,T½ �

kuðsÞk1Þ2 < N þ 1:

For i 
 N, consider the interval Di ¼ ½T0,T� \ ½Ti,Tiþ1�, and set

Mi ¼ sup
t2Di

kuauðsÞk1 þ sup
t2Di

kuaruðsÞk1:

Applying (9.10) with s ¼ T0 and T0 
 t 
 T1 we get

M0 
 2Aðkua~u0k1 þ kuar~u0k1Þ: (9.11)

In the same way, working on Di, for 1 
 i 
 N we get

Mi 
 2AMi�1: (9.12)

Therefore,

sup
t2 T0,T½ �

kuauðtÞk1 þ sup
t2 T0,T½ �

kuaruðtÞk1 
 ð2AÞNþ1ðkua~u0k1 þ kuar~u0k1Þ: (9.13)

But

ð2AÞNþ1 ¼ ð2AÞ exp ðN log ð2AÞÞ 
 A1 exp ðA2 sup
t2 T0,T½ �

kuðsÞk21Þ,

where A1 and A2 depend only on T, and are locally bounded functions of T. We then
conclude that

sup
t2½T0,T�

kuauðtÞk1þ sup
t2½T0,T�

kuaruðtÞk1
A1expðA2 sup
t2½T0,T�

kuðsÞk21Þðkua
~u0k1þkuar~u0k1Þ:

(9.14)

We now finish the proof with some bootstrapping on the spatial decay rate. From the
above estimates we get the provisory spatial decay

sup
t2 T0,T½ �

juðx, tÞj þ sup
t2 T0,T½ �

jruðx, tÞj 
 Cðu2=3ðxÞÞ�1,

where C depends only on T and on the initial data u0. But

uðx, tÞ ¼ eðt�T0ÞD~u0ðxÞ �
ðt
T0

Fðt � sÞ 	 ðu� uÞðx, sÞ ds:

For the quadratic term, we easily get from our provisory estimate

sup
t2 T0,T½ �

ðt
T0

jFðt � sÞj 	 ju� ujðx, sÞ ds 
 Cðu4=3ðxÞÞ�1 ¼ oð/ðxÞ�1Þ as jxj ! þ1:
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For the linear term, recalling (9.5) we have /1 eðt�T0ÞD~u0 2 L1ðR2Þ and
supt2½0,T� jeðt�T0ÞD~u0jðxÞ ¼ oð/ðxÞ�1Þ as jxj ! þ1: Hence,

/ sup
t2 T0,T½ �

juð�, tÞj 2 L1ðR2Þ and /ðxÞ sup
t2 T0,T½ �

juðx, tÞj ! 0, as jxj ! 1:

For the gradient estimates, after a similar bootstrapping procedure (but with a few
more iterations) we get

w sup
t2 T0,T½ �

jruð�, tÞj 2 L1ðR2Þ and wðxÞ sup
t2 T0,T½ �

jruðx, tÞj ! 0, as jxj ! 1:

This concludes the proof of Proposition 4.1. w

Before proving Proposition 4.2, we set u :¼ u3=2, i.e., according to our previous notation,

uðxÞ ¼ ð1þ jxjÞ3=2:
Moreover, for p> 2 we set

kukZp,T :¼ ess sup
t2ð0,TÞ

t1=4kuðtÞk4 þ ess sup
t2ð0,TÞ

t1=pku uk1:

We denote by Zp,T the Banach space of measurable functions u on R
2 � ð0,TÞ such

that kukZp,T < 1 and by Wp,T the closed subspace of Zp,T ,

Wp,T ¼ fu 2 Zp,T : lim
jxj!þ1

uðxÞ ess supt 2 ð0,TÞ t1=pjuðx, tÞj ¼ 0g:

We equip WT with the ZT-norm.

Proof of Proposition 4.2. The only important change with respect to the proof of
Proposition 4.2, is the following bilinear estimate, that conveniently replaces Lemma 9.1

kBðu, vÞkZp,T 
 CT1=2�1=p 1þ
ffiffiffiffi
T

p� �
kukZp,TkvkZp,T ,

valid for all T> 0 and p> 2, where C> 0 depends only on p.
This is elementary: first of all,

kBðu, vÞðtÞk4 
 C
ðt
0
kFðt � sÞk1kuðsÞk4kvðsÞk1 ds 
 Ct1=4�1=pkukZp,TkvkZp,T :

On the other hand,

kBðu, vÞðtÞk1 
 C
ðt
0
kFðt � sÞk1kuðsÞk1kvðsÞk1 ds 
 Ct1=2�2=pkukZp,TkvkZp,T :

Moreover, for jxj � 1, after splitting as usual the integrals defining Bðu, vÞðx, tÞ in the
regions fjyj 
 jxj=2g and fjyj � jxj=2g, we obtain

jBðu, vÞjðx, tÞ 
 Cjxj�3
ðt
0

ð
jyj
jxj=2

juj jvjðy, sÞ dy dsþ CkukZp,TkvkZp,T

ðt
0
kFðt � sÞk1s�2=p ds uðxÞ�2


 Cðt1�2=pjxj�3 þ t1=2�2=puðxÞ�2ÞkukZp,TkvkZp,T


 C 1þ ffiffi
t

p� �
t1=2�2=puðxÞ�1kukZp,TkvkZp,T :

This establishes the required bilinear estimate.

26 L. BRANDOLESECOMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS



Notice that if the two functions (or at least one of them) u and v belong more pre-
cisely to Wp,T , then the last estimate ensures that Bðu, vÞ 2 Wp,T :

On the other hand, if u0 2 L2rðR2Þ and u0ðxÞ ¼ oðjxj�3=2Þ as jxj ! þ1, then one
easily checks via standard heat kernel estimates that etDu0 2 Wp,T , for all T> 0.
Therefore, choosing a small enough T0 > 0 the usual fixed point argument applies in
Wp,T0 : Hence, we get the existence of a solution u 2 Wp,T0 : This solution agrees with
Leray’s solution on ½0,T0�: By a continuation argument, similar to the one we did in
Proposition 4.1, we finally conclude that u 2 Wp,T , for all T> 0. w
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